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a b s t r a c t

The Garvin–Alterman–Loewenthal solution refers to the problem of a line blast load suddenly applied in

the interior of an elastic half-space. It is expected that the long-time asymptotic limit of this solution

should be equal to the solution of a related static problem. This expectation is justified here. First, the

solution of the static problem is constructed. Then, the asymptotic limit of the transient problem is found,

correcting previously published results.

Ó 2014 Elsevier Ltd. All rights reserved.

1. Introduction

At time t ¼ 0, there is an underground explosion, generating

elastic waves. Determining the subsequent wave motion can be

modeled as a variant of Lamb’s problem. Garvin (1956) considered

a plane-strain version in an elastic half-plane with a discontinuous

change in pressure at a point S inside the half-plane. This problem

can be solved by the Cagniard–de Hoop technique. Garvin (1956)

gave the resulting displacement components on the flat traction-

free boundary of the half-plane; see Kausel (2006, Section 5.5)

for an exposition. There have been numerous studies of related

problems; see, for example, Borejko (1987), Tsai and Ma (1991),

Ma and Huang (1996), Wang and Achenbach (1996), Georgiadis

et al. (1999) and Sánchez-Sesma and Iturrarán-Viveros (2006).

Thirteen years after Garvin’s paper was published, Alterman

and Loewenthal (1969) gave formulas for the displacement compo-

nents at any arbitrary point inside the half-plane. Their solution

has been reviewed and clarified recently by Sánchez-Sesma et al.

(2013). It is valuable because it is exact and so it can be used for

benchmarking purposes.

The Garvin problem is an initial value problem: how does the

solution behave for long times? Physically, we expect the solution

to approach that of a related static problem. That problem is an

elastic half-plane containing a singularity at the point S. If r and

a are polar coordinates at S (see Fig. 1), the displacement vector

should be directed away from S and it should be singular as rÿ1.

We construct this solution in Section 2.

Next, we determine the long-time asymptotic limit of the

Garvin–Alterman–Loewenthal solution, starting with the formulas

given by Sánchez-Sesma et al. (2013). It turns out that this is not

straightforward: indeed, the long-time results given by Sánchez-

Sesma et al. (2013, Section 3.4) are incorrect (but not the dynamic

solution itself). In Section 3, we confirm that the long-time limit is

the static solution described above. The fact that these two solu-

tions agree perfectly implies not only that they corroborate each

other, but provides also a strong indication that the dynamic

solution may be free from errors, because the static and dynamic

solutions were obtained independently.

2. Static solution using integral transforms

Consider a two-dimensional elastic half-plane subjected in its

interior to a dilatative line source. We start the derivation of the

static solution to the problem at hand by considering a full space

containing both the actual source and an image source placed

symmetrically with respect to the position in the plane that will

ultimately form the free surface. Then from the known analytical

solution to this problem, we can infer the stresses that act at the

interface between the upper and lower half-planes forming the full

space. If we then separate the upper and lower half-planes and ap-

ply external tractions equal to the known internal stresses at the

now free surface, equilibrium will be preserved so that the lower

half-plane with the actual source and the tractions at the free sur-

face will elicit exactly the same displacement field as the full space

with the two sources. Applying next tractions at the surface which

are equal in magnitude but opposite in sign to those inferred in the

previous step, we cause that surface to be stress free. Hence, it
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suffices to find the displacement field elicited by those surface

tractions and subtract these from the full space solution. The latter

are obtained by means of integral transform techniques.

2.1. Full space containing two sources

With reference to Kausel (2006, p. 44, Eq. (3.51)), the displace-

ment field elicited by a line of pressure (dilatative source) acting at

the origin of coordinates in a full space is

u ¼ ur r̂ ¼
1

2plr
r̂; ð1Þ

where l is the shear modulus and r̂ is a unit vector along the

direction with angle of inclination a with respect to the horizontal

direction x (see Fig. 1).

