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GENERATION OF INTERNAL GRAVITY WAVES BY AN

OSCILLATING HORIZONTAL ELLIPTICAL PLATE∗
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Abstract. Time-harmonic oscillations of a horizontal plate generate internal gravity waves in
an unbounded stratified fluid. A plane-wave (Fourier) decomposition is used in which waves with
outgoing group velocity are selected. The pressure and the velocity in the far field are estimated in
terms of the Fourier transform of the pressure jump across the plate. Explicit solutions are obtained
for arbitrary prescribed motions of an elliptical plate. Energy is confined to certain wave beams,
bounded by conical characteristic surfaces of the underlying hyperbolic partial differential equation;
the solution itself is not axisymmetric. The details of the beam structure are complicated (because
each characteristic surface has a vertical axis of symmetry, whereas the elliptical plate does not),
but they emerge naturally from the asymptotic method, a method that has wider applicability.
Results for analogous piston problems are also obtained; these problems arise when a piece of a rigid
horizontal plane is forced to oscillate, thus generating waves above the plane.
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1. Introduction. Internal gravity waves occur in the atmosphere and in the
oceans. They arise in fluids where the density varies continuously as a function of
depth, and they are known to be important in the context of oceanic mixing [13], for
example.

Internal waves can be generated by scattering, where an ambient oscillatory flow
interacts with topography or an immersed object. They can also be generated directly
by oscillating an object; we shall consider such radiation problems below.

The mathematical framework for small-amplitude internal gravity waves is well
established; see, for example, Lighthill [19, Chapter 4], Brekhovskikh and Goncharov
[5, sect. 10.4] or Vallis [27, sect. 2.4]. The simplest situation is when the fluid is
incompressible, inviscid, and uniformly stratified, and there is no rotation. (These
assumptions may be relaxed.) Then, with the Boussinesq approximation and time-
harmonic motions, it is found that the pressure p(x, y, z) satisfies a linear hyperbolic
partial differential equation (PDE); see (2.1) below. This equation is to be solved
subject to boundary and far-field conditions.

We shall suppose that internal waves are generated by oscillating a bounded
object in an unbounded three-dimensional fluid; the effects of other boundaries (such
as a horizontal plane) are also of interest, but we ignore those here. The prototype
problem is when the object is a sphere [1, 10, 16, 18, 30, 31, 32]: for example, the
sphere could be pulsating or it could be oscillating as a rigid body. There are also
some publications on spheroids with a vertical axis of symmetry and on horizontal
circular discs [18, 11, 8, 21].
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726 P. A. MARTIN AND S. G. LLEWELLYN SMITH

A characteristic feature of internal-wave generation is the formation of energy
beams. These beams are bounded by characteristic surfaces of the governing hyper-
bolic PDE. These surfaces are circular cones with vertical axes of symmetry; see (2.2)
below. The group velocity is directed along the beams, away from the oscillating
body. The phase velocity is perpendicular to the group velocity. These known facts
[19, sect. 4.10] indicate how to formulate a far-field condition.

We choose to study the generation of internal waves by an oscillating horizontal
elliptical plate: we are not aware of any previous results on internal-wave generation
by objects without a vertical axis of symmetry. This lack of axisymmetry is inter-
esting because the beam structure is complicated: the beam thickness varies with
azimuthal angle. To solve the problem, we use Fourier transforms in the horizontal
directions, giving a plane-wave representation for p. We choose those plane waves
that give outgoing group velocity. Application of the boundary condition gives dual
integral equations or, alternatively, a hypersingular boundary integral equation. Ex-
act solutions are obtained. We then give an asymptotic method for calculating the
pressure and velocity in the far field; the thickness of the beam comes out of the
calculations naturally. In fact, the asymptotic method is more general: it can be
used for plates of any shape. It can also be used for “piston problems,” where fluid
occupies the region z > 0 above a rigid floor in which is mounted an oscillating vi-
brator or piston. Such problems have been studied extensively by Chashechkin and
his colleagues [2, 6, 7, 28, 29]. They are easier to solve, formally, because the normal
velocity is prescribed everywhere over the plane z = 0, whereas the plate problem
leads to a mixed boundary-value problem. Our asymptotic method enables the far
field of the piston to be calculated.

Section 2 begins by recalling the governing equations. The oscillating-plate prob-
lem is formulated and then reduced to integral equations. Section 3 gives the basic
far-field estimates. A variant of the two-dimensional method of stationary phase is
used, in which there is a line of stationary-phase points within the integration domain
[34]. Subsequently, the plate is assumed to be elliptical. Exact solutions are obtained,
adapting a method used previously for pressurized flat elliptical cracks in an elastic
solid [20]. The method makes use of expansions in terms of Gegenbauer polynomials.
The far field of the oscillating elliptical plate is calculated in section 6. Two special
cases are investigated further in section 7. They are a “heaving plate,” where a rigid
horizontal plate oscillates vertically, and a “rolling plate,” where a rigid horizontal
plate makes small oscillations about its minor axis. In the last section (section 8),
the problem of an elliptical piston is solved. It is shown that the energy input by the
piston is balanced by the energy found in the far field. This provides a good check on
the far-field analysis.

2. An oscillating horizontal plate. Consider a variable-density inviscid fluid
without rotation. Under the Boussinesq approximation, the (rescaled) pressure has
the form Re {p(x, y, z)e−iωt}, where p satisfies

(2.1)
∂2p

∂x2
+

∂2p

∂y2
− γ2 ∂

2p

∂z2
= 0 with γ2 =

ω2

N2 − ω2
.

As noted in section 1, the theory behind (2.1) is given in textbooks; see [19, Chapter 4],
[5, sect. 10.4] or [27, sect. 2.4]. See also [21, sect. 2] or [22, sect. 2].

We use Cartesian coordinates Oxyz, with z pointing upwards; ω is the oscillation
frequency, and N is the (constant) Brunt–Väisälä frequency. For internal waves, we
suppose that 0 < ω < N , and we write ω = N cos θc with 0 < θc < π/2. Then
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γ = cot θc and the differential equation (2.1) is hyperbolic; it is to be solved subject
to boundary and far-field conditions (which we shall specify later).

The characteristic surfaces for (2.1) are given by (see, for example, [12, sect. 6.1])

(2.2) (z − z0)
2 = {(x− x0)

2 + (y − y0)
2} cot2 θc,

where x0, y0, and z0 are constants. The surfaces defined by (2.2) are circular cones
with vertical axes and generators inclined at angle θc to the vertical. We are interested
in the generation of internal waves by objects that do not have a vertical axis of
symmetry: later, we shall choose a thin horizontal elliptical plate.

The actual excess pressure in the fluid is ρ0p, where ρ0 is the constant back-
ground density. Thus, p has dimensions of velocity squared. The velocity field,
v = (ux, uy, w), is given in terms of p by

(2.3) ux =
1

iω

∂p

∂x
, uy =

1

iω

∂p

∂y
, w =

iγ2

ω

∂p

∂z
.

Consider a thin flat plate, Ω, in the xy-plane. Denote the rest of the xy-plane by
Ω′. The plate oscillates with prescribed normal velocity on Ω, wp. Thus

(2.4) w =
iγ2

ω

∂p

∂z
= wp(x, y), (x, y) ∈ Ω.

As this holds on both sides of Ω, it follows that p must be an odd function of z.
Hence, we can reduce the problem to one in the half-space z > 0. This splitting of
the problem into two half-space problems means that we must also impose continuity
of p across Ω′.

To solve the problem, we introduce two-dimensional (horizontal) Fourier trans-
forms, defined by

(2.5) F (ξ) = F [f(x); ξ] =

∫ ∞

−∞

∫ ∞

−∞

f(x) exp (−i ξ · x) dx,

where x = (x, y) and ξ = (ξ, η). The corresponding inverse is

(2.6) f(x) = F−1[F (ξ);x] =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

F (ξ) exp (i ξ · x) dξ.

Henceforth, we write
∫∫

when the integration limits are as in (2.5) or (2.6).
Taking the Fourier transform of (2.1) with respect to x gives P ′′ = −(κ/γ)2P ,

where P = Fp, P ′′ = ∂2P/∂z2, and κ = |ξ|. Hence,

(2.7) P (ξ, z) = C(ξ) ei(κ/γ)z +D(ξ) e−i(κ/γ)z for z > 0.

The C term corresponds to waves propagating upwards: their phase velocity has
a positive z-component. Similarly, the D term corresponds to waves propagating
downwards.

If we invert, p = F−1P with (2.7), we obtain a plane-wave decomposition of p.
Explicitly, (2.1) has solutions of the form

p(x, y, z) = exp {i(k1x+ k2y + k3z)} if ω2 = N2(k21 + k22)/K
2,

where K2 = k21 + k22 + k23 . The corresponding group velocity, cg, is defined by

cg = (∂ω/∂k1, ∂ω/∂k2, ∂ω/∂k3).
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728 P. A. MARTIN AND S. G. LLEWELLYN SMITH

It is given by

ωcg = (N/K)2(k1 sin
2 θc, k2 sin

2 θc, −k3 cos
2 θc).

Then, in the half-space z > 0, we insist that the group velocity be upwards, away
from the plate, implying that we should take k3 < 0, that is, we should take C = 0
in (2.7). This is our radiation condition. It has been used previously [3, 24], and it
has been shown to be consistent with causality in the time-domain [21]. As a result,

(2.8) p(x, z) = F−1[D(ξ) e−i(κ/γ)z;x].

