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Abstract Formulation of time-domain boundary element

method for elastodynamic analysis of interaction between

rigid massive disc-shaped inclusions subjected to imping-

ing elastic waves is presented. Boundary integral equations

(BIEs) with time-retarded kernels are obtained by using the

integral representations of displacements in a matrix in terms

of interfacial stress jumps across the inhomogeneities and sat-

isfaction of linearity conditions at the inclusion domains. The

equations of motion for each inclusion complete the prob-

lem formulation. The time-stepping/collocation scheme is

implemented for the discretization of the BIEs by taking into

account the traveling nature of the generated wave field and

local structure of the solution at the inclusion edges. Numer-

ical results concern normal incidence of longitudinal wave

onto two coplanar circular inclusions. The inertial effects are

revealed by the time dependencies of inclusions’ kinematic

parameters and dynamic stress intensity factors in the inclu-

sion vicinities for differentmass ratios and distances between

the interacting obstacles.
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1 Introduction

Many highly demanded elasticmaterials, in particular advan-

ced nanocomposites, as well as various rock-type natural

media contain particles with essential geometric aspect ratio

and contrast mechanical properties like rigid disc-shaped

inclusions as the filler elements [1–3]. At arbitrary in time

loading scenario, presence of such inclusions may lead to

other dynamic responses of the structure in comparison with

the volumetric inclusions due to the specific wave scatter-

ing by the sharp edges of the particles. Most generally these

transient processes are exhibited in the three-dimensional

case of interacting inclusions, when mixed mode deforma-

tion and multiple scattering takes place [4]. Knowledge of

the mentioned effects of elastic wave propagation in elastic

solids with systems of thin-walled inclusions under impact

or shock loading is of great importance for design, optimiza-

tion andmanufacturing of new compositematerialswith high

dynamic strength and stiffness under light weight preserva-

tion, fracture and damage analysis, non-destructive mater-

ial testing, and seismic prospecting of complex geological

media.

Application of the time-domain boundary elementmethod

(BEM) for the numerical solution of corresponding 3-D elas-

todynamic problems in the case of infinite matrices is very

attractive, because of the reduction by one of space dimen-

sionality in the resulting equations, the automatic satisfaction

of Sommerfeld radiation conditions at infinity, and actual

parameter histories are obtained directly via step by step

procedure. The main advantages of time-domain BEM in

comparison to other numerical methods and schemes, for

example BEM formulations in the Laplace or Fourier time

transform domains, compilation of works on the modeling of

an elastodynamic continuum using different modification of

time-domain BEM have been presented [5–10]. Involved in
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themethod elastodynamic fundamental solutions as the func-

tions of time, the receiver and source points are also available

in the literature [11]. In particular, within 3D elastodynamic

statements, this approach was successfully used for transient

analysis of direct and inverse problems for the solidswith vol-

umetric inclusions [12,13], contact problems arising in soil-

structure interaction analysis [14–16], surface displacement

problems on site response analysis of complex topographic

structures [17]. Large-scale problems of many interacting (in

particular rigid) volumetric inclusions under non-stationary

wave incidence are investigated by the fast multipole BEM

[18,19]. Among other works, there the numerical aspects

of the time-domain BEM are described, including proper

choice of time and space discretization intervals, appro-

priate introducing of temporal and spatial shape functions

for the unknowns approximation, analytical evaluation of

the time-convolution integrals on the considered discretiza-

tion meshes to provide the convergence and accuracy of the

results. Besides, an accounting in the time-domain BEM for-

mulations of movability of rigid massive foundation sub-

jected to transient loadings or waves and joined with an

elastic half-space is demonstrated [15].

Concerning sharp-edged or thin-walled stress concentra-

tors, improved techniques are needed to implement the time-

domain BEM because the close distances between the oppo-

site surfaces of the object and numerical instability of the

classical algorithm. Numerous publications in this direc-

tion have been connected with the 3D cracked solids, where

the conditions of displacement jumps under preservation of

stress continuity across the crack faces should be satisfied.

Then, for the simulation numerically of time dependences,

the regularized forms of the traction boundary integral equa-

tions (BIEs) relative to the crack opening displacements in

the time domain and with adoption of convolution quadra-

ture method have been obtained [8,20]. Displacement time-

domain BEM formulation have been proposed in [21], as

well as dual time-domain BEM has been elaborated [22],

where displacement and tractions BIEs are used on differ-

ent crack-surfaces. The acceleration procedures based on the

fastmultipolemethod have been also generalized on the time-

domain BEM analysis of cracks subjected to impulse wave

loading [23].Described techniques are applied for the estima-

tion of transient elastodynamic fields in 3D bounded cracked

solids [21,24], unbounded solids containing crack of com-

plex shape [25], crack interacting with suddenly transformed

or expanding zone of eigenstrains [26,27], andmultiple inter-

acting cracks [28,29].

Dynamic response of disc-shaped inclusions on the inci-

dent waves in 3D acoustic and elastic media was investi-

gated in details under the assumption of single scatterer.

Corresponding frequency-domain solutions for the rigid disc

are given in [30–32], time-domain BEM solutions are con-

structed both for rigid [32–34] and compliant [35] disc-

shaped inclusions. In particular, in [34] the BEM formu-

lations for the model of rigid disc-shaped inclusion in an

elastic matrix with so-called “anticrack” conditions of dis-

placement continuity and stress jumps across the inclusion

faces are accompanied by the equation of inclusion motion

to show its inertial properties. Time-dependent solutions for

single inclusion due to the retarded or traveling character of

waves describe also the situation with multiple inclusions

until time necessary the longitudinal wave induced by clos-

est particles to arrive at the actual point. However, after that

moment cooperative influence of inclusions onto transient

process should be considered. It should be mentioned, that

the formulations of wave propagation problems for multiple

thin-walled scatterers are complicated not only by superpo-

sition relations in general form, but also by the considering

the special behavior of solutions at the inclusions edges. To

the best of the authors’ knowledge, numerical simulation of

interacting rigid disc-shaped inclusions in 3-D matrix under

transient elastic wave loading was yet not reported in the

literature. It is the subject of current work under the assump-

tions of infinite elastic isotropic matrix, arbitrary locations

and movability of inclusions as the thin-walled rigid units of

given masses.

The paper content is organized as the following. In Sect. 2

the corresponding problem is reduced in time-domain to the

weakly-singular BIEs relative to the interfacial stress jumps

(ISJs) across the inclusion surfaces; the unknown kinematic

parameters of inclusions, namely their translations and rota-

tions, are presented in theBIEs as the free terms.Thedynamic

interactionbetween arbitrarily located inclusions is described

in the BIEs by the regular kernels in an explicit form. Com-

pleteness of the mathematical model is achieved by the join-

ing of BIEswith the ordinary differential equations ofmotion

for each inclusion. In Sect. 3 BIEs obtained are adapted to the

effective solution by the time-domain BEM on the example

of antisymmetric problem for coplanar circular inclusions. It

consists in the transformation of BIEs to non-singular form

with new smooth functions as the unknowns. To this end

the singularity subtraction technique is used for the proper

interpretation of weakly-singular kernels at source point, and

a mapping of the circular integration domains into the rec-

tangular domains is adopted to avoid the peculiarities at the

contours of integration domains. They arise due to the exact

accounting of “square-root” behavior of solutions near the

edges of multiple inclusions. The space collocation approach

in conjunction with the marching in time approach to con-

struct the discrete analogue of the problem as the recurrent

systems of linear algebraic equations is described in this sec-

tion also. It involves the analytical over the time and both ana-

lytical and numerical over the space integration schemes for

the calculation of influence matrix coefficients. The subele-

ment technique is used to more correct satisfaction of causal-

ity conditions for the introduced space and temporal meshes.
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Several examples of the method implementation are consid-

ered to demonstrate its robustness and efficiency in Sect. 4.

Calculations are carried out for a pair of coplanar circular

disc-shaped inclusions of equal size and different masses

under normal incidence of a plane longitudinal elastic wave

with the step-like and hill-like time profiles. Unlike of single

inclusion, the general motion of inclusions including their

translations as well as rotations is realized in the considered

configuration. The histories of inclusions displacements and

dynamic stress intensity factors in the inclusions vicinities are

assessed from the point of view of the shielding and ampli-

fication effects of inclusions neighborhood. The conclusions

are listed in Sect. 5.

2 Basic formulations

Let an infinite isotropic elastic matrix contain N arbitrar-

ily located disc-shaped rigid inclusions of masses Mn(n =
1, 2, . . . , N ). Their mid-surfaces occupy the plane regions

Sn(n = 1, 2, . . . , N ) as shown in Fig. 1. The thicknesses of

the inclusions are much smaller than the diameters of cor-

responding domains Sn . Perfect contact between the matrix

and the inclusions is assumed, which implies that the dis-

placements and the stresses are continuous across thematrix-

inclusion interfaces. Transient deformation process in the

solid is generated by an incident elastic wave with the given

distribution in the space x and the time t of the displacement

vector uin .

To describe the problem geometry, N Cartesian coordi-

nate systems are introduced, so that the coordinate system

O(n)x
(n)
1 x

(n)
2 x

(n)
3 is connected with the n-th inclusion by

the coincidence of its center O(n) with the center of mass

of the inhomogeneity, the axis O(n)x
(n)
3 is perpendicular

to the surface Sn (Fig. 1). The mutual locations of the n-
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Fig. 1 Problem geometry

th and k-th inclusions are fixed by the vectors O(n)O(k) =
−O(k)O(n) and the direction cosines l

(nk)
j , m

(nk)
j , p

(nk)
j ( j =

1, 2, 3) of the unit vector e(n) belonging to the axis O(n)x
(n)
j

in the k-th coordinate system. Then denoting the point

by the position vector x(n)
(

x
(n)
1 , x

(n)
2 , x

(n)
3

)

in the coor-

dinate system O(n)x
(n)
1 x

(n)
2 x

(n)
3 yields the position vector

x(kn)(x
(kn)
1 , x

(kn)
2 , x

(kn)
3 ) of the same point in the coordinate

system O(k)x
(k)
1 x

(k)
2 x

(k)
3 as x(kn) = O(k)O(n) + x(n).

The substructure concept is applied here for the state-

ment of kinematic interaction in the system “infinite matrix-

multiple inclusions”. According to this, the governing equa-

tions of each element of the system are derived indepen-

dently and then the compatibility conditions are imposed at

the contact surface between the substructures to achieve the

formulation completeness.

Within the considered transient problem, the input equa-

tion for the displacement vector u(x(n), t) in the matrix is the

equation of motion [7],

c21∇(∇ · u) − c22∇ × (∇ × u) −
∂2u

∂t2
= 0, (1)

where ∇ (∂/∂x1, ∂/∂x2,∂/∂x3) is the three-dimensional

nabla-vector, c2 =
√

G/ρ and c1 =
√
2(1− ν)/(1− 2ν)c2

are the transverse and longitudinal waves velocities, G is the

shear modulus of matrix material, ρ is its density, and ν is the

Poisson’s ratio.

Concerning themoving inclusions, reaction of amatrix on

their presence is defined by the time-dependent forces with

the principal vectors P(n)(n = 1, 2, . . . , N ) acting on each

inhomogeneity, and by the moments Z(n)(n = 1, 2, . . . , N )

of these forces relative to the corresponding centers of

masses. Interpretation of the inclusions as the absolute rigid

units enables the modeling of their motions by the well-

known differential equations:

Mn

d2U(n)

dt2
= P(n), Mn

(

r(n) · e(n)
)2 d2�(n)

dt2
= Z(n),

n = 1, 2, . . . , N . (2)

HereU(n) and�(n) are translation and rotation angle vectors

of n-th inclusion, respectively, r(n) is its vector radius of

inertia relative to the coordinate axes.

With accepted restrictions on the kinetics of thin-walled

inclusions,which allow translations and rotations, the bound-

ary conditions in their domains take the form

u = U(n) + �(n) × x(n), x(n) ∈ Sn, n = 1, 2, . . . , N . (3)

Due to perfect contact between the matrix and the inclu-

sions, the compatibility conditions mean that for the matrix

points the displacements (3) take place also, besides force

influence on it is characterized by the opposite values of para-

meters P(n) and Z(n).
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In accordance with the superposition principle and for

the correct statement of initial conditions, the total non-

stationary displacement u in the matrix with multiple inclu-

sions or scatterers is presented as a sum, namely

u = uin +
N

∑

k=1
u(k), (4)

where the termu(k) describes the contribution to the scattered

wave field of k-th inclusion. Then by fixing of the process

from the moment t = 0 when incident wave front hits the

closest inclusion, the initial conditions on the scattered dis-

placements u(n), the kinematic parameters U(n) and �(n) of

inclusions can be written as

u(n)
∣

∣

∣

t=0
=

∂u(n)

∂t

∣

∣

∣

∣

∣

t=0
= 0,

U(n)
∣

∣

∣

t=0
=
dU(n)

dt

∣

∣

∣

∣

∣

t=0
= 0, �(n)

∣

∣

∣

t=0
=
d�(n)

dt

∣

∣

∣

∣

∣

t=0
= 0,

n = 1, 2, . . . , N . (5)

From the above definition of the displacement vector u(n)

it follows that the integral representation of its components

u
(n)
j ( j = 1, 2, 3) is the same as that for a nonstationary dis-

turbed single inclusion in an infinite matrix. As a result of

applying the Betti-Rayleigh reciprocity theorem and using

the properties of 3-D time-domain elastodynamic fundamen-

tal solutions, the displacement components u
(n)
j ( j = 1, 2, 3)

can be given through the combinations of retarded potentials

by [34]

u
(n)
j (x(n), t) =

1

4πG











∫ ∫

Sn

1
∣

∣x(n) − y(n)
∣

∣



−
1

∫

γ

1σ
(n)
j

(

y(n), t − τ

∣

∣

∣x
(n) − y(n)

∣

∣

∣/c2

)

τdτ

+1σ
(n)
j (y(n), t −

∣

∣

∣x
(n) − y(n)

∣

∣

∣/c2)



 d Sy

+
3

∑

i=1

∫ ∫

Sn

(

x
(n)
j − y

(n)
j

) (

x
(n)
i − y

(n)
i

)

∣

∣x(n) − y(n)
∣

∣

3

×



3

1
∫

γ

1σ
(n)
i

(

y(n), t − τ

∣

∣

∣x
(n) − y(n)

∣

∣

∣/c2

)

τdτ

−1σ
(n)
i (y(n), t −

∣

∣

∣x
(n) − y(n)

∣

∣

∣/c2)

+γ21σ
(n)
i (y(n), t − γ

∣

∣

∣x
(n) − y(n)

∣

∣

∣/c2)
]

d Sy

}

,

j = 1, 2, 3, n = 1, 2, . . . , N . (6)

Here the potential densities 1σ
(n)
j ( j = 1, 2, 3) are the

unknown ISJs across the n-th inclusion, which are defined

by means of the stress components σ j3 as

1σ
(n)
j (x(n), t) = σ+

j3(x
(n), t) − σ−

j3(x
(n), t),

j = 1, 2, 3, x(n) ∈ Sn,

σ±
j3(x

(n), t) = lim
x

(n)
3 →±0

σ j3(x
(n), t), (7)

in accordance with the causality principle 1σ
(n)
j (x(n), t) =

0, when t ≤ 0, γ = c2/c1,
∣

∣x(n) − y(n)
∣

∣ is the distance

between the receiver x(n)(x
(n)
1 , x

(n)
2 , x

(n)
3 ) and the source

y(n)(y
(n)
1 , y

(n)
2 , 0).

Physical meaning of the functions 1σ
(n)
j ( j = 1, 2, 3) in

the integral representations (6) yields the following relations

between them and the components P
(n)
j ( j = 1, 2, 3) of prin-

cipal vector P(n) of the forces to be transferred from the

matrix to the n-th inclusion and the components Z
(n)
j ( j =

1, 2, 3) of moments Z(n) of these forces:

P
(n)
j (t) = −

∫ ∫

Sn

1σ
(n)
j (y(n), t)d Sy, j = 1, 2, 3,

Z
(n)
j (t)=(−1) j

∫ ∫

Sn

y
(n)
3− j1σ

(n)
3 (y(n), t)d Sy, j = 1, 2,

Z3(t)=
∫ ∫

Sn

[

y
(n)
2 1σ

(n)
1 (y(n), t)−y

(n)
1 1σ

(n)
2 (y(n), t)

]

d Sy.

(8)

Thus, by the relations (4) and (6) the displacements in

the matrix and by the relations (8) the force influences on

the inclusions are expressed in terms of the ISJs. To deter-

mine these functions the boundary conditions (3) should be

applied, taking into account that the components of total

displacement (4) in the n-th coordinate system have the

form

u j (x
(n), t) = uin

j (x(n), t)

+
N

∑

k=1

[

u
(k)
1 (x(kn), t)

(

l
(kn)
1 δ1 j + m

(kn)
1 δ2 j + p

(kn)
1 δ3 j

)

+u
(k)
2 (x(kn), t)

(

l
(kn)
2 δ1 j + m

(kn)
2 δ2 j + p

(kn)
2 δ3 j

)

+u
(k)
3 (x(kn), t)

(

l
(kn)
3 δ1 j + m

(kn)
3 δ2 j + p

(kn)
3 δ3 j

)]

,

(9)

where δi j is the Kronecker symbol.

Substituting the relations (9) with the integral represen-

tations (6) in the boundary conditions (3) we arrive to such

system of BIEs, where the ISJs as the integral densities, and

the translations and rotations of inclusions as the free terms

are theunknowns:
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∫ ∫

Sn

B
|x(n)−y(n)|
1

[

1σ
(n)
3 (y(n), t)

]

|x(n) − y(n)|
d Sy

+
N

∑

k=1
(1− δkn)

3
∑

i=1

∫ ∫

Sk

K
x(kn),y(k)

3i [1σ
(k)
i (y(k), t)]

∣

∣x(kn) − y(k)
∣

∣

3
d Sy

= 4πG
[

−uin
3 (x(n), t) + U

(n)
3 (t) − �

(n)
2 (t)x

(n)
1

+�
(n)
1 (t)x

(n)
2

]

, x(n) ∈ Sn, n = 1, 2, . . . , N ,
∫ ∫

Sn

1

|x(n) − y(n)|

{

B
|x(n)−y(n)|
1

[

1σ
(n)
j (y(n), t)

]

+
(x

(n)
1 − y

(n)
1 )(x

(n)
2 − y

(n)
2 )

|x(n) − y(n)|2
B

|x(n)−y(n)|
2

[

1σ
(n)
3− j (y

(n), t)
]

+
(x

(n)
j − y

(n)
j )2

|x(n) − y(n)|2
B

|x(n)−y(n)|
2

[

1σ
(n)
j (y(n), t)

]

}

d Sy

+
N

∑

k=1
(1− δkn)

3
∑

i=1

∫ ∫

Sk

K
x(kn),y(k)

j i [1σ
(k)
i (y(k), t)]

∣

∣x(kn) − y(k)
∣

∣

3
d Sy

=4πG
[

−uin
j (x(n), t) + U

(n)
j (t) + (−1) j�

(n)
3 (t)x

(n)
3− j

]

,

x(n) ∈ Sn, j = 1, 2, n = 1, 2, . . . , N . (10)

Here U
(n)
j ( j = 1, 2, 3) and �

(n)
j ( j = 1, 2, 3) are the com-

ponents of translation and rotation angle vectors U(n) and

�(n) of the n-th inclusion, respectively, the operators B
|x−y|
j

in the weakly-singular integrals are the same as in the BIEs

for single inclusion [34], and act on the function by the law

of time retardation, namely:

B
|x(n)−y(n)|
j

[

1σ
(n)
i (y(n), t)

]

= b1 j

1
∫

γ

1σ
(n)
i (y(n),

t − τ

∣

∣

∣x
(n) − y(n)

∣

∣

∣ /c2)τdτ + b2 j1σ
(n)
i (y(n),

t −
∣

∣

∣x
(n) − y(n)

∣

∣

∣ /c2) + b3 j1σ
(n)
i (y(n),

t − γ
∣

∣

∣x
(n) − y(n)

∣

∣

∣ /c2), j = 1, 2, i = 1, 2, 3,

b11=−1, b21=1, b31=0, b12=3, b22=−1,
b32=γ2. (11)

OperatorsK
x,y
j i in the remaining integrals are regular (because

x(kn) 6= y(k)), they describe the nonstationary interaction of

scatterers, and they are determined by the formulas

K
x(kn),y(k)

j i [1σ
(k)
i (y(k), t)] = K

(kn)
1 j i (x(kn), y(k))

1
∫

γ

1σ
(k)
i (y(k),

t − τ

∣

∣

∣x
(kn) − y(k)

∣

∣

∣ /c2)τdτ

+K
(kn)
2 j i (x(kn), y(k))1σ

(k)
i (y(k), t −

∣

∣

∣x
(kn) − y(k)

∣

∣

∣/c2)

+K
(kn)
3 j i (x(kn), y(k))1σ

(k)
i (y(k), t − γ

∣

∣

∣x
(kn) − y(k)

∣

∣

∣/c2),

K
(kn)
1 j i (x(kn), y(k)) = −(l

(kn)
i δ1 j + m

(kn)
i δ2 j

+p
(kn)
i δ3 j )

∣

∣

∣x
(kn) − y(k)

∣

∣

∣

2
+ 3K̃

(kn)
j i (x(kn), y(k)),

K
(kn)
2 j i (x(kn), y(k)) = (l

(kn)
i δ1 j + m

(kn)
i δ2 j

+p
(kn)
i δ3 j )

∣

∣

∣x
(kn) − y(k)

∣

∣

∣

2
− K̃

(kn)
j i (x(kn), y(k)),

K
(kn)
3 j i (x(kn), y(k)) = γ2 K̃

(kn)
j i (x(kn), y(k)),

K̃
(kn)
j i (x(kn), y(k)) =

[

(x
(kn)
1 − y

(k)
1 )δ1i + (x

(kn)
2 − y

(k)
2 )δ2i

+ x
(kn)
3 δ3i

] [

(l
(kn)
1 δ1 j + m

(kn)
1 δ2 j + p

(kn)
1 δ3 j )(x

(kn)
1

−y
(k)
1 ) + (l

(kn)
2 δ1 j + m

(kn)
2 δ2 j + p

(kn)
2 δ3 j )(x

(kn)
2 − y

(k)
2 )

+(l
(kn)
3 δ1 j + m

(kn)
3 δ2 j + p

(kn)
3 δ3 j )x

(kn)
3

]

. (12)

For completeness, BIEs (10) should be accompanied by

the differential Eq. (2), which in scalar form and using Eqs.

(8), are transformed to (r
(n)
j is the radius of inertia of the n-th

inclusion relative to the axis O(n)x
(n)
j ):

Mn

d2U
(n)
3 (t)

dt2
= −

∫ ∫

Sn

1σ
(n)
3 (y(n), t)d Sy,

n = 1, 2, . . . , N ,

Mn

(

r
(n)
j

)2 d2�
(n)
j (t)

dt2
=(−1) j

∫ ∫

Sn

y
(n)
3− j 1σ

(n)
3 (y(n), t)d Sy,

j = 1, 2, n = 1, 2, . . . , N ,

Mn

d2U
(n)
j (t)

dt2
= −

∫ ∫

Sn

1σ
(n)
j (y(n), t)d Sy,

j = 1, 2, n = 1, 2, . . . , N

Mn

(

r
(n)
3

)2 d2�
(n)
3 (t)

dt2
=

∫ ∫

Sn

[

y
(n)
2 1σ

(n)
1 (y(n), t)

−y
(n)
1 1σ

(n)
2 (y(n), t)

]

d Sy, n =1, 2, . . . , N .

(13)

Therefore, the initial problem is reduced to the system

of 9N connected scalar equations consisting of 3N BIEs

(10) and 6N ordinary differential Eq. (13) for the func-

tions 1σ
(n)
j , U

(n)
j and �

(n)
j ( j = 1, 2, 3; n = 1, 2, . . . , N ).

For Eqs. (13) the zero initial conditions (5) on the com-

ponents of inclusion translations and rotations are added

also.

It should bementioned that the systemofBIEs is consider-

ably simplified and divided into two independent subsystems

for coplanar inclusions, for example, located in the plane

x
(n)
3 = 0(n = 1, 2, . . . , N ). Then, by putting in the expres-

sions (12) l
(kn)
j = δ1 j , m

(kn)
j = δ2 j , p

(kn)
j = δ3 j , x

(kn)
3 = 0,
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from Eqs. (10) we obtain the following system of N BIEs

corresponding to the antisymmetric problem

N
∑

k=1

∫ ∫

Sk

B
|x(kn)−y(k)|
1

[

1σ
(k)
3 (y(k), t)

]

|x(kn) − y(k)|
d Sy

= 4πG
[

−uin
3 (x(n), t) + U

(n)
3 (t)

−�
(n)
2 (t)x

(n)
1 + �

(n)
1 (t)x

(n)
2

]

,

x(n) ∈ Sn, n = 1, 2, . . . , N (14)

and the system of 2N BIEs corresponding to the symmetric

problem

N
∑

k=1

∫ ∫

Sk

1

|x(kn) − y(k)|

{

B
|x(kn)−y(k)|
1

[

1σ
(k)
j (y(k), t)

]

+
(x

(kn)
1 − y

(k)
1 )(x

(kn)
2 − y

(k)
2 )

|x(kn) − y(k)|2
B

|x(kn)−y(k)|
2

[

1σ
(k)
3− j (y

(k), t)
]

+
(x

(kn)
j − y

(k)
j )2

|x(kn) − y(k)|2
B

|x(kn)−y(k)|
2

[

1σ
(k)
j (y(k), t)

]

}

d Sy

= 4πG
[

−uin
j (x(n), t) + U

(n)
j (t) + (−1) j�

(n)
3 (t)x

(n)
3− j

]

,

x(n) ∈ Sn, j = 1, 2, n = 1, 2, . . . , N . (15)

Then the complete formulation of antisymmetric problem

includes a system of 4N equations (N BIEs (14) are joined

with the first 3N differential Eq. (13)) for the jumps of normal

stresses 1σ
(n)
3 (n = 1, 2, . . . , N ) across the inclusions and

the parameters U
(n)
3 ,�

(n)
1 ,�

(n)
2 (n = 1, 2, . . . , N ) of their

transverse motion. The symmetric problem is reduced to a

systemof 5N equations (2N BIEs (15) are joinedwith the last

3N differential Eq. (13)) for the jumps of tangential stresses

1σ
(n)
1 ,1σ

(n)
2 (n = 1, 2, . . . , N ) across the inclusions and

the parameters U
(n)
1 , U

(n)
2 ,�

(n)
3 (n = 1, 2, . . . , N ) of their

motion in own plane.

Due to the retardation kernels, the initial moment of inclu-

sion interaction is implicitly exhibited in the derived BIEs,

because the zero-values of corresponding integral terms

before the arriving in actual inclusion of longitudinal wave

scattered by the neighboring objects. Besides, the retarda-

tion in the arguments of the ISJs is limited by the time that

the transverse wave travels between the most distant points

belonging to the set of domains Sn(n = 1, 2, . . . , N ). This

result originates from the sharp Huygens principle for such

geometrical system of 3-D obstacles. From Eqs. (10) and

(13), or (14), (15) and (13) the statements by the BIEs of

other 3-Dproblems on disk-shaped inclusions interaction can

be obtained as the particular cases. So, the model of immov-

able interacting inclusions in the field of nonstationary elastic

waves is approached in the limits Mn → ∞. BIE formula-

tions of appropriate quasistatic problems [36] are achieved

by the neglecting of inertial terms.

3 Regular and discrete analogues of BIEs

For the sake of brevity, let us demonstrate the time-domain

solution algorithm for N BIEs (14) corresponding to the

antisymmetric problem for coplanar inclusions, when inci-

dent impulsewave has nonzero displacement component uin
3 .

Then from the antisymmetry conditions relative to the inclu-

sions plane follows 1σ
(n)
j = 0, U

(n)
j = 0,�

(n)
3 = 0( j =

1, 2, n = 1, 2, . . . , N ). Extension of proposed numerical

approach to more complicated cases such as the symmet-

ric problems for coplanar inclusions described by 2N BIEs

(15) and the general problem for arbitrarily oriented inclu-

sions described by 3N BIEs (10) can be fulfilled by the same

scheme, and is connected withmore cumbersomemathemat-

ical expressions only.

The BIEs (14) contain weakly-singular integrals in the

sum terms with the number k = n. To isolate these singular-

ities explicitly, the subtraction technique is applied to BIEs

(14). This results in

(1+ γ2)

2

∫ ∫

Sn

1σ
(n)
3 (y(n), t)

|x(n) − y(n)|
d Sy

+
∫ ∫

Sn

1

|x(n) − y(n)|

{

B
|x(n)−y(n)|
1

[

1σ
(n)
3 (y(n), t)

]

−
(1+ γ2)

2
1σ

(n)
3 (y(n), t)

}

d Sy

+
N

∑

k=1
(1− δkn)

∫ ∫

Sk

B
|x(kn)−y(k)|
1

[

1σ
(k)
3 (y(k), t)

]

|x(kn) − y(k)|
d Sy

= 4πG
[

−uin
3 (x(n), t) + U

(n)
3 (t) − �

(n)
2 (t)x

(n)
1 ,

+�
(n)
1 (t)x

(n)
2

]

, x(n) ∈ Sn, n = 1, 2, . . . , N . (16)

The second integral in the Eq. (16) is regular, as can be easily

proved by analyzing the integrand in the limit y(n) → x(n).

Therefore, from the point of view of numerical evaluation of

this integral, it is sufficient to narrow the integration domain

up to S0n by elimination of a small region around the source

point x(n) from Sn . The integrals under the summation sign

are ordinary due to the receiver and source points belonging

to different inclusions domains. As to the characteristic part

or the first integral of Eq. (16), it contains polar peculiarity

and its density 1σ
(n)
3 characterizes the ISJ across the n-th

inclusion surfaces at the actual time t . In accordance with the

established structure of solutions of the integral equations

with this type of kernels [37,38], the functions 1σ
(n)
3 for

the circular disc-shaped inclusions with the radii an(n =
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1, 2, . . . , N ) should be presented as

1σ
(n)
3 (x(n), t) = α

(n)
3 (x(n), t)/

√

a2n − (x
(n)
1 )2 − (x

(n)
2 )2,

x(n) ∈ Sn, n = 1, 2, . . . , N , (17)

where α
(n)
3 (n = 1, 2, . . . , N ) are the new unknown func-

tions, which are smooth and limited in the domains Sn .

Substitution of representations (17) into Eqs. (16) leads to

the two types of singularities in the resulting BIEs: the weak

singularity at the receiver x(n) and the “square-root” singu-

larity on the contours of integration or inclusion domains

Sn(n = 1, 2, . . . , N ). Above circumstances cause two-stage

regularization procedure. First the weakly-singular integrals,

which are involved in Eqs. (16) and transformed by Eqs. (17),

are interpreted in the sense

∫ ∫

Sn

α
(n)
3 (y(n), t)

√

a2n − (y
(n)
1 )2 − (y

(n)
2 )2|x(n) − y(n)|

d Sy

= π2α
(n)
3 (x(n), t)

+
∫ ∫

S0n

α
(n)
3 (y(n), t) − α

(n)
3 (x(n), t)

√

a2n − (y
(n)
1 )2 − (y

(n)
2 )2|x(n) − y(n)|

d Sy,

x(n) ∈ Sn, n = 1, 2, . . . , N , (18)

where the following exact values are used [36]:

∫ ∫

Sn

1
√

a2n − (y
(n)
1 )2 − (y

(n)
2 )2|x(n) − y(n)|

d Sy = π2,

x(n) ∈ S, n = 1, 2, . . . , N . (19)

Next the variables ξ(n)(ξ
(n)
1 , ξ

(n)
2 ) and η(n)(η

(n)
1 ,η

(n)
2 )

instead of variables x(n)(x
(n)
1 , x

(n)
2 ) and y(n)(y

(n)
1 , y

(n)
2 ) are

introduced so that







x
(n)
1 = an sin ξ

(n)
1 cos ξ

(n)
2 ;

x
(n)
2 = an sin ξ

(n)
1 sin ξ

(n)
2 ,







y
(n)
1 = an sin η(n)

1 cosη
(n)
2 ;

y
(n)
2 = an sin η(n)

1 sin η(n)
2 ,

n = 1, 2, . . . , N . (20)

The Jacobian of transformations (20) eliminates the “square-

root” singularity on the contours of inclusion domains,

when η(n)
1 = π/2. It should be mentioned, that by the

change of variables (20) the circular inclusion domain Sn

is mapped onto mathematical rectangular domain S̃n :
{

0 ≤ ξ
(n)
1 , η(n)

1 ≤ π/2; 0 ≤ ξ
(n)
2 , η(n)

2 ≤ 2π
}

.

Having applied the relations (17)–(20) to the BIEs (16),

their regular analogues are obtained. Together with the dif-

ferential Eq. (13) of inclusions motion they form a complete

system of 4N equations, which can be written as:

fn(ξ(n))α̃
(n)
3 (ξ(n), t)

+
∫ ∫

S̃0n

an sin η(n)
1

wnn(ξ(n),η(n))
B

wnn(ξ(n),η(n))
1

[

α̃
(n)
3 (η(n), t)

]

d Sη

+
N

∑

k=1
(1−δkn)

∫ ∫

S̃k

ak sin η(k)
1

wkn(ξ(n),η(k))
B

wkn(ξ(n),η(k))
1

[

α̃
(k)
3 (η(k), t)

]

d Sη

− 4πG
[

U
(n)
3 (t) + an sin ξ

(n)
1 sin ξ

(n)
2 �

(n)
2 (t)

− an sin ξ
(n)
1 cos ξ

(n)
2 �

(n)
1 (t)

]

= −4πGũin
3 (ξ(n), t), ξ(n) ∈ S̃n, n = 1, 2, . . . , N ,

an

∫ ∫

S̃n

α̃
(n)
3 (η(n), t) sin η(n)

1 d Sη

+Mn

d2U
(n)
3 (t)

dt2
= 0, n = 1, 2, . . . , N ,

∫ ∫

S̃n

α̃
(n)
3 (η(n), t) sin2 η(n)

1

(

δ j1 sin η(n)
2 − δ j2 cosη

(n)
2

)

d Sη

+
1

4
Mn

d2�
(n)
j (t)

dt2
= 0, j = 1, 2, n = 1, 2, . . . , N . (21)

Here the values r
(n)
1 = r

(n)
2 = an/2(n = 1, 2, . . . , N ) of

the radii of inertia for the circular disc-shaped massive inclu-

sions having uniform distribution of densities are taken into

account, the time-retardation operator Bd
1 is defined by the

relation (11), S̃0n is the mapping of the domain S0n due to the

changing of variables (20) (in the domain S̃0n the points ξ(n)

and η(n) do not coincide). Also, α̃
(n)
3 (ξ(n), t) = α

(n)
3 (x(n), t)

after substitution of Eqs. (20), similarly for the denota-

tion ũin
3 (ξ(n), t), the function wkn(ξ(n),η(k)) is the distance

between the points x(kn) and y(k) in terms of their images.

Finally,

fn(ξ(n)) =
(1+ γ2)

2






π2 −

∫ ∫

S̃0n

an sin η(n)
1

wnn(ξ
(n),η(n))

d Sη






.

(22)

Discrete analogue of a system of the regularized Eq. (21) is

constructed by the space collocation method in conjunction

with the time-stepping scheme. Since the functions α̃
(n)
3 (n =

1, 2, . . . , N ) depend on both the spatial and temporal coor-

dinates, the meshing of domains S̃n(n = 1, 2, . . . , N ) and

the time interval [0, T ] is required. To this end each domain

S̃n(n = 1, 2, . . . , N ) is divided into Qn rectangular elements

S̃nq (q = 1, 2, . . . , Qn, S̃n = S̃n1 ∪ S̃n2 . . . ∪ S̃nQn )

of the lengths 2π/Ln and πLn/(2Qn), where Ln is the

given mesh parameter for the n-th domain, the time inter-

val [0, T ] is divided into K equidistant subintervals, i. e.
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tr = r1t (r = 1, 2, . . . , K ) denotes the time station at the

r - th time step, 1t is the time increment.

Then the unknowns α̃
(n)
3 (n = 1, 2, . . . , N ) are approxi-

mated by the interpolation functions as

α̃
(n)
3 (ξ(n), t)=

Pn
∑

q=1

K
∑

r=1
α̃

(n)
3qrθ

(n)
q (ξ(n))ϑr (t), n =1, 2, . . . , N ,

(23)

where α̃
(n)
3qr is the value of the function α̃

(n)
3 at the nodal

point ξ
(n)
q (ξ

(n)
1q , ξ

(n)
2q ) on the n-th domain mesh at a time

tr = r1t, Pn is the total number of nodal points intro-

duced in the domain S̃n, θ
(n)
q and ϑr are the given spatial

and temporal shape functions, respectively, with the proper-

ties θ
(n)
q (ξ

(n)
i ) = δqi , ϑr (t j ) = δr j .

The remaining unknown functions, namely translation and

rotation parameters for the inclusions U
(n)
3 , �

(n)
j ( j =

1, 2, n = 1, 2, . . . , N ), depend on the temporal coordinate

only. LetU
(n)
3r , �

(n)
jr represent these functions, respectively,

at the time tr . The backward difference schemes are applied

to approximate their accelerations, i.e.:

d2U
(n)
3

dt2

∣

∣

∣

∣

∣

t=tr

=
1

(1t)2

[

U
(n)
3r − 2U (n)

3(r−1) + U
(n)
3(r−2)

]

,

n = 1, 2, . . . , N

d2�
(n)
j

dt2

∣

∣

∣

∣

∣

t=tr

=
1

(1t)2

[

�
(n)
jr − 2�(n)

j (r−1) + �
(n)
j (r−2)

]

,

j = 1, 2, n = 1, 2, . . . , N . (24)

By substituting Eqs. (23) and (24) into Eqs. (21), consid-

ered at each collocation point ξ
(n)
q (q = 1, 2, . . . , Pn, n =

1, 2, . . . , N ) and at each time-step, we arrive at a system of

3N + P1 + P2 + . . . + PN linear algebraic equations, which

is recurrent relative to the time index r and has the form

Pn
∑

i=1

[

h
(n)
qirr

α̃
(n)
3ir +

N
∑

k=1
(1− δkn)b

(kn)
qirr

α̃
(k)
3ir

]

−4πG
[

U
(n)
3r + an sin ξ1q sin ξ2q�

(n)
1r − an sin ξ1q cos ξ2q�

(n)
2r

]

= −4πGũin
3 (ξ(n)

q , tr )

−
Pn

∑

i=1

r−1
∑

l=1

[

h
(n)
qirl

α̃
(n)
3il +

N
∑

k=1
(1− δkn)b

(kn)
qirl

α̃
(k)
3il

]

,

q = 1, 2, . . . , Pn, n = 1, 2, . . . , N , r = 1, 2, . . . , K ,

Pn
∑

i=1
c
(n)
i

α̃
(n)
3ir +

Mn

an(1t)2
U

(n)
3r =

Mn

an(1t)2
(2U

(n)
3(r−1) − U

(n)
3(r−2)),

n = 1, 2, . . . , N , r = 1, 2, . . . , K ,

Pn
∑

i=1
c
(n)
j i

α̃
(n)
3ir +

Mn

4(1t)2
�

(n)
jr =

Mn

4(1t)2
(2�

(n)
j (r−1) − �

(n)
j (r−2)),

j = 1, 2, n = 1, 2, . . . , N , r = 1, 2, . . . , K . (25)

Here the coefficients h
(n)
qirl , b

(kn)
qirl , c

(n)
i , c

(n)
j i are given by

the formulas

h
(n)
qirl = f3(ξ

(n)
q )δqiδrl + an

∫ ∫

S̃0nq

sin η(n)
1

wnn(ξ
(n)
q ,η(n))

θ
(n)
i (η(n))

{

B
wnn(ξ

(n)
q ,η(n))

1 [ϑl(t)]

}∣

∣

∣

∣

t=tr

d Sη,

b
(kn)
qirl = ak

∫ ∫

S̃k

sin η(k)
1

wkn(ξ
(n)
q ,η(k))

θ
(k)
i (η(k))

{

B
wkn(ξ

(n)
q ,η(k))

1 [ϑl(t)]

}∣

∣

∣

∣

t=tr

d Sη,

c
(n)
i =

∫ ∫

S̃n

θ
(n)
i (η(n)) sin η(n)

1 d Sη,

c
(n)
j i =

∫ ∫

S̃n

θ
(n)
i (η(n)) sin2 η(n)

1 (δ1 j sinη
(n)
2 −δ2 jcosη

(n)
2 )d Sη.

(26)

In relations (26) the doubly-connected domain of integra-

tion S̃0nq is defined by the elimination from domain S̃n of a

small surrounding the collocation point ξ
(n)
q .

Thus, the problem on the time variations of functions α̃
(n)
3

andU
(n)
3 , �

(n)
1 , �

(n)
2 (n = 1, 2, . . . , N ) characterizing the

“matrix-inclusions” loading transfer andmotion of the inclu-

sions, respectively, is reduced to a step by step solution of the

recurrent system of Eq. (25). Then the solutions at time step

r = 1 are used further for the computation of above functions

at time step r = 2, etc. The values within the first step involve

also the initial conditions. It should be mentioned the special

computational properties of influence matrices of a system

(25) caused by the presence of retarded-type operators in the

coefficients (26) or physically by the traveling nature of gen-

erated wave fields. For instance, the matrix on the left side of

the first P1+ P2+ . . .+ PN Eq. (25) is well-conditioned with

the domination of diagonal elements due to the regulariza-

tion (18), besides it has sparse form due to the zero-elements

with the indexes q and i for which wkn(ξ
(n)
q ,η

(k)
i ) > c11t .

Concerning the matrices on the right side of these equa-

tions, their elements h
(n)
qirl = 0, b

(kn)
qirl = 0 with the indexes r

and l for which tr − D/c2 ≥ tl+1, where D is the distance

wkn(ξ
(n)
q ,η

(k)
i )between themost distant nodal points ξ

(n)
q and

η(k)
i on the set of domains S̃n(n = 1, 2, . . . , N ). It means the

stabilization of computing time and memory in the march-

ing algorithm after the p-th time step, which is defined by

p1tc2 > D > (p − 1)1tc2. As the consequence, the errors

are not accumulated when long duration wave excitations of

the system are considered.

In the further numerical analysis piecewise-constant spa-

tial and linear temporal approximations of unknowns are
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used, what is provided by the spline-type shape functions

θ
(n)
q (ξ(n)) =

{

1, ξ(n) ∈ S̃nq;
0, ξ(n) /∈ S̃nq ,

n = 1, 2, . . . , N ,

ϑr (t) =
{

1− |t − r1t |/1t, |t − r1t | ≤ 1t;
0, |t − r1t | > 1t.

(27)

Then the value α̃3qr represents the unknown function at the

nodal point ξ
(n)
q in the geometrical center of q-th element,

the total number of nodal or collocation points in Eqs. (25)

is equal to Q1 + Q2 + . . . + QN , and the domain S̃0nq

with the eliminated surrounding of ξ
(n)
q -point is chosen as

S̃0nq = S̃n\S̃nq . The assumptions (27) lead to analytical eval-

uation of time convolution integrals (see Appendix 1) exist-

ing in the coefficients h
(n)
qirl and b

(kn)
qirl due to the operator BR

1

(11) and standard Gaussian numerical evaluation of space

integrals in these coefficients, analytical determination of the

coefficients c
(n)
j i and c

(n)
j i (see Appendix 2), and enable the

calculation of the matrix with the singular elements one time

only during the first time step, because the coefficients h
(n)
qirr

and b
(kn)
qirr became not dependent on the time index r . Together

with the subelement technique for the more accurate satis-

fying the causality or zero-values conditions ahead of the

wave fronts by the subdivision of source boundary element

onto active and inactive parts with respect to their influence

on the receiver nodal point during actual time step, these

improvements provide the stable and effective calculations

of time-dependencies for the relatively small time increment

1t [15].

In addition to the above parameters, important character-

istics of stresses in the inclusion vicinities are stress inten-

sity factors (SIFs) [39]. Once the time-dependent functions

α̃
(n)
3 (n = 1, 2, . . . , N ) are determined by solving Eqs. (25),

the dynamicSIFs canbe easily obtainedwithout using special

boundary elements at the inclusion fronts. It follows from the

proper representation of the ISJs in the form (17) and (22).

In the considered antisymmetric problem only the mode-II

dynamic SIFs are non-zero. These characterize the normal

(tension or compression) stresses in the inclusion domains

or the shear stresses in the complementary domain in the

plane x
(n)
3 = 0. The mode-II dynamic SIF K

(n)
2 for the n-th

inclusion can be computed by the relation:

K
(n)
2 (ϕ(n), t)= −

1

4(1− ν)
√

an

α̃
(n)
3 (ξ(n), t)

∣

∣

∣

∣ ξ
(n)
1 =π/2;

ξ
(n)
2 =ϕ(n)

,

(28)

where ϕ(n) is the angular coordinate of the point at the front

of n-th inclusion accounting from the axis O(n)x
(n)
1 .

(2)

1Ω

(2)

3U

2a

M2

f

3

in
u

(1)

1Ω

M1

2a

A

(1)

3U

Fig. 2 Schematic configuration and motion of two interacting disc-

shaped inclusions as the rigid units under nonstationary elastic wave

incidence

4 Numerical results

As demonstrative example of the application of described

time-domain BEM, the transient antisymmetric problem for

the pair of coplanar rigid disc-shaped inclusions of the same

radius a1 = a2 = a, which centers are located on the dis-

tance 2a + f with f as the gap between the inclusions (see

Fig. 2) in 3-D elastic matrix is considered. The inclusions of

both equal and different masses M1 and M2 are involved into

analysis, the latter case can be caused by their different mate-

rial densities and thicknesses or aspect ratios. It is assumed

perpendicular incidence of plane longitudinal elastic wave

on the inclusions, and two types of incident wave scenario

are foreseen to reach in the limits of physically expected and

early investigated situations for the results verification, and

to show more clearly the inertial effects of obstacles inter-

action. First type of wave has step-like time profile with the

following displacement distribution:

uin
3 (x(n), t)

=







U0
(c1t−x

(n)
3 )2

c21 t2∗
exp

(

− 2(c1t−x
(n)
3 )

c1t∗

)

, c1t−x
(n)
3 ≤ c1t∗;

U0 exp(−2), c1t−x
(n)
3 > c1t∗,

(29)

where U0 is constant magnitude coefficient, t∗ = 2a/c2 is

the time when the pulse enters the stationary regime. Second

one is characterized by the hill-like profile with the same

magnitude and is given by the displacement

uin
3 (x(n), t) = U0

(

c1t − x
(n)
3

)2

c21t
2
∗

exp

(

−
2(c1t − x

(n)
3 )

c1t∗

)

.

(30)

The normalized displacements ūin = uin
3 /U0 in the inclu-

sions plane x
(1)
3 = x

(2)
3 = 0 for the above incident waves are

plotted in Fig. 3. These waves arrive to both inclusions at the

same time t = 0 which is fixed as the initial moment.

If the axes O(1)x
(1)
2 and O(2)x

(2)
2 are chosen so that

they coincide with the line connecting the centers of inclu-

sions, natural symmetry of the problem concerning the plane
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u
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Fig. 3 Time profiles of normalized displacements ūin of the incident

wave

x
(1)
1 = x

(2)
1 = 0 takes place for the considered geometrical

configuration and disturbing field. It leads to zero rotation

angles �
(1)
2 = �

(2)
2 = 0 and description of inclusions kinet-

ics by the translationsU
(n)
3 and rotations�

(n)
1 (n = 1, 2) only,

as displayed in Fig. 2. Concerning the SIFs K
(n)
2 (n = 1, 2),

due to the inclusions interaction they change from point to

point around the inclusions fronts, but as the consequence of

problem symmetry is K
(1)
2 (ϕ(1), t) = K

(1)
2 (2π−ϕ(1), t) and

K
(2)
2 (ϕ(2), t) = K

(2)
2 (2π−ϕ(2), t). Besides, in the particular

case M1 = M2 both inclusions are under the same condi-

tions, and the subsequent parametrical simplification occurs

as the equalitiesU
(1)
3 = U

(2)
3 , �

(1)
2 = �

(2)
2 , K

(1)
2 (ϕ(1), t) =

K
(2)
2 (π − ϕ(2), t).

For the calculation 176 rectangular boundary elements

with the lengths π/22 and π/12 are used on each domain

S̃1 and S̃2, the subelement mesh is formed by 5 × 5 sub-

division, the time increment is chosen as 1t = 0.16a/c2.

Poisson’s ratio of matrix material is taken as ν = 0.3.

The time-dependences of normalized translation U =
U

(1)
3 /U0, rotation � = �

(1)
2 a/U0 and dynamic SIF K =

(1− ν)
√

aK
(1)
2 /(πGU0) of one of the inclusions are depi-

cted on the Figs. 4, 5, 6, 7, 8, 9, 10 and 11. In addition

the displayed dynamic SIF K corresponds to the inclu-

sion front point A nearest to the other inclusion (see Fig-

ure 2) as the most sensitive point relative to the interac-

tion effects. Then the generality of the analysis is provided

by the inverse character of results as to the neighboring

object, and considering the presence near the actual inclu-

sion with the dimensionless mass M̄1 = M1/(ρa3) of the

other inclusion with smaller, equal or larger dimensionless

mass M̄2 = M2/(ρa3). For comparison purposes, the behav-

ior of pertinent parameters for a single inclusion subjected to

the same transient excitation, when the interaction between

0.00

0.01

0.02

0.03

0 2 4 6 8

f =0.2a

Single inclusion

f=6.0a
f =2.5a

tc2/(2a)

K

Fig. 4 Histories of normalized dynamic SIF K of immovable inclu-

sions for various gaps f between them under incident wave with step-

like profile. Points denoted by stars correspond to the known analytical

static solutions
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0.000
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0.010

0.015

0 2 4 6 8

tc2/(2a)
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Single inclusion

M2=18

M2=12

M 1=12

K

Fig. 5 Histories of normalized dynamic SIF K of inclusion with fixed

massM1 for variousmassesM2 of neighboring inclusion under incident

wave with step-like profile

the objects is neglected, is also showed in the Figs. 4, 5, 6,

7, 8, 9, 10 and 11.

Two approaches are applied for the validation of proposed

numerical method. Since no results for transient disturbing

functions for the multiple disc-shaped inclusions embedded

in an elastic matrix are reported in the literature, first the

static equivalents of the problems are considered as the par-

ticular cases, where the analytical solutions exist. These sta-

tic limits are achieved under the incidence on the immov-

able inclusions of step-like wave for large time values (see

Fig. 4), and correspond to the problems on the response of

immovable inclusions on the primary field of constant dis-

placements in thematrix (or the same on the constant vertical
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Fig. 6 Histories of normalized translationU of the inclusionwith fixed

massM1 for variousmassesM2 of neighboring inclusion under incident

wave with hill-like profile
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Fig. 7 Histories of normalized rotation angle � of the inclusion with

fixed mass M1 for various masses M2 of neighboring inclusion under

incidence wave with hill-like profile

translations of inclusions in the matrix). Then exact solution

for a single inclusion [39] and approximate solution in a

form of series by the small geometrical parameter for two

remote inclusions [36] are available. Excellent agreement

of numerical dynamic solutions and analytical static solu-

tions is found both for single and multiple inclusions situa-

tions. On the other hand, it is anticipated that convergence

of the proposed solution depends on both space and time

discretization meshes. In the previous direct time-domain

BEM analyses [10,20], the marching algorithm instability

at small time increment relative to the normalized size or

area of the selected boundary elements have been mentioned

and explained. With this reason, the scheme with the grad-

ual decreasing the time step at the fixed and sufficiently fine

boundary element mesh, and the achievement of deviations

-0.015
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-0.005

0.000

0.005

0.010

0.015

0 2 4 6 8
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Single inclusion

M2=18

M2=12

M1=12

K

Fig. 8 Histories of normalized dynamic SIF K of inclusion with fixed

massM1 for variousmassesM2 of neighboring inclusion under incident

wave with hill-like profile
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u
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f =2.5a
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U

Fig. 9 Histories of normalized translation U of the interacting inclu-

sionswith equalmasses for various gaps f between themunder incident

wave with hill-like profile

between the results for two consecutive attempts less than

1% for the considered time interval and involved input data

as the criterion of the process completion is used. A num-

ber of parametric studies within this convergence estimation

tactics show that the desired accuracy of results and the com-

putational efficiency is provided with the introduced above

time step.

The kinematic interaction of “matrix-multiple inclusions”

system is exhibited by the oscillations in time of inclusions

motion or matrix compliance parameters (Figs. 6, 7, 9, 10)

andmatrix stress intensification parameters (Figs. 4, 5, 8, 11)

with the peaks attenuation and reaching the static values at

large time. In accordance with the causality principle, before

arriving the longitudinal wave scattered by the neighboring
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incident wave with hill-like profile
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Fig. 11 Histories of normalized dynamic SIF K of interacting inclu-

sionswith equalmasses for various gaps f between them under incident

wave with hill-like profile

inclusion, namely in the interval 0 ≤ t ≤ f/c1, the histo-

ries for the single inclusion and pair of inclusions coincide.

Obviously, this interval is longer for the most distant objects.

The change of sign in the involved parameters is observed

for the movable inclusions. It means the opposite transitions

and rotations of inclusions as to their initial positions in the

plane x
(1)
3 = x

(2)
3 = 0, as well as arising both tensile and

compressional stresses in the inclusions domains, depending

on the time.

From the comparison of curves behavior on the Figs. 4

and 5 for the sophisticated unmovable inclusions and realistic

movable ones in the field of step-like incident wave follows

that the SIF amplitudes are much less in the second case. But

for this transient excitation the difference between the SIFs

for single and interacting inclusions is not considerable (the

same is for the characteristics of inclusionsmotion), therefore

subsequent illustrations concern in details the response of

inclusions on the more abrupt incident wave with the hill-

like profile.

First the time-dependencies of vertical translations

(Fig. 6), rotations (Fig. 7) and SIF (Fig. 8) of the inclusions

are revealed upon their mass ratio. The inhomogeneities are

located at close distance with the gap f = 0.2a. The dimen-

sionless mass of actual inclusion is selected as M̄1 = 12,

and three masses of associated inclusion are considered:

M̄2 = 6; 12; 18.Mutual influence of rigid disc-shaped inclu-
sions causes decreasing the peaks of their translation U in

comparison with the single inclusion case, in addition these

peaks are smaller and reached later in time under neigh-

borhood of actual inclusion with the more massive inclu-

sion. Opposite tendency takes place for the peaks of rotation

angle � of ones. However, this rotational degree of free-

dom leads to the more smooth behavior in time and less

peaks of dynamic SIF, hence movable inclusions cumula-

tively demonstrate reinforcing properties.

Next above histories are examined upon the distance

between the inclusions, which is chosen as f = 0.2a; 1.2a;
2.5a. The dimensionless masses of inclusions are assumed

the same and equal to M̄1 = M̄2 = 20. Unlike the inclusion

rotations on Fig. 10, where their maximums are smaller for

the bigger gap between the interacting object, non-unique

inertia effects are observed for the translations (Fig. 9)

and dynamic SIF (Fig. 11) of the inclusions. So, the peak

values of these quantities can both increase and decrease

with increasing the gap f , furthermore the SIF peaks over-

shooting as to the single inclusion configuration is fixed

at some gaps. As the inclusion-inclusion distance further

increases, the U - and K̄ -curves approach to the correspond-

ing curves for a single inclusion and the �-values approach

to zero, which indicates that the inclusions interaction can be

neglected.

The examples with a few nonstationary disturbed disc-

shaped inclusions in an elastic matrix give the answers con-

cerning the histories of local or close field parameters in the

corresponding particulate composites. Then described above

numerical scheme can be effectively realized by the desktop

computational possibilities within the reasonable CPU time

(in the considered cases of two inclusions CPU time was

about 70 seconds for the involved meshes and time interval).

Obviously, analysis of wave transmission in such compos-

ites demands taking into account the interaction of many

inclusions. Then fast multipole algorithms can be incorpo-

rated into the step by step scheme to avoid the difficul-

ties connected with the inevitable large matrix problems.

Also some modifications in marching procedure are needed

when simulating rapidly changing transient processes, when

small time increment should be used to provide the accurate

results.
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5 Conclusions

Time-domain boundary integral formulation of three-dimen-

sional elastodynamic problems of elastic waves propagation

in a matrix containing system of rigid disc-shaped movable

inclusions is developed. Within this main task the several

subtasks are fulfilled.

1. Basing on superposition principle and integral represen-

tations of displacements due to the contribution of each

inclusion, the BIEs with weakly-singular retarded-type

kernels are derived for the general inclusion shapes and

locations. In the obtained BIEs, the ISJs across the inclu-

sions as function of time are unknown integral densi-

ties, while translations and rotations of inclusions are

presented as the free terms and satisfy associated equa-

tions of motion for a rigid unit. Time retardation in an

argument of unknown functions is limited by the period

of traveling of transverse elastic wave between the most

distant points belonged to the considered conglomerate

of inclusions.

2. Proposed time-stepping/collocation approach to thenum-

erical solution of BIEs differs from the classical schemes

by multiplicative extraction from the solution of smooth

function by accounting implicitly of solution behavior

near the inclusion edges. Besides the smooth proper-

ties, these new functions yield direct determination of

dynamic stress intensity factors in the inclusion vicini-

ties.

3. Also improved regularization procedures are applied a

priori the discretization, which foresee analytical evalu-

ation of regