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a b s t r a c t

One-dimensional time-harmonic waves interact with a finite number of scatterers: they
could be beads on a long string, for example. If the scatterers are identical and equally
spaced, such periodic problems can be solved exactly. One problem solved here ariseswhen
one scatterer in a periodic row is forced to oscillate, giving the Green function for the row.
Ourmain interest is with disordered problems, where a periodic configuration is disturbed.
Two problems are studied. First, just one scatterer in a finite periodic row is displaced: an
exact solution is obtained for the transmission coefficient and its average over all allowable
displacements. Second, a similar problem is treated where each scatterer is displaced by a
small distance from its position in the periodic row. The main tools used are perturbation
theory and transfer matrices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation in one-dimensional periodic media is a classical topic: one thinks of passbands, stopbands, the
Kronig–Penney problem and the little book by Léon Brillouin [1]. Reflection and transmission by a finite periodic row of
N scatterers have also been studied extensively: explicit formulas are available for the complex reflection and transmission
coefficients, Rper

N and T
per
N , respectively (see Section 4). The limit N → ∞, giving a semi-infinite periodic row, is discussed

briefly in Section 5.
A related problem arises when one scatterer in the finite periodic row is forced to oscillate. The solution of this problem

is given in Section 6. It can be viewed as a Green function for the structure.
We may think of periodic media as being at one end of a spectrum of one-dimensional problems. At the other end are

randommedia. Here, the paradigm is localization; see, for example, [2, Chapter 7]. We are motivated by disordered periodic
media, where the problem is almost periodic. For some recent work on this problem, see, for example, [3–6]. (Further
references will be mentioned later.) In particular, Poddubny et al. [6] have shown that localization can be suppressed in
certain situations.

With these applications in mind, we describe some calculations in which a finite periodic row is perturbed. Thus, in
Section 7, we consider reflection and transmission by a row in which one of the scatterers is displaced by a distance ε. The
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transmission coefficient is calculated exactly, as is the average transmission coefficient. These results do not assume that ε
is small (compared to the spacing or wavelength) but they are complicated. We then approximate these results for small
kε, and we show that they can be obtained more easily by assuming that kε is small from the outset. This latter approach
is then developed for the more difficult problem where each scatterer is displaced by a small distance, independently of all
the others (Section 8). Again, explicit results are obtained for the average reflection and transmission coefficients, correct to
second order in kε.

The purpose of this work is to obtain some benchmark solutionswithminimal assumptions. Themethods used are rather
elementary. The main tool used is the transfer matrix for each scatterer; their properties are reviewed in Section 2. Each
scatterer can be quite general: we do not assume point scatterers.

2. Transfer matrices

Consider one scattering region or ‘‘cell’’, |x| < a. Outside the cell, the governing differential equation is u′′(x)+k2u(x) = 0.
Thus, we can write

u(x) =

{

Aeikx + Be−ikx, x < −a,

Ceikx + De−ikx, x > a,

where A, B, C and D are constants. (At this stage, we do not have to say anything about what is in the cell, except we shall
assume that there are no losses.) The suppressed time-dependence is e−iωt , so that the eikx terms give waves going to the
right (x increasing) whereas the e−ikx terms give waves going to the left. The amplitudes on the right are related to those on
the left using a transfer matrix T:

(

C

D

)

= T

(

A

B

)

.

Considerations of energy conservation and time-reversal invariance show that T must have the structure (see [7] or
[8, Chapter 1])

T =

(

w∗ z

z∗ w

)

with detT = |w|2 − |z|2 = 1, (1)

where the asterisk denotes complex conjugation.
If we want to step to the left, we have

(

A

B

)

= T
−1

(

C

D

)

with T
−1 =

(

w −z

−z∗ w∗

)

. (2)

In terms of reflection and transmission coefficients, we have

u(x) =

{

eikx + r+e
−ikx, x < −a,

t+e
ikx, x > a,

u(x) =

{

t−e
−ikx, x < −a,

r−e
ikx + e−ikx, x > a.

These give
(

1
r+

)

= T
−1

(

t+
0

)

,

(

r−
1

)

= T

(

0
t−

)

.

Comparison with Eqs. (1) and (2) shows that

t+ = t− ≡ t, 1 − |t|2 = |r±|2 ≡ |r|2, r∗
+t + r−t

∗ = 0, w = t−1, z = r−/t = −r∗
+/t∗.

If the scatterer is moved from x = 0 to x = b, the new reflection coefficients are r+e2ikb and r−e−2ikb, whereas the
transmission coefficient remains unchanged. Hence, moving the scatterer within the cell changes z to ze−2ikb but leaves w
unchanged.

For a point scatterer at x = 0, we have a = 0,

u(0+) = u(0−) and u′(0+) − u′(0−) = Mu(0), (3)

where M is a real constant. We find r+ = r− = r , say, t = 1 + r ,

r =
M

2ik − M
and t =

2ik

2ik − M
. (4)

(IfM is not real, r∗t + rt∗ 6= 0.)
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3. Multiple cells

Let us consider a periodic row of identical cells, each of width 2a. The cells are centred at x = ndwith d ≥ 2a. To the left
of the cell at x = nd, we can write

u(x) = Ane
ik(x−nd) + Bne

−ik(x−nd) for (n − 1)d + a < x < nd − a. (5)

To the right of the cell at x = nd,

u(x) = An+1e
ik(x−[n+1]d) + Bn+1e

−ik(x−[n+1]d)

= An+1e
−ikdeik(x−nd) + Bn+1e

ikde−ik(x−nd) for nd + a < x < (n + 1)d − a. (6)

Using Eq. (2),
(

An+1e
−ikd

Bn+1e
ikd

)

= T

(

An

Bn

)

whence
(

An+1

Bn+1

)

= P

(

An

Bn

)

with P =

(

w∗eikd zeikd

z∗e−ikd we−ikd

)

. (7)

Therefore, for multiple cells, we shall need an expression for powers of P . Indeed, there is a closed-form expression for Pn.
To state it, let

W = we−ikd and Z = zeikd,with |W |2 − |Z |2 = 1. (8)

Then we have

P =

(

W ∗ Z

Z∗ W

)

and Pn =

(

X∗
n ZUn−1

Z∗Un−1 Xn

)

(9)

for n ≥ 1, where

Xn(ξ) = WUn−1(ξ) − Un−2(ξ), (10)

2ξ = W + W ∗ = trace P = Re
{

we−ikd
}

(11)

and Un is a Chebyshev polynomial of the second kind, defined by

Um−1(cos θ) =
sinmθ

sin θ
, m = 0, 1, 2, . . . . (12)

From Eq. (12), U0 = 1, U−1 = 0 and U−2 = −1. These give X0 = 1 so that Eq. (9) gives P0 = I , as expected.
There are many proofs of the formula for Pn, Eq. (9), and it has been rediscovered on many occasions. It was stated

by Abelès in 1948 [9, Eq. (6)]; see also [10, Eq. (A8)]. For a review and a neat proof, see [7]. For textbook treatments, see
[11, Section 1.6.5] and [8, Section 1.4.4].

We note a few useful properties. As det P = 1, we have

det Pn = |Xn|
2 − |Z |2U2

n−1 = 1. (13)

Also, as PmPn = Pm+n, we obtain

XmXn + |Z |2Um−1Un−1 = Xm+n, (14)

XmUn−1 + X∗
nUm−1 = Um+n−1. (15)

Finally, using w = t−1, Eqs. (8) and (11), we obtain

2ξ |t|2 = teikd + t∗e−ikd. (16)

The eigenvalues of P satisfy λ2 − 2ξλ + 1 = 0. When |ξ | ≤ 1, the eigenvalues can be written as e±iqd where ξ = cos qd
and q is real. In this case, we are in a passband for the periodic structure. When ξ > 1 (the case ξ < −1 is similar), we can
write ξ = cosh η and then the eigenvalues are e±η: this exponential behaviour implies that we are in a stopband for the
periodic structure.
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4. A finite periodic row

Suppose there are N identical cells, located at x = nd, n = 0, 1, 2, . . . ,N − 1. We call this a ‘‘slab’’. To the left of the slab,
we have

u(x) = A0e
ikx + B0e

−ikx for x < −a.

To the right of the slab, we have

u(x) = ANe
ik(x−Nd) + BNe

−ik(x−Nd) for x > (N − 1)d + a.

Thus (for N ≥ 1)
(

AN

BN

)

= PN

(

A0

B0

)

. (17)

Explicitly, using Eq. (9), we have

AN = X∗
NA0 + ZUN−1B0, BN = Z∗UN−1A0 + XNB0. (18)

For a wave incident from the left, we write

A0 = 1, B0 = R
per
N , ANe

−iNkd = T
per
N , BN = 0, (19)

where R
per
N is the reflection coefficient and T

per
N is the transmission coefficient. Then Eq. (18) gives

R
per
N = −

Z∗UN−1(ξ)

XN(ξ)
, T

per
N =

e−iNkd

XN(ξ)
. (20)

These satisfy |R
per
N |2 + |T

per
N |2 = 1 (use Eq. (13)). As z∗ = −r+/t and w = 1/t , we obtain (using Eqs. (8) and (10))

R
per
N =

r+UN−1(ξ)

UN−1(ξ) − teikdUN−2(ξ)
, T

per
N =

te−i(N−1)kd

UN−1(ξ) − teikdUN−2(ξ)
. (21)

These expressions for R
per
N and T

per
N agree with those found by Mauguin in 1936 [12, p. 234]; see also [13, p. 109] and

[14, p. 314, problem 3]. In particular, from Eq. (13),

∣

∣T
per
N

∣

∣

−2
= |XN |2 = 1 + |Z |2U2

N−1(ξ), |Z | = |r|/|t|. (22)

This is [8, Eq. (1.105)].
It is interesting to note that similar problems arise in surface science. The difference is that u′′ + k2u = 0 is replaced by

u′′ − k20u = 0 outside the slab, where k0 is real, and there is no incident field. See, for example, [15, Section 3.3].