This representation ensures that (2.1) and the radiation condition are satisfied. The
boundary conditions are (2.4) and p = 0 on Ω′; they give

F−1[κD(ξ);x] = (ω/γ)wp(x), x ∈ Ω,(2.9)

F−1[D(ξ);x] = 0, x ∈ Ω′.(2.10)

This is a pair of dual integral equations for D(ξ). To interpret this quantity, define
the discontinuity in p across z = 0 by

(2.11) 2δ(x) ≡ p(x, y, 0+)− p(x, y, 0−) = 2p(x, y, 0+).

As δ(x) = 0 for x ∈ Ω′,

(2.12) F [δ(x); ξ] =

∫

Ω

δ(x) exp (−i ξ · x) dx = F [p(x, 0+); ξ] = D(ξ).

Hence, substituting for D in (2.9) gives

(2.13) F−1[|ξ| F{δ; ξ};x] = (ω/γ)wp(x), x ∈ Ω,

which is a hypersingular boundary integral equation for the pressure discontinuity, δ.
Equations of this type arise in many branches of mechanics where there are thin
objects, such as cracks or screens; see [4] for a review.

3. The far-field pressure. Once D = Fδ has been found, either by solving the
dual integral equations (2.9) and (2.10) or the integral equation (2.13), the pressure
is given by (2.8). Using cylindrical polar coordinates for x and ξ, defined by

x = r cosφ, y = r sinφ, ξ = κ cosβ, and η = κ sinβ,

(2.8) becomes

(3.1) p(x, z) =
1

4π2

∫ ∞

0

∫ 2π

0

D(κ, β) exp

{

iκ

(

r cos [β − φ]− z

γ

)}

κ dβ dκ.

In the far field, R ≡
√
r2 + z2 is large. As we are expecting wave beams bounded

by characteristic cones, (2.2), it is useful to introduce conical polar coordinates, σ and
ζ, defined by (see, e.g., [31, p. 250])

(3.2) σ = r cos θc − z sin θc and ζ = r sin θc + z cos θc;
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equivalently, r = σ cos θc + ζ sin θc and z = −σ sin θc + ζ cos θc. The quantity σ is a
lateral coordinate, across the beam. In the far field, ζ → ∞, but σ is finite; note that
ζ ∼ R in this limit. Then (3.1) becomes

(3.3) p(x, z) =
1

4π2

∫ ∞

0

∫ 2π

0

g(κ, β) eiζf(κ,β) dβ dκ,

where

g(κ, β) = κD(κ, β) eiκσ{tan θc sin θc+cos (β−φ) cos θc},

f(κ, β) = {cos (β − φ) − 1}κ sin θc.

To estimate (3.3), we use the two-dimensional method of stationary phase. We have

∂f

∂κ
= {cos (β − φ)− 1} sin θc and

∂f

∂β
= −κ sin (β − φ) sin θc.

These both vanish when β = φ, giving a line of stationary points. On this line,
f = 0, fκκ = 0, fββ = −κ sin θc, and g(κ, φ) = κD(κ, φ) eiκσ sec θc . Then, from [34,
Theorem 1, p. 454], we obtain the estimate

(3.4) p ∼ b0ζ
−1/2 with b0 =

1

4π2

√

2π

sin θc
e−iπ/4

∫ ∞

0

D(κ, φ) eiκσ sec θc
√
κ dκ.

Within the wave beams, we can also estimate the velocity. Thus [21, sect. 7b],

(3.5) v ∼ v ζ̂ with v = (iN sin θc)
−1∂p/∂σ,

where ζ̂ is a unit vector in the ζ direction, pointing away from the plate.
At this stage, our far-field estimates for p and v are quite general: they involve

D, the Fourier transform of the pressure jump across the plate Ω (see (2.12)), but the
shape of Ω has not been used.

In order to obtain more explicit results, we now specialize to elliptical plates.

4. Elliptical plate. For an elliptical plate, let

(4.1) Ω = {(x, y, z) : 0 ≤ ρ < 1, 0 ≤ χ < 2π, z = 0},

where

x = aρ cosχ, y = bρ sinχ, 0 < b ≤ a.

Thus, (x/a)2 + (y/b)2 ≤ 1. Note that the coordinates ρ and χ are not orthogonal.
For the Fourier transform variable ξ, write

ξ = (λ/a) cosψ and η = (λ/b) sinψ

so that ξ · x = λρ cos (χ− ψ).
Suppose, for simplicity, that f(x) is an even function of y. Then it has a Fourier

expansion, f(x) =
∑∞

m=0 fm(ρ) cosmχ. It follows that when computing Ff , we can
integrate over χ, giving

(4.2) F [f(x); ξ] = 2πab

∞
∑

m=0

(−i)m cosmψHm[fm(ρ);λ],
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730 P. A. MARTIN AND S. G. LLEWELLYN SMITH

where

Hν [f(ρ);λ] =

∫ ∞

0

f(ρ)Jν(λρ)ρ dρ

is a Hankel transform and Jν is a Bessel function.
Now, considering (2.13), suppose that the unknown pressure jump is written as

(4.3) δ(x) = aωU
∞
∑

m=0

dm(ρ) cosmχ,

where U is a velocity scale and the functions dm(ρ) are dimensionless. From (4.2),

(4.4) D(ξ) = F [δ(x); ξ] = 2πωUa2b
∞
∑

m=0

(−i)m cosmψHm[dm(ρ);λ].

Then, as |ξ| = (λ/b)(1 − k2 cos2 ψ)1/2, where

k2 = 1− (b/a)2,

(2.13) reduces to

(4.5) wp(x) = Uγ
∞
∑

n=0

ǫnwn(ρ) cosnχ, 0 ≤ ρ < 1, 0 ≤ χ < 2π,

where

wn(ρ) =
a

πb

∞
∑

m=0

Imn(k)Hn[λHm{dm(ρ);λ}; ρ],(4.6)

Imn(k) =
1

2
(−i)m in

∫ 2π

0

(1− k2 cos2 ψ)1/2 cosmψ cosnψ dψ,

ǫ0 = 1 and ǫn = 2 for n ≥ 1.
The integrals Imn can be expressed in terms of the elliptic integrals,

Em(k) =

∫ π/2

0

(1− k2 sin2 x)1/2 cos 2mxdx.

Thus I2m,2n = Em−n + Em+n, I2m+1,2n+1 = Em−n − Em+n+1 and I2m,2n+1 = 0. In
particular,

(4.7) I00 = 2E(k) and I11 = 2
3k

−2{(2k2 − 1)E(k) + (1− k2)K(k)},

where K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively.

5. Elliptical plate: Polynomial solutions. Our task is to solve (4.6) for dm,
given wn. We expand δ(x) as (4.3) with

(5.1) dm(ρ) = H(1− ρ)

∞
∑

j=0

j! Γ(m+ 1/2)

Γ(j +m+ 3/2)
Dm

j Φ
(m)
j (ρ),
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where H(t) is the Heaviside unit function,

(5.2) Φ(n)
m (ρ) = ρnC

n+1/2
2m+1 (

√

1− ρ2 ),

and Cµ
n is a Gegenbauer polynomial. (The gamma functions in (5.1) were inserted so

that a later formula, (5.4), takes a simple form.) As Φ
(n)
m (ρ) is of the form

√

1− ρ2

multiplied by a polynomial in ρ, the square-root zero at the plate edge is incorpo-
rated automatically. The Heaviside function ensures that δ(x) = 0 for x ∈ Ω′. The
coefficients Dm

j are to be found.
Substitution in (4.4) leads to Tranter’s integral,

(5.3)

∫ 1

0

Φ(n)
m (x)Jn(ξx)x dx =

2Γ(m+ n+ 3/2)

m! Γ(n+ 1/2)

jn+2m+1(ξ)

ξ
,

where jn(x) =
√

π/(2x)Jn+1/2(x) is a spherical Bessel function; see [25, eq. (5)], [26,
eq. (8.6)] and [17, eq. (72)]. Hence

(5.4) Hm[dm(ρ);λ] =
2

λ

∞
∑

j=0

Dm
j j2j+m+1(λ).

Substitution of (5.1) in (4.6) requires

(5.5) Hn[λHm{dm(ρ);λ}; ρ] = 2
∞
∑

j=0

Dm
j L2j

m,n(ρ),

where

L2j
m,n(ρ) =

∫ ∞

0

λJn(λρ)j2j+m+1(λ) dλ.

In (5.5), we can assume that m and n are both even or both odd (because I2m,2n+1 =
0), so we can define integers p and q by m + n = 2p and m − n = 2q. The integral
L2j
m,n(ρ) can be evaluated for 0 ≤ ρ < 1; its value is zero when j + q < 0, whereas

L2j
m,n(ρ) =

Γ(n+ 1/2)Γ(j + q + 3/2)

(j + p)!
√

1− ρ2
Φ

(n)
j+q(ρ), j + q ≥ 0,

so that L2j
m,n is a polynomial when j + q ≥ 0. Using this result in (5.5), (4.6) gives

w2n(ρ) =
2a

πb

∞
∑

j=0

∞
∑

m=0

I2m,2nD
2m
j

Γ(2n+ 1/2)Γ(m− n+ j + 3/2)

(m+ n+ j)!
√

1− ρ2
Φ

(2n)
j+m−n(ρ)

=
2a

πb

∞
∑

j=0

Γ(2n+ 1/2)Γ(j + 3/2)

(2n+ j)!
√

1− ρ2
Φ

(2n)
j (ρ)

n+j
∑

m=0

I2m,2nD
2m
n+j−m,

where 0 ≤ ρ < 1, and we have used the fact that, in the first line, the summation is
over only those j and m satisfying j +m ≥ n. There is a similar equation for w2n+1.
Therefore, if we write

(5.6) wn(ρ) =

∞
∑

j=0

Γ(n+ 1/2)Γ(j + 3/2)

(n+ j)!
√

1− ρ2
Wn

j Φ
(n)
j (ρ),
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we obtain

(5.7) W 2n
j =

2a

πb

n+j
∑

m=0

I2m,2nD
2m
n+j−m

for n ≥ 0 and j ≥ 0. Similarly,

(5.8) W 2n+1
j =

2a

πb

n+j
∑

m=0

I2m+1,2n+1D
2m+1
n+j−m.

These are linear systems for Dm
i in terms of Wn

j , and these coefficients are known in
terms of wn(ρ). It turns out that the linear systems (5.7) and (5.8) can be truncated
properly [20, sect. 6].

Once the coefficients Dm
i have been found, we can compute the pressure and

velocity anywhere in the fluid.

6. Elliptical plate: Far-field pressure. For the far-field pressure, we use the
results in section 3. Specifically, we use the estimate (3.4), giving p in terms ofD(κ, φ).

Equations (4.4) and (5.4) give

D(κ, β) =
4π

λ
ωUa2b

∞
∑

m=0

∞
∑

j=0

(−i)mDm
j j2j+m+1(λ) cosmψ,

where κ and β are related to λ and ψ by κ cosβ = (λ/a) cosψ and κ sinβ = (λ/b) sinψ.
Let ψ = ψ0 correspond to β = φ. Thus, tanψ0 = (b/a) tanφ with ψ0 and φ being in
the same quadrant. Then, (3.4) gives

p ∼ 2ωUa2b√
2πR sin θc

e−iπ/4
∞
∑

m=0

∞
∑

j=0

(−i)mDm
j cosmψ0

∫ ∞

0

j2j+m+1(λ) e
iκσ sec θc

√
κ

λ
dκ.

This estimate can be written as

(6.1) p ∼
√

a

R

ωUb
∆3/2

√
sin θc

e−iπ/4
∞
∑

m=0

∞
∑

j=0

(−i)mDm
j h2j+m(X) cosmψ0,

where ∆(φ) = (1− k2 sin2 φ)1/2,

hn(X) =

∫ ∞

0

Jn+3/2(λ) e
iλX dλ

λ
, and X(σ, φ) =

σ sec θc
a∆(φ)

.

This integral can be evaluated. From [33, eqs. (2) and (3), p. 405], we have

(6.2)

∫ ∞

0

Jµ(λ) e
±iλc dλ

λ
=

{

µ−1 exp (±iµ arcsin c), 0 ≤ c ≤ 1,

µ−1[c+
√

c2 − 1]−µ e±iπµ/2, c ≥ 1.

The first of these gives

hn(X) = (n+ 3/2)−1 exp {i(n+ 3/2) arcsinX}, |X(σ, φ)| ≤ 1,

which shows the phase variation across the wave beam. The inequality |X | ≤ 1 gives
the thickness of the beam at azimuth φ, namely,

(6.3) |σ| ≤ a∆(φ) cos θc = cos θc
{

a2 cos2 φ+ b2 sin2 φ
}1/2

= B(φ),
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GENERATION OF INTERNAL GRAVITY WAVES 733

say. The far-field velocity then follows from (3.5), using

∂

∂σ
hn(X) =

i√
B2 − σ2

exp

{

i

(

n+
3

2

)

arcsinX

}

, |σ| < B(φ).

Outside the beam, we can use the second part of (6.2): there is no phase variation,
which implies that there is no energy transport outside the wave beams. Within this
region, the pressure decays as R−1 as R → ∞.

7. Two examples. The method described above can be used for arbitrary pre-
scribed normal velocity of the plate, wp. In this section, we investigate two simple
but realistic forcings, namely heaving and rolling motions.

7.1. The heaving plate. This is the simpler problem. We suppose that wp =
U0, a given constant, so that we are concerned only with n = 0 in (4.5). Put Uγ = U0.

As Cµ
1 (x) = 2µx, Φ

(0)
0 (ρ) =

√

1− ρ2 and so (5.6) gives W 0
0 = 2/π, all other Wn

m being
zero. Then, (5.7) gives

D0
0 =

b/a

2E(k)
,

using I00 = 2E(k), where E(k) is a complete elliptic integral and k = (1 − b2/a2)1/2;
see (4.7). The pressure discontinuity across the plate is 2ρ0δ, where

δ = aωUd0(ρ) = 2aωUD0
0

√

1− ρ2, 0 ≤ ρ < 1.

The force on the plate is in the vertical direction with magnitude

∫

Ω

2ρ0δ dx = 4πρ0ab

∫ 1

0

δ ρ dρ =
4π

3E(k)
ωU0ρ0ab

2 tan θc.

For a circular plate, a = b, k = 0, E(0) = π/2, and we recover a known result [18,
eq. (47)].

The far-field pressure within the wave beams is given by (6.1) as

(7.1) p ∼
√

a

R

b2NU0

√
sin θc

3a(1− k2 sin2 φ)3/4E(k)
e−iπ/4 exp {(3i/2) arcsinX(σ, φ)}

for |X(σ, φ)| ≤ 1. Thus, although the prescribed motion is very simple, the depen-
dence of p on the azimuthal angle φ is complicated.

Let us interpret the formula (7.1) for the far-field pressure within the beam. (Sim-
ilar discussions can be given for related formulas.) First, there is the slow algebraic
decay with distance from the plate, R−1/2. Then, we note that the amplitude con-
tains the factor (1 − k2 sin2 φ)−3/4, which increases from 1 in the xz-plane (φ = 0;
see Figure 7.1) to (a/b)3/2 in the yz-plane (φ = 1

2π). (By symmetry, it is enough to
consider 0 ≤ φ ≤ 1

2π, z ≥ 0.) The beam has width 2B(φ), with B decreasing from
a cos θc at φ = 0 to b cos θc at φ = 1

2π; see (6.3). The beam itself is bounded by the
characteristic circular cones (2.2), with apexes located at all points around the edge
of the plate. Thus, in a plane φ = constant, we would have a sketch similar to Figure
7.1 but with a narrower beam.

In the xz-plane, we can define a quantity ϑ by σ = a cos θc sinϑ, so that |ϑ| < 1
2π

within the beam; see Figure 7.1. Then, the last exponential in (7.1) simplifies to
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734 P. A. MARTIN AND S. G. LLEWELLYN SMITH

Fig. 7.1. The group velocity is away from the plate, along the wave beams. The phase velocity

is perpendicular to the group velocity; waves propagate downwards, across the beam.

exp { 3
2 iϑ}. In terms of ϑ, the beam has width π, and the wavelength is 4

3π. The
wave propagates downwards, with crests parallel to the beam boundaries. Similar
interpretations can be given in other planes, φ = constant. Note that the numbers
appearing in this description, 3

2 and 4
3 , are a consequence of the simple forcing of the

plate; more generally, see section 6.

7.2. The rolling plate. Consider a horizontal elliptical plate making small os-
cillations about the y-axis. For such rolling motions, we have wp = V0x/a = V0ρ cosχ,
where V0 is a given constant. Thus, we consider only n = 1 in (4.5). Put Uγ = V0.

Then, as Φ
(1)
0 (ρ) = 3ρ

√

1− ρ2, (5.6) gives W 1
0 = 2/(3π), all other Wn

m being zero.
From (5.8),

D1
0 =

b/a

3I11
,

where I11(k) is given by (4.7). The pressure discontinuity is

δ = aωUd1(ρ) cosχ = 2aωUD1
0ρ
√

1− ρ2 cosχ, 0 ≤ ρ < 1.

Thus, there is no net force on the plate, but there is a moment about the y-axis with
magnitude

∫

Ω

2xρ0δ dx = 4πρ0ωUa3bD1
0

∫ 1

0

ρ3
√

1− ρ2 dρ =
8πρ0

45I11(k)
a2b2V0N sin θc.

8. Piston problems. Suppose that the plane z = 0 is rigid apart from a piston,
Ω, on which w = wp, a given function. On the rigid part of the plane, Ω′, w = 0. The
piston generates waves in the fluid above the plane, z > 0. The pressure is given by
(2.8) in terms of D(ξ). From (2.3) and (2.8), F{w} = κ(γ/ω)D on z = 0, and this
determines D.

Suppose now that Ω is an ellipse (4.1). Suppose for simplicity that wp = U0, a
constant. Then,

D(ξ) =
ω

κγ
F{w} =

ωU0

κγ

∫

Ω

exp (−i ξ · x) dx

= 2πab
ωU0

κγ

∫ 1

0

J0(λρ)ρ dρ = 2πab
ωU0

κλγ
J1(λ),

D
ow

nl
oa

de
d 

04
/0

8/
13

 to
 1

38
.6

7.
22

.1
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERATION OF INTERNAL GRAVITY WAVES 735

using (4.2). As
∫

Ω
exp (iξ · x) dx = 2πabλ−1J1(λ), the net force on the piston is

(8.1)

∫

Ω

ρ0p dx =
ρ0
2π

∫ ∞

0

∫ 2π

0

D(ξ)J1(λ) dψ dλ =
16ρ0
3π

ab2ωU0K(k) tan θc,

using κ = (λ/b)
√

1− k2 cos2 ψ and
∫∞

0 λ−2J2
1 (λ) dλ = 4/(3π) [15, eq. 6.575 (2)].

The time-averaged energy input to the fluid by the piston oscillations is

(8.2) Ein =
ρ0
2

∫

Ω

Re {pwp} dx =
8ρ0
3π

ab2ω|U0|2K(k) tan θc,

using (8.1), where the overline denotes complex conjugation. The quantity Ein will be
shown to match the energy transport in the far field, thus providing a check on the
calculations.

In the far field, p ∼ b0ζ
−1/2 with b0 given by (3.4):

b0 =
abωU0

γ
√
2π sin θc

e−iπ/4

∫ ∞

0

J1(λ)

κλ
eiκσ sec θc

√
κ dκ.

In this formula, λ = {(aξ)2 + (bη)2}1/2 = κ{a2 cos2 β + b2 sin2 β}1/2 evaluated at
β = φ. Thus, λ = κB sec θc, where B(φ), defined by (6.3), gives the (expected) beam
thickness at azimuth φ. Then, the substitution s = κ sec θc shows that

(8.3) b0 =
abωU0

πB(φ)

√

tan θc L(B, σ),

where

(8.4) L(B, σ) = e−iπ/4

√

π

2

∫ ∞

0

s−3/2J1(sB) eisσ ds.

Here, B > 0, but σ can take any value. However, when evaluating L, we can assume
that σ ≥ 0 because of the relation

(8.5) L(B, σ) = −iL(B,−σ).

The integral L(B, σ) can be written in terms of Weber–Schafheitlin integrals; its
value depends on whether 0 < σ < B (within the wave beam) or 0 < B < σ (outside
the beam). The relevant formulas are [15, eqs. 6.699 (1) and (2)].

For 0 < B < σ, we obtain

L(B, σ) =
Bπ√
8σ

F

(

1

4
,
3

4
; 2;

(

B

σ

)2
)

,

where F is the hypergeometric function. Putting µ = −1 and ν = 1
2 in [9, eq. 14.3.7]

gives

Q−1
1/2(X) = − π

23/2
√
X
√
X2 − 1

F

(

1

4
,
3

4
; 2;X−2

)

for X > 1, where Qµ
ν is an associated Legendre function of the second kind. Hence

L(B, σ) = −B−1/2
√

σ2 −B2 Q−1
1/2(σ/B) for σ > B > 0.
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736 P. A. MARTIN AND S. G. LLEWELLYN SMITH

As expected, there is no phase variation with σ, implying no energy transport.
For 0 < σ < B, [15, eqs. 6.699 (1) and (2)] gives

Lc ≡
∫ ∞

0

s−3/2J1(sB) cos (sσ) ds =

√
B Γ(14 )

2
√
2 Γ(74 )

F

(

1

4
,−3

4
;
1

2
;

(

σ

B

)2)

,

Ls ≡
∫ ∞

0

s−3/2J1(sB) sin (sσ) ds =
σΓ(34 )√
2B Γ(54 )

F

(

3

4
,−1

4
;
3

2
;

(

σ

B

)2)

.

The hypergeometric functions appearing here also appear in expressions for certain
Ferrers functions. Thus, putting µ = 1 and ν = 1

2 in [9, eqs. 14.3.13 and 14.3.14]
(noting [9, eq. 14.3.3]) gives

w1

(

1

2
, 1, X

)

=
Γ(54 )√
π Γ(34 )

2√
1−X2

F

(

1

4
,−3

4
;
1

2
;X2

)

,

w2

(

1

2
, 1, X

)

=
Γ(74 )√
π Γ(14 )

4X√
1−X2

F

(

3

4
,−1

4
;
3

2
;X2

)

.

So, with 0 < X = σ/B < 1,

Lc =
2

3

√
2πB

√

1−X2w1

(

1

2
, 1, X

)

,

Ls =
2

3

√
2πB

√

1−X2w2

(

1

2
, 1, X

)

.

Then, from [9, eqs. 14.3.11 and 14.3.12],

w1

(

1

2
, 1, X

)

− w2

(

1

2
, 1, X

)

= −
√
2P1

1/2(X),

w1

(

1

2
, 1, X

)

+ w2

(

1

2
, 1, X

)

= −
√
2

(

2

π

)

Q1
1/2(X),

where Pµ
ν and Qµ

ν are Ferrers functions. Hence,

√
2w1

(

1

2
, 1, X

)

= −P1
1/2(X)− 2

π
Q1

1/2(X),

√
2w2

(

1

2
, 1, X

)

= P1
1/2(X)− 2

π
Q1

1/2(X).

From [9, eqs. 14.6.1 and 14.6.2],

P
1
ν(X) = −

√

1−X2 P
′
ν(X) and Q

1
ν(X) = −

√

1−X2 Q
′
ν(X),

whereas [9, eqs. 14.5.20 and 14.5.22] gives

P1/2(X) = (2/π) {2E(X−)−K(X−)} and Q1/2(X) = K(X+)− 2E(X+),

where E and K are complete elliptic integrals and X± =
√

(1±X)/2. As dX±/dX =
± 1

4/X±, P
′
1/2(X) = (2/π)G(X−) and Q′

1/2(X) = G(X+), where

G(k) =
1

4k

d

dk
{K(k)− 2E(k)} =

1

4k2k′2
{

(1 − 2k′2)E(k) + k′2K(k)
}

,

D
ow

nl
oa

de
d 

04
/0

8/
13

 to
 1

38
.6

7.
22

.1
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERATION OF INTERNAL GRAVITY WAVES 737

k′2 = 1 − k2, and we have used [15, eqs. 8.123 (2) and (4)]. Thus, when k = X±,
k′ = X∓, 4k

2k′2 = 1−X2 and 1 − 2k′2 = ±X . Remove the factor of (1−X2)−1 by
writing

(8.6) 2G(X±) = (1−X2)−1G± with G± = K(X±)±X{2E(X±)−K(X±)}.

Hence

√
2w1

(

1

2
, 1, X

)

=
1

π
(1−X2)−1/2 {G+ + G−} ,

√
2w2

(

1

2
, 1, X

)

=
1

π
(1−X2)−1/2 {G+ − G−} .

From (8.4), we want

L(B, σ) = e−iπ/4

√

π

2
(Lc + iLs)(8.7)

=
2

3
e−iπ/4π

√
B
√

1−X2

{

w1

(

1

2
, 1, X

)

+ i w2

(

1

2
, 1, X

)}

=
2

3
e−iπ/4

√

B

2
{(G+ + G−) + i (G+ − G−)}

=
2

3

√
B (G+ − iG−).

This formula was derived assuming that 0 ≤ σ < B. However, use of (8.5) shows that
(8.7) is valid across the beam, −B < σ < B.

Having found L, b0 is given by (8.3), and then the far-field pressure within the
beam is given by

p ∼ 2

3π
abωU0

√

tan θc [B(φ)]−1/2 (G+ − iG−) ζ
−1/2.

The far-field velocity, v, is given by (3.5) in terms of ∂p/∂σ; as X = σ/B,

v ∼ 2abU0

3πiζ1/2
√
tan θc [B(φ)]3/2

∂

∂X
(G+ − iG−) .

Now, if we define J± = 2E(X±)−K(X±), (8.6) gives G± = K(X±)±XJ± and then
direct calculation gives ∂G±/∂X = ±(3/2)J±.

In the far field, the time-averaged energy transport vector is I ζ̂, with I =
(ρ0/2)Re {pv } [21, 31]. Substituting for p and v gives

I =
2

3
ωρ0

(

ab

πB(φ)

)2 |U0|2
ζ

(G−

3

∂G+

∂X
− G+

3

∂G−

∂X

)

.

The quantity inside the last pair of parentheses reduces to

1

2
{K(X−)J+ +K(X+)J−} = E(X+)K(X−) +E(X−)K(X+)−K(X+)K(X−) =

π

2
,

using Legendre’s relation [15, eq. 8.122]. Hence,

I =
ωρ0
3πζ

(

ab

B(φ)

)2

|U0|2,
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which is positive: the energy transport vector I ζ̂ points away from the piston.
The total energy transported away, Eout, is found by integrating over the beam

cross-section [21, 31]:

Eout = ζ sin θc

∫ 2π

0

∫ B(φ)

−B(φ)

I dσ dφ =
2

3π
(ab)2ωρ0|U0|2 sin θc

∫ 2π

0

dφ

B(φ)
.

The remaining integral is (4/a)K(k) sec θc using (6.3), whence Eout = Ein (see (8.2)),
as expected.

We conclude by noting that results for a circular piston are readily obtained by
setting a = b (k = 0). In this case, the beam width does not depend on φ, B = a cos θc.

It is possible that some of the techniques developed in this paper (and also in
[22]) could be adapted to analyze the motions generated by other kinds of wavemakers
[14, 23], but this remains for future work.
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