Next, consider a full space subjected to two sources which are

vertically aligned and are separated by a vertical distance 2z0. For

convenience, we change the positive direction z to point down into

the lower half-plane (Fig. 2). The mid-plane between the two

sources will ultimately represent the free surface of a half-space,

and z0 > 0 will be the depth of the source. Placing the origin of

coordinates at the intersection of the mid-plane with the line con-

necting the sources, then from Eq. (1), the response at some arbi-

trary point is

u ¼ 1

2pl
r̂1
r1

þ r̂2
r2

� �

; ð2Þ

where r̂1 and r̂2 are unit vectors pointing away from the source and

its image, respectively,

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðzÿ z0Þ2
q

is the source-receiver distance and

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðzþ z0Þ2
q

is the image source-receiver distance:

We also introduce polar coordinates, writing

x ¼ r1 sin h1 ¼ r2 sin h2; zÿ z0 ¼ r1 cos h1; zþ z0 ¼ r2 cos h2;

ð3Þ

so that Eq. (2) becomes

ux ¼
1

2pl
sin h1

r1
þ sin h2

r2

� �

; uz ¼
1

2pl
cos h1
r1

þ cos h2
r2

� �

: ð4Þ

We use Hooke’s law and calculate the stresses, sxz and rz, at the

mid-plane (‘‘free surface’’, z ¼ 0), where r1 ¼ r2 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z20

q

.

We find that sxz ¼ 0 (as expected, by symmetry) and

rzðx;0Þ ¼
2ðx2 ÿ z20Þ
pðx2 þ z20Þ

2
¼ pzðxÞ; ð5Þ

say, where rz is positive when tensile. Clearly, we can now remove

the upper half-space containing the image source and preserve

equilibrium in the newly formed free surface by application of an

external traction equal in magnitude to and with the same spatial

distribution as rz. This traction is upwards when positive (i.e.,

tensile).

2.2. Fourier transform solution

To solve the problem of the source acting on a lower half-plane

with a free surface condition, it suffices to start from the full space

solution for the two sources already described and add the dis-

placement field caused by a downward (i.e., compressive) external

traction pz applied on the lower half-plane which is equal and

opposite to the stress defined by Eq. (5). Doing this cancels exactly

the internal stresses at the interface between the lower and upper

half-planes.

The Fourier transform of pzðxÞ is

PzðkÞ ¼
Z 1

ÿ1
pzðxÞeikx dx ¼ ÿ2jkjeÿjkjz0 ; z0 > 0: ð6Þ

From Kausel (2006), modified to account for a z-axis pointing down,

the static stress-displacement relationship in the transform domain

for a lower half-space and a downward traction applied at the free

surface is

DUx

ÿiDUz

� �

z¼0

¼1ÿm
kl

sgnk a2

a2 sgnk

 !

0

ÿiPz

� �

; a2 ¼ 1ÿ2m
2ð1ÿmÞ ; ð7Þ

where m is Poisson’s ratio, DUx and DUz are the Fourier transforms of

Dux and Duz, respectively, and Dux and Duz are the displacements

which need to be added to the full space solution so as to model

a half-space; Duz points down when positive. On the other hand,

for a harmonically distributed source acting on the surface, the

Fig. 1. Full space subjected to one source at the origin.

Fig. 2. Full space subjected to two sources.
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transfer matrix needed to extend in the transform domain the dis-

placements from the surface to some arbitrary depth z > 0 can be

shown to be given by

T ¼ 1ÿ jkjzb ÿkzb

kzb 1ÿ jkjzb

� �

eÿjkjz; b ¼ 1ÿ a2

1þ a2
; z > 0;

so

DUx

ÿiDUz

� �

¼1ÿm
kl

1ÿjkjzb ÿkzb

kzb 1ÿjkjzb

� �

sgnk a2

a2 sgnk

 !

0

ÿiPz

� �

eÿjkjz

¼1ÿm
kl

sgnkÿð1ÿa2Þkz a2ÿð1ÿa2Þjkjz
a2þð1ÿa2Þjkjz sgnkþð1ÿa2Þkz

 !

0

ÿiPz

� �

eÿjkjz:

Hence, using Eq. (6),

DUx

DUz

� �

¼ 2ð1ÿ mÞ
l

i½a2sgnkÿ ð1ÿ a2Þkz�
ÿ½1þ ð1ÿ a2Þjkjz�

 !

eÿjkjðzþz0Þ: ð8Þ

The incremental displacements, Dux and Duz, are then obtained by

carrying out an inverse Fourier transform of Eq. (8).

2.3. Vertical displacement

We begin by inverting the exponential term,

1

2p

Z 1

ÿ1
eÿjkjðzþz0Þeÿikx dk ¼ 1

p

Z 1

0

eÿkðzþz0Þ cos kxdk

¼ zþ z0

p½x2 þ ðzþ z0Þ2�
¼ zþ z0

pr22
¼ cos h2

pr2
:

Differentiating this formula with respect to z gives

1

2p

Z 1

ÿ1
ðÿjkjÞeÿjkjðzþz0Þeÿikx dk ¼ 1

p
@

@z

zþ z0
r22

� �

¼ 1

p
1

r22
ÿ 2ðzþ z0Þ2

r42

 !

¼ ÿ cos 2h2
pr22

:

It follows that

1

2p

Z 1

ÿ1
jkjzð1ÿ a2Þeÿjkjðzþz0Þeÿikx dk ¼ z

pr22
ð1ÿ a2Þ cos 2h2:

Hence, inverting Eq. (8) gives

Duz ¼ ÿ2ð1ÿ mÞ
l

1

2p

Z 1

ÿ1
½1þ jkjzð1ÿ a2Þ�eÿjkjðzþz0Þeÿikx dk

¼ ÿ2ð1ÿ mÞ
l

cos h2
pr2

þ z

pr22
ð1ÿ a2Þ cos 2h2

� �

¼ ÿ1

plr2
2ð1ÿ mÞ cos h2 þ

z

r2
cos 2h2

� �

:

The total vertical displacement is then obtained by adding uz from

Eq. (4):

uz ¼
1

2pl
cos h1
r1

ÿ 1

r2
ð3ÿ 4mÞ cos h2 þ

2z

r2
cos 2h2

� �� �

: ð9Þ

This displacement is positive when pointing down.

2.4. Horizontal displacement

From Eq. (8),

Dux ¼
2ð1ÿ mÞ

l
1

2p

Z 1

ÿ1
i½a2sgnkÿ kzð1ÿ a2Þ�eÿjkjðzþz0Þeÿikx dk

¼ 2ð1ÿ mÞ
pl

Z 1

0

½a2 ÿ kzð1ÿ a2Þ�eÿkðzþz0Þ sin kxdk:

But

Z 1

0

eÿkðzþz0Þ sin kxdk ¼ x

r22
¼ sin h2

r2
;

and the derivative of this formula with respect to z gives
Z 1

0

keÿkðzþz0Þ sin kxdk ¼ sin 2h2
r22

:

Hence

Dux ¼
2ð1ÿ mÞ
pl

a2
sin h2

r2
ÿ ð1ÿ a2Þz sin 2h2

r22

� �

:

Adding ux from Eq. (4) gives the total horizontal displacement,

ux ¼
1

2pl
sin h1

r1
þ 1

r2
ð3ÿ 4mÞ sin h2 ÿ

2z

r2
sin 2h2

� �� �

: ð10Þ

This displacement is positive from left to right.

3. Long-time asymptotics

3.1. Preliminaries

We recall some formulas for the Garvin–Alterman–Loewenthal

solution for an impulsive blast line load, as given by Sánchez-Sesma

et al. (2013). They are given in terms of a dimensionless time,

s ¼ tb=r2, where t is time and b is the shear wave speed. From

Sánchez-Sesma et al. (2013, Eq. (19)): for sufficiently large s (so

that all the Heaviside functions therein take the value 1),

plux ¼
s sin h1

2r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 ÿ s2P

q ÿ s sin h2

2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 ÿ s2PP

q

ÿ 4

r2
Im

q3
aa

Raa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
aa þ 1

q

@qaa
@s

� �

þ 2

r2
Im

qab
Rab

ð1þ 2q2
abÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
ab þ 1

q @qab
@s

� �

; ð11Þ

pluz ¼
s cos h1

2r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 ÿ s2P

q þ s cos h2

2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 ÿ s2PP

q

ÿ 1

r2
Re

ð1þ 2q2
aaÞ

2

Raa

@qaa
@s

( )

þ 2

r2
Re

q2
ab

Rab
ð1þ 2q2

abÞ
@qab
@s

( )

ð12Þ

where sPP ¼ b=a; sP ¼ sPPr1=r2 and a is the compressional wave

speed. The quantity qaa solves (Sánchez-Sesma et al., 2013, Eq.

(11a)); this equation is Eq. (16) below. Similarly, qab solves solves

(Sánchez-Sesma et al., 2013, Eq. (11b)); this is Eq. (17) below. The

Rayleigh functions, Raa and Rab, are defined by Sánchez-Sesma

et al. (2013, Eq. (18)); thus, Raa ¼ RðqaaÞ and Rab ¼ RðqabÞ with

RðQÞ ¼ ð2Q2 þ 1Þ2 ÿ 4Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
q

; ð13Þ

as before, a ¼ b=a is given by Eq. (7) in terms of Poisson’s ratio.

Henceforth, we write Q for qaa or qab, as they satisfy similar

equations.

3.2. Analysis

We are interested in large (dimensionless) time s. It is conve-

nient to introduce T ¼ seih2 so that we are interested in large jTj.
Leading-order estimates show that Q � T . (To see this, replace

the square-roots in Eqs. (16) and (17) by Q.) As we require a more

accurate estimate, we start with

Q ¼ T 1þ A

T2
þ B

T4
þ � � �

� �

; ð14Þ
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where the coefficients A and B are to be found. (We could include

terms such as C=T and D=T3 inside the parentheses in Eq. (14),

but subsequent calculation would show that such terms must be

absent.) A quick inspection of Eqs. (11) and (12) suggests that we

will need B in order to estimate the Rayleigh functions correctly:

however, it turns out that the value of B will not be needed.

3.3. Rayleigh functions

From Eq. (14), we obtain

Q2 � T2 1þ 2A

T2
þ A2 þ 2B

T4

 !

;

Q2 þ c2 � T2 1þ 2Aþ c2

T2
þ A2 þ 2B

T4

 !

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ c2
q

� T 1þ 2Aþ c2

2T2
þ 8Bÿ 4Ac2 ÿ c4

8T4

 !

;

using
ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

� 1þ 1
2
xÿ 1

8
x2; the constant c2 will be selected later.

We estimate the terms in Eq. (13). Thus,

2Q2þ1�2T2 1þ4Aþ1

2T2
þA2þ2B

T4

 !

;

ð2Q2þ1Þ2 �4T4 1þ4Aþ1

T2
þð4Aþ1Þ2þ8ðA2þ2BÞ

4T4

 !

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þa2
q

� T2 1þ4Aþa2þ1

2T2
þ8A2þ16Bÿða2ÿ1Þ2

8T4

 !

;

4Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þa2
q

�4T4

� 1þ8Aþa2þ1

2T2
þ8Aða2þ1Þþ16ð3A2þ2BÞÿða2ÿ1Þ2

8T4

 !

:

Hence some calculation gives

R � 2T2 1ÿ a2 þ 8Að1ÿ a2Þ þ 2þ ða2 ÿ 1Þ2

4T2

 !

: ð15Þ

Surprisingly, the terms in B cancel. For later calculations, we require

1

R
� 1

2T2ð1ÿ a2Þ
1ÿ 8Að1ÿ a2Þ þ 2þ ða2 ÿ 1Þ2

4T2ð1ÿ a2Þ

 !

:

3.4. Calculation of A

We find A by substituting into the governing equation for Q.

(This is simpler than substituting into an explicit but complicated

formula for Q. The same method could be used to find B.)

With Q ¼ qaa, (Sánchez-Sesma et al., 2013, Eq. (11a)) gives

s ¼ Teÿih2 ¼ cos h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
q

ÿ iQ sin h2

� T cos h2 1þ 2Aþ a2

2T2

� �

ÿ iT sin h2 1þ A

T2

� �

¼ Teÿih2 þ 1

2T
ð2Aþ a2Þ cos h2 ÿ 2iA sin h2
� 	

: ð16Þ

As the coefficient of Tÿ1 must vanish, ð2Aþ a2Þ cos h2 ÿ 2 iA sin h2 ¼ 0,

we obtain

A ¼ ÿ1

2
a2eih2 cos h2 ¼ Aaa

say. Thus

qaa � T 1ÿ a2eih2

2T2
cos h2

� �

¼ seih2 ÿ a2

2s
cos h2:

This agrees with the exact formula for qaa, Sánchez-Sesma et al.,

2013, Eq. (15).

Similarly, with Q ¼ qab, Sánchez-Sesma et al., 2013, Eq. (11b)

gives

Teÿih2 ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
q

þ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ 1

q

ÿ iXQ

� TH 1þ 2Aþ a2

2T2

� �

þ TZ 1þ 2Aþ 1

2T2

� �

ÿ iTX 1þ A

T2

� �

; ð17Þ

where H ¼ z0=r2;X ¼ x=r2 and Z ¼ z=r2. As H þ Z ÿ iX ¼ eÿih2 (see Eq.

(3)), the terms in T1 balance. The terms in Tÿ1 give

Hð2Aþ a2Þ þ Zð2Aþ 1Þ ÿ 2iXA ¼ 0

whence

A ¼ ÿ1

2
eih2 ða2H þ ZÞ ¼ Aab;

say. An estimate for qab follows readily.

3.5. Vertical displacement

The vertical displacement is given by Eq. (12). From Eq. (14), we

have

@Q

@s
� eih2 1ÿ A

T2

� �

: ð18Þ

Then, we find

ð1þ 2Q2Þ2

R

@Q

@s
� 2T2eih2

1ÿ a2
1þ 4Að1ÿ a2Þ þ 1ÿ 2a2 ÿ a4

4T2ð1ÿ a2Þ

 !

;

Q2

R
ð1þ 2Q2Þ @Q

@s
� T2eih2

1ÿ a2
1þ 4Að1ÿ a2Þ ÿ a4 ÿ 1

4T2ð1ÿ a2Þ

 !

:

Hence

ÿ ð1þ 2q2
aaÞ

2

Raa

@qaa
@s

þ 2
q2
ab

Rab
ð1þ 2q2

abÞ
@qab
@s

� 2T2eih2

1ÿ a2
1þ 4Aabð1ÿ a2Þ ÿ a4 ÿ 1

4T2ð1ÿ a2Þ

 !"

ÿ 1þ 4Aaað1ÿ a2Þ þ 1ÿ 2a2 ÿ a4

4T2ð1ÿ a2Þ

 !#

� eih2

1ÿ a2
2Aab ÿ 2Aaa ÿ 1
ÿ �

: ð19Þ

Now

2Aab ÿ 2Aaa ¼ a2eih2 cos h2 ÿ eih2 ða2H þ ZÞ: ð20Þ

Then, from Eq. (12),

pluz �
cos h1
2r1

þ cos h2
2r2

þ 1

r2ð1ÿ a2Þ ÿ cos h2 þ ða2 cos h2 ÿ a2H ÿ ZÞ cos 2h2
� �

¼ cos h1
2r1

ÿ ð1þ a2Þ cos h2
2ð1ÿ a2Þr2

ÿ Z cos 2h2
r2

using H þ Z ¼ cos h2. Finally, using

a2 ¼ 1ÿ 2m
2ð1ÿ mÞ ; 1ÿ a2 ¼ 1

2ð1ÿ mÞ ; 1þ a2 ¼ 3ÿ 4m
2ð1ÿ mÞ ; ð21Þ

we find precise agreement with the known static result, Eq. (9), de-

rived in Section 2.2.
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3.6. Horizontal displacement

The horizontal displacement is given by Eq. (11). We find

Q3

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þ1

q

@Q

@s
� T2eih2

2ð1ÿa2Þ 1þ4Að1ÿa2Þÿa4ÿ1

4T2ð1ÿa2Þ

 !

;

Qð2Q2þ1Þ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þ1

q

@Q

@s
� T2eih2

1ÿa2
1þ4Að1ÿa2Þþ1ÿ2a2ÿa4

4T2ð1ÿa2Þ

 !

:

Hence

ÿ 4
q3
aa

Raa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
aa þ 1

q

@qaa
@s

þ 2
qabð2q2

ab þ 1Þ
Rab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
ab þ 1

q @qab
@s

� 2T2eih2

1ÿ a2
1þ 4Aabð1ÿ a2Þ þ 1ÿ 2a2 ÿ a4

4T2ð1ÿ a2Þ

 !"

ÿ 1þ 4Aaað1ÿ a2Þ ÿ a4 ÿ 1

4T2ð1ÿ a2Þ

 !#

� eih2

1ÿ a2
2Aab ÿ 2Aaa þ 1
ÿ �

;

which is almost the same as Eq. (19). Using Eq. (20), Eq. (11) gives

plux �
sinh1
2r1

ÿ sinh2
2r2

þ 1

r2ð1ÿa2Þ sinh2þfa2 cosh2ÿa2HÿZgsin2h2
� �

¼ sinh1
2r1

þð1þa2Þsinh2
2ð1ÿa2Þr2

ÿZ sin2h2
r2

:

Using Eq. (21), we find agreement with the static result, Eq. (10),

found in Section 2.2.

4. Conclusion

This article has presented two independent solutions for the

long-time asymptotic limit of the dynamic problem of a line blast

load suddenly applied within an elastic half-plane, the so-called

generalized Garvin problem. The need for these solutions arose

after the writers detected an error in the limits given in an earlier

article by Sánchez-Sesma et al. (2013), an error which resulted

from a naïve asymptotic approximation. However, as demon-

strated herein, obtaining the correct limit is not entirely trivial.

Thus, for verification purposes, it was necessary to arrive at the

same limits by two independent methods: perfect agreement

was found. The correct long-time limits are given by Eqs. (9) and

(10).
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