5. A semi-infinite periodic row

What happens if we let N → ∞ so as to obtain a semi-infinite row? The answer depends on themagnitude of ξ (defined
by Eq. (11)).

Suppose first that ξ > 1. (The case ξ < −1 is similar.) Put ξ = cosh η with η > 0 giving

UN−1(ξ) =
sinhNη

sinh η
∼

eNη

2 sinh η
as N → ∞.

It follows that T per
N → 0 and

R
per
N ∼

r+

1 − teikde−η
≡ Rper

∞ as N → ∞.

It can be verified (using Eq. (16)) that |Rper
∞ | = 1: no energy passes through the row. This is as expected: we are in a stopband

(|ξ | > 1). In detail, from Eq. (22),
∣

∣T
per
N

∣

∣ ∼ 2|t/r| sinh η e−Nη as N → ∞.

Alternatively, in a passband (|ξ | < 1), put ξ = cos θ , whence

R
per
N =

r+ sinNθ

sinNθ − teikd sin(N − 1)θ
, T

per
N =

te−i(N−1)kd sin θ

sinNθ − teikd sin(N − 1)θ
. (23)
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These formulas do not have limits as N → ∞. This fact is known [13,16]; see also [8, Section 4.6]. In detail, from Eq. (22),
we obtain (see [8, Eq. (1.106)])

1
∣

∣T
per
N

∣

∣

2
= 1 +

(

|r| sinNθ

|t| sin θ

)2

.

For some additional papers where the limit N → ∞ is considered, see [17–20].
We note that the problem of reflection by a semi-infinite periodic row can be solved directly [13] and [14, Section 62].

6. A finite periodic row with internal forcing

Consider a finite periodic row of N identical scatterers (as in Section 4) except that one scatterer is forced and there is no
incident wave; we can assume that the forced scatterer is in the cell at x = nd. There are n scatterers to the left andN−n−1
to the right.

This problem can be solved using transfer matrices. We give its solution for two reasons. First, the solution itself is of
interest: it gives the Green function for the finite row. Second, the methods used will be adapted to problems in which there
are random perturbations to the periodic row.

To the left of the cell at x = nd, we can write u as Eq. (5), where
(

An

Bn

)

= Pn

(

A0

B0

)

. (24)

To the right of the cell at x = nd, we can write u as Eq. (6), where
(

AN

BN

)

= PN−n−1

(

An+1

Bn+1

)

. (25)

To connect these two expansions, we use
(

An+1

Bn+1

)

= P

(

An

Bn

)

+

(

f1
f2

)

, (26)

where the second term on the right is the prescribed forcing. Hence
(

AN

BN

)

= PN

(

A0

B0

)

+ PN−n−1

(

f1
f2

)

.

Weare interested in finding the field in the cell containing the forced scatterer. As there is no incidentwave, A0 = BN = 0,
and then Eqs. (9), (24) and (25) give

XnAn − ZUn−1Bn = 0, Z∗UN−n−2An+1 + XN−n−1Bn+1 = 0. (27)

These are combined with Eq. (26) and solved for An, Bn, An+1 and Bn+1. Thus, using Eq. (27)2,

0 = Z∗UN−n−2{W
∗An + ZBn + f1} + XN−n−1{Z

∗An + WBn + f2}

= Z∗{W ∗UN−n−2 + XN−n−1}An + {WXN−n−1 + |Z |2UN−n−2}Bn + f3,

with f3 = Z∗UN−n−2f1+XN−n−1f2. Combining this equationwith Eq. (27)1 gives a 2×2 system for An and Bn. The determinant
of the system simplifies (for a very similar calculation, see Section 7.1). Hence,

An = −ZUn−1f3/XN , Bn = −Xnf3/XN . (28)

For a simple example, consider point scatterers. The scatterer at x = nd is forced. The conditions Eq. (3) are amended
there to

u(nd+) = u(nd−) and u′(nd+) − u′(nd−) = Mu(nd) + 1,

implying that f1 = eikd/(2ik) and f2 = f ∗
1 . Also, Eqs. (4) and (11), and w = 1/t give 2ξ = 2 cos kd + (M/k) sin kd. Of

particular interest is u(nd), the response at the forcing location. From Eqs. (5) and (28), this quantity is

An + Bn = −X−1
N (ZUn−1 + Xn)(Z

∗UN−n−2f1 + XN−n−1f2). (29)

As Xn = WUn−1 − Un−2,W = we−ikd and w = 1 + 1
2 i(M/k),

2Xne
ikd sin kd = Un−1 (2 + i(M/k)) sin kd − 2Un−2e

ikd sin kd

= 2Un−1 sin kd + 2iUn−1(ξ − cos kd) + iUn−2(e
2ikd − 1)

= −2ieikdUn−1 + iUn + iUn−2e
2ikd = −i(eikdVn−1 − Vn),
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where Vm = Um(ξ) − eikdUm−1(ξ). Next, we find that

ZUn−1 + Xn = (Z + W )Un−1 − Un−2 = 2ξUn−1 − Un−2 − eikdUn−1 = Vn,

using Z = zeikd, z = r/t = − 1
2 i(M/k) and Z + W = e−ikd + (M/k) sin kd = 2ξ − eikd. Similarly

2ik(Z∗Um−1f1 + Xmf2) = Z∗eikdUm−1 − e−ikdXm

= (Z∗eikd − We−ikd)Um−1 + e−ikdUm−2 = −e−ikdVm,

using Z∗eikd − We−ikd = −e−2ikd − e−ikd(M/k) sin kd = 1 − 2ξe−ikd. Hence, Eq. (29) gives

u(nd) = An + Bn =
sin kd

k

VnVN−n−1

eikdVN−1 − VN

. (30)

We note that u(nd) = u([N − n − 1]d), as expected by symmetry.

7. A finite periodic row apart from one scatterer

Consider a finite periodic row of N identical cells (as in Section 4) except that one scatterer (the ‘‘impurity’’ or ‘‘defect’’)
is changed; we can assume that it is in the cell at x = nd. There are n scatterers to the left and N − n − 1 to the right. As in
Section 4, there is a wave incident from the left and the problem is to calculate the reflection and transmission coefficients,
Rn
N and T n

N . (A related problem, discussed recently [21], concerns the calculation of scattering resonances in the presence of
one defect.) We begin with an exact treatment: the impurity is characterized by its transfer matrix, Pn. Then, we suppose
that the impurity is the same as all the other scatterers except that it is displaced by an amount ε from its periodic location.
This is a form of ‘‘positional disorder’’.

We proceed as in Section 6. To the left of the cell at x = nd, we have Eqs. (5) and (24). To the right of the cell at x = nd,
we have Eqs. (6) and (25). Let Pn be the transfer matrix for the impurity in the cell at x = nd, so that (cf. Eq. (7))

(

An+1

Bn+1

)

= Pn

(

An

Bn

)

with Pn =

(

p∗
n qn

q∗
n pn

)

, det Pn = 1. (31)

Combining Eqs. (24), (25) and (31) gives

(

AN

BN

)

= Qn

(

A0

B0

)

with Qn = PN−n−1PnP
n =

(

Q11 Q12

Q21 Q22

)

. (32)

Now, consider a wave incident from the left and write

A0 = 1, B0 = Rn
N , ANe

−iNkd = T n
N , BN = 0. (33)

Solving Eq. (32), noting that detQn = 1, we obtain

Rn
N = −Q21/Q22, T n

N = e−iNkd/Q22. (34)

The entries in the matrix Qn can be calculated, using Eqs. (9) and (32):

Qn =

(

X∗
N−n−1 ZUN−n−2

Z∗UN−n−2 XN−n−1

) (

p∗
n qn

q∗
n pn

) (

X∗
n ZUn−1

Z∗Un−1 Xn

)

.

For example, we obtain

Q21 = Z∗UN−n−2[p
∗
nX

∗
n + qnZ

∗Un−1] + XN−n−1[q
∗
nX

∗
n + pnZ

∗Un−1]

= pnZ
∗XN−n−1Un−1 + p∗

nZ
∗X∗

nUN−n−2 + qnZ
∗2UN−n−2Un−1 + q∗

nXN−n−1X
∗
n , (35)

Q22 = Z∗UN−n−2[qnXn + p∗
nZUn−1] + XN−n−1[pnXn + q∗

nZUn−1]

= pnXN−1 + (p∗
n − pn)|Z |2UN−n−2Un−1 + qnZ

∗XnUN−n−2 + q∗
nZXN−n−1Un−1, (36)

using Eq. (14), XN−n−1Xn = XN−1 − |Z |2UN−n−2Un−1.
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7.1. A check on the calculation

Let us check the calculations in the periodic case. Then, Pn = P , pn = W and qn = Z . As WXN−1 = X1XN−1 =
XN − |Z |2UN−2, we obtain Q22 = XN + |Z |2Ω0, where

Ω0 = −UN−2 + (W ∗ − W )UN−n−2Un−1 + XnUN−n−2 + XN−n−1Un−1

= −UN−2 + (W ∗ + W )UN−n−2Un−1 − UN−n−2Un−2 − UN−n−3Un−1

= −UN−2 + (2ξUn−1 − Un−2)UN−n−2 − UN−n−3Un−1

= −UN−2 + UnUN−n−2 − Un−1UN−n−3,

using the recurrence relation for Un(ξ). From Eq. (12), we have

2Up−1Um−1 sin
2 θ = cos(p − m)θ − cos(p + m)θ, (37)

so that

2UnUN−n−2 sin
2 θ = cos(2n + 2 − N)θ − cosNθ,

2Un−1UN−n−3 sin
2 θ = cos(2n + 2 − N)θ − cos(N − 2)θ.

Also 2UN−2 sin
2 θ = cos(N − 2)θ − cosNθ whence Ω0 = 0, as expected. Similarly, one can check that Q21 = Z∗UN−1 when

Pn = P .

7.2. An application: one displaced scatterer

Suppose that the scatterer at x = nd is displaced to x = nd + ε (with |ε| < d). Then pn = W and qn = Ze−2ikε (exactly).
Hence, from Eq. (36), we have

Q22(ε) = Ae2ikε + B + Ce−2ikε = XN − AE − CE∗, (38)

where E(ε) = 1 − e2ikε , A = |Z |2XN−n−1Un−1, C = |Z |2XnUN−n−2, B = XN − A − C and we have noted that
Q22(0) = A + B + C = XN . With Y = e2ikε , we have

YQ22(ε) = AY 2 + BY + C = A(Y − Y1)(Y − Y2), (39)

say. Then, by partial fractions,

1

Q22(ε)
=

1

A(Y1 − Y2)

(

Y1

Y − Y1
−

Y2

Y − Y2

)

=
1

2ikA(Y1 − Y2)

(

2ikY1e−2ikε

1 − Y1e−2ikε
−

2ikY2e−2ikε

1 − Y2e−2ikε

)

.

This gives the transmission coefficient, T n
N , using Eq. (34). A similar but more complicated calculation could be given for the

reflection coefficient.
It is of interest to calculate the average transmission coefficient, 〈T n

N〉, using

1

ε

∫ ε/2

−ε/2

dε′

Q22(ε′)
=

1

2ikεA(Y1 − Y2)

[

log
1 − Y1e−2ikε′

1 − Y2e−2ikε′

]ε/2

−ε/2

=
1

2ikεA(Y1 − Y2)
log

(

(1 − Y1e−ikε)(1 − Y2eikε)

(1 − Y1eikε)(1 − Y2e−ikε)

)

. (40)

When this formula is multiplied by e−iNkd, it gives 〈T n
N〉 exactly. Again, the average reflection coefficient, 〈Rn

N〉, could be
determined, but we defer this calculation until Section 7.4.

7.3. Approximation of an exact solution for small kε

Let us approximate the exact formula, Eq. (40), for 0 < kε ≪ 1. For a non-trivial result, we must approximate the
logarithmic term with an error that is O((kε)4) as kε → 0. Write

log

(

1 − Ye−ikε

1 − Yeikε

)

= log

(

1 − Υ (e−φ − 1)

1 − Υ (eφ − 1)

)

with Υ =
Y

1 − Y
, φ = ikε.
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Then, as log(1 − x) ∼ −x − 1
2x

2 − 1
3x

3 as x → 0, and using

e±φ − 1 ∼ ±φ +
1

2
φ2 ±

1

6
φ3, (e±φ − 1)2 ∼ φ2 ± φ3, (e±φ − 1)3 ∼ ±φ3,

we obtain

log
(

1 − Υ (e±φ − 1)
)

∼ −Υ (e±φ − 1) −
1

2
Υ 2(e±φ − 1)2 −

1

3
Υ 3(e±φ − 1)3

∼ ∓Υ φ −
1

2
Υ (1 + Υ )φ2 ∓ Υ

(

1

6
+

1

2
Υ +

1

3
Υ 2

)

φ3.

Hence

log

(

1 − Ye−ikε

1 − Yeikε

)

∼ 2Υ φ + 2Υ

(

1

6
+

1

2
Υ +

1

3
Υ 2

)

φ3 =
2ikεY

1 − Y

(

1 −
(1 + Y )

6(1 − Y )2
(kε)2

)

.

Then, using Eq. (40),

1

ε

∫ ε/2

−ε/2

dε′

Q22(ε′)
≃

1

A(Y1 − Y2)

(

Y1

1 − Y1
−

Y2

1 − Y2

)

−
(kε)2

6A(Y1 − Y2)

(

Y1(1 + Y1)

(1 − Y1)3
−

Y2(1 + Y2)

(1 − Y2)3

)

=
1

A(1 − Y1)(1 − Y2)
−

(kε)2Λ

6[A(1 − Y1)(1 − Y2)]3
=

1

XN

− (kε)2
Λ

6X3
N

, (41)

where we have used Eq. (39) with ε = 0 (Y = 1) and

Λ = A2
{

1 + Y1 + Y2 − 6Y1Y2 + Y1Y2(Y1 + Y2) + Y 2
1 Y

2
2

}

.

This expression simplifies. From Eq. (39), we have AY1Y2 = C and A(Y1 + Y2) = −B so that

Λ = A2 − AB − 6AC − BC + C2 = −XN(A + C) + 2(A − C)2. (42)

Note that Λ, A and C depend on N and n. Thus, we obtain

〈T n
N〉 ≃ T

per
N

(

1 − (kε)2
Λ

6X2
N

)

(43)

for small ε, where T
per
N is the transmission coefficient for a finite periodic row (see Eq. (20)).

7.4. Approximation assuming kε is small from the outset

As an alternative to approximating the exact solution (as done in Section 7.3), we could assume that kε is small at an
earlier stage in the calculation. This has the advantage that more complicated problems may be handled later.

We have E = 1 − e2ikε ≃ −2ikε + 2(kε)2 and E∗ ≃ 2ikε + 2(kε)2. Then Eq. (38) gives

Q22(ε) ≃ XN + 2ikε(A − C) − 2(kε)2(A + C),

whence

1

Q22(ε)
≃

1

XN

{

1 +
2ikε

XN

(A − C) −
2(kε)2

XN

(A + C)

}−1

≃
1

XN

{

1 −
2ikε

XN

(A − C) +

[

2ikε

XN

(A − C)

]2

+
2(kε)2

XN

(A + C)

}

≃
1

XN

−
2ikε

X2
N

(A − C) +
2(kε)2

X3
N

{

XN(A + C) − 2(A − C)2
}

. (44)

Hence, integrating with respect to ε, we recover Eq. (41) with Eq. (42).
To calculate the average reflection coefficient, we need Q21(ε), defined by Eq. (35). We have

Q21(ε) = Z∗{UN−1 − DE − F E∗}

≃ Z∗{UN−1 + 2ikε(D − F ) − 2(kε)2(D + F )}, (45)



304 P.A. Martin / Wave Motion 51 (2014) 296–307

where D = XN−n−1X
∗
n , F = |Z |2UN−n−2Un−1 and we have used Q21(0) = Z∗UN−1. Hence, combining Eqs. (34), (44) and

(45), we obtain

XNQ21

Z∗Q22
≃ UN−1 +

2ikε

XN

{XN(D − F ) − UN−1(A − C)} −
2(kε)2

X2
N

Ω,

where Ω = UN−1Λ − 2XN(A − C)(D − F ) + X2
N(D + F ) and Λ is given by Eq. (42). Finally, Eqs. (20) and (34) give

〈Rn
N〉 ≃ R

per
N + (kε)2

Z∗Ω

6X3
N

. (46)

8. A perturbed finite row

Suppose that every scatterer in a finite row is perturbed independently, so that the scatterer at x = nd is displaced to
x = nd + εn, n = 0, 1, 2, . . . ,N − 1. Then pn = W and qn = Ze−2ikεn (exactly). Hence, from Eq. (31),

Pn(εn) =

(

W ∗ Ze−2ikεn

Z∗e2ikεn W

)

,

with Pn(0) = P . For an irregular row of N scatterers, Eq. (17) is replaced by
(

AN

BN

)

= PN

(

A0

B0

)

, (47)

where

PN(ε0, ε1, . . . , εN−1) = PN−1PN−2 · · · P1P0 =

(

P N
11 P N

12

P N
21 P N

22

)

, (48)

say. Then, for the usual scattering problem, with a wave incident from the left,

A0 = 1, B0 = RN , ANe
−iNkd = TN , BN = 0

and the problem is to calculate RN and TN . As detPN = 1, solving Eq. (47) gives

RN = −P N
21/P

N
22, TN = e−iNkd/P N

22. (49)

8.1. Small perturbations

Many authors have started from Eqs. (47) and (48), with PN written as the product of N random 2 × 2 matrices; see, for
example, [22, Chapter 8] and [23–26]. We shall proceed differently. We begin by approximating PN for small perturbations.
Thus, for small kεn, we have

Pn(εn) ≃ P + δnS1 + δ2
nS2,

where δn = kεn,

S1 = 2i

(

0 −Z

Z∗ 0

)

, S2 = −2

(

0 Z

Z∗ 0

)

. (50)

Note that, with this approximation, det Pn = 1 + O(δ4
n) as δn → 0.

Then, correct to second order, we find that

PN = PN +

N−1
∑

j=0

{

δjLj(S1) + δ2
j Lj(S2)

}

+

N−2
∑

j=0

N−1
∑

k=j+1

δjδkMjk,

where Lj(S) = PN−j−1SP j,Mjk = PN−1−kS1P
k−j−1S1P

j and the second sum is absent when N = 1. Note that Lj andMjk depend
on N .

We shall estimate RN and TN , given by Eq. (49). We start with P N
22. As [PN ]22 = XN , we have

XN

P N
22

=

{

1 +
1

XN

N−1
∑

j=0

δj
[

Lj(S1)
]

22
+

1

XN

N−1
∑

j=0

δ2
j

[

Lj(S2)
]

22
+

1

XN

N−2
∑

j=0

N−1
∑

k=j+1

δjδk
[

Mjk

]

22

}−1

≃ 1 −
1

XN

N−1
∑

j=0

δj
[

Lj(S1)
]

22
−

1

XN

N−1
∑

j=0

δ2
j

[

Lj(S2)
]

22
−

1

XN

N−2
∑

j=0

N−1
∑

k=j+1

δjδk
[

Mjk

]

22

+
1

X2
N

N−1
∑

j=0

N−1
∑

k=0

δjδk
[

Lj(S1)
]

22
[Lk(S1)]22 . (51)
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8.2. Average reflection and transmission

Next, we calculate an average, defining 〈f 〉 = ε−N
∫ ε/2
−ε/2 · · ·

∫ ε/2
−ε/2 f dε0 · · · dεN−1. As 〈εn〉 = 0 and 〈ε2

n〉 = 1
12ε

2, we obtain,
using Eqs. (20) and (49),

〈TN〉 = T
per
N − (kε)2

e−iNkd

12X3
N

ST
N = T

per
N

{

1 −
(kε)2ST

N

12X2
N

}

, (52)

where

ST
N = XN

N−1
∑

j=0

[

Lj(S2)
]

22
−

N−1
∑

j=0

[

Lj(S1)
]2

22
. (53)

Wenote thatST
1 = 0, as expected, because displacing a single scatterer (N = 1) does not change the transmission coefficient.

For 〈RN〉, we multiply Eq. (51) by P N
21 and gather terms to give

XN

P N
22

P N
21 = [PN ]21 +

N−1
∑

j=0

δ2
j [Lj(S2)]21 −

1

XN

N−1
∑

j=0

δ2
j [Lj(S1)]21[Lj(S1)]22

−
[PN ]21

XN

N−1
∑

j=0

δ2
j

[

Lj(S2)
]

22
+

[PN ]21

X2
N

N−1
∑

j=0

δ2
j

[

Lj(S1)
]2

22
,

omitting linear terms and those containing δjδk with j 6= k (as all such terms have zero mean). For the average of this
quantity, replace δ2

j by 1
12 (kε)

2. Then, Eqs. (9), (20) and (49) give

〈RN〉 = R
per
N −

(kε)2

12X3
N

{

XNSR
N − Z∗UN−1S

T
N

}

= R
per
N

{

1 −
(kε)2ST

N

12X2
N

}

−
(kε)2SR

N

12X2
N

, (54)

where

SR
N = XN

N−1
∑

j=0

[Lj(S2)]21 −

N−1
∑

j=0

[Lj(S1)]21[Lj(S1)]22. (55)

8.3. Calculation of ST
N and SR

N

To evaluate ST
N and SR

N , we begin by noting that the matrices S1 and S2 have the structure (see Eq. (50))

S =

(

0 σ
τ 0

)

.

Then, from Ln(S) = PN−n−1SPn and (9), we obtain

[Ln(S)]21 = τXN−n−1X
∗
n + σ(Z∗)2UN−n−2Un−1,

[Ln(S)]22 = τZXN−n−1Un−1 + σZ∗XnUN−n−2.

For S1, σ = −2iZ and τ = 2iZ∗, giving

[Ln(S1)]22 = 2i|Z |2[XN−n−1Un−1 − XnUN−n−2]

= 2i|Z |2[UN−n−2Un−2 − UN−n−3Un−1] = 2i|Z |2U2n−N ,

[Ln(S1)]21 = 2iZ∗[XN−n−1X
∗
n − |Z |2UN−n−2Un−1].

Inspection of Eq. (53) shows that we require

[Ln(S1)]
2
22 = −4|Z |4U2

2n−N =
2|Z |4

sin2 θ
{cos(4n − 2N + 2)θ − 1} ,

where cos θ = ξ = (W + W ∗)/2 = ReW . For Eq. (55), we also require

[Ln(S1)]21[Ln(S1)]22 = 4Z∗|Z |2U2n−N [|Z |2Un−1UN−n−2 − XN−n−1X
∗
n ].

We simplify this expression using Eq. (15) for U2n−NX
∗
n , then Eq. (14) for X2n−N+1XN−n−1. The result is

[Ln(S1)]21[Ln(S1)]22 = 4Z∗|Z |2[XnUn−1 − XN−n−1U3n−N ].
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Then we use Eqs. (10) and (37), giving

[Ln(S1)]21[Ln(S1)]22 =
2Z∗|Z |2

sin2 θ
{W − cos θ − W cos(4n − 2N + 2)θ + cos(4n − 2N + 3)θ} .

Note thatW − cos θ = (W − W ∗)/2 = i ImW .
To sum the series in Eqs. (53) and (55) involving Lj(S1), we use [27, Eq. 1.341.3]

N−1
∑

j=0

cos(2jx + α) =
sinNx

sin x
cos[(N − 1)x + α]. (56)

This gives

N−1
∑

j=0

[

Lj(S1)
]2

22
=

2|Z |4

sin2 θ

(

sin 2Nθ

sin 2θ
− N

)

and
N−1
∑

j=0

[Lj(S1)]21[Lj(S1)]22 =
Z∗|Z |2

sin2 θ
(W − W ∗)

(

N −
sin 2Nθ

sin 2θ

)

.

For S2, σ = −2Z and τ = −2Z∗, giving

[Ln(S2)]22 = −2|Z |2[XN−n−1Un−1 + XnUN−n−2]

= −2|Z |2[2WUN−n−2Un−1 − UN−n−3Un−1 − UN−n−2Un−2]

= −2|Z |2 sin−2 θ [(W − cos θ) cos(2n − N + 1)θ + ℓN ],

where ℓN = cos(N − 2)θ − W cos(N − 1)θ . Similarly,

[Ln(S2)]21 = −2Z∗[XN−n−1X
∗
n + |Z |2UN−n−2Un−1]

= −2Z∗[XN−1 + (W ∗ − W )XN−n−1Un−1],

using X∗
n = Xn + (W ∗ − W )Un−1 and Eq. (14). Also,

2 sin2 θXN−n−1Un−1 = W cos(2n − N + 1)θ − cos(2n − N + 2)θ + ℓN .

Summing, using Eq. (56), gives

N−1
∑

j=0

[Lj(S2)]22 = −
2|Z |2

sin2 θ

{

sinNθ

2 sin θ
(W − W ∗) + NℓN

}

,

N−1
∑

j=0

[Lj(S2)]21 =
Z∗

sin2 θ

{

sinNθ

2 sin θ
(W − W ∗)2 + Nℓ

(21)
N

}

,

where

ℓ
(21)
N = (W − W ∗)ℓN − 2 sin2 θXN−1 = 2|Z |2 cos(N − 1)θ;

the last simplification makes use ofW 2 = W (W + W ∗ − W ∗) = 2W cos θ − |W |2.
Finally, Eqs. (53) and (55) give

ST
N = −

2XN |Z |2

sin2 θ

(

sinNθ

2 sin θ
(W − W ∗) + NℓN

)

−
2|Z |4

sin2 θ

(

sin 2Nθ

sin 2θ
− N

)

= −2|Z |2(HN + NGN), (57)

SR
N =

XNZ
∗

sin2 θ

(

sinNθ

2 sin θ
(W − W ∗)2 + Nℓ

(21)
N

)

+
Z∗|Z |2

sin2 θ
(W − W ∗)

(

sin 2Nθ

sin 2θ
− N

)

= Z∗(W − W ∗)(HN + NGN) − 2NZ∗XNXN−1, (58)

where

HN =
XN sinNθ

2 sin3 θ
(W − W ∗) +

|Z |2 sin 2Nθ

sin2 θ sin 2θ
, GN =

1

sin2 θ

(

XNℓN − |Z |2
)

.

This completes the determination of 〈TN〉 and 〈RN〉, as given by Eqs. (52) and (54), respectively.
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8.4. Discussion

We have given estimates for 〈TN〉 and 〈RN〉, correct to second order in kε. One natural next step would be to try and use
these estimates to determine an effective wavenumber for the slab of scatterers. We could also estimate other averaged
quantities, such as 〈|TN |〉 or 〈log |TN |〉. Such quantities often arise in studies of localization and delocalization. Note that our
estimates involve terms proportional to N(kε)2 (such as NGN in Eq. (57)), so they are not uniform in N . This is expected.
Localization predicts decay of the transmission coefficient as e−γNd when N → ∞, where γ −1 is the localization length.
When γ d ≪ 1 and N is fixed, the approximation e−γNd ≃ 1 − γNd leads to exactly the kind of terms that we have found.
Note also that our estimates fail whenever sin θ = 0, that is, at band edges. This is also expected: ‘‘under pretty reasonable
hypotheses, Anderson localization occurs in a vicinity of the edges of the gap’’ [28].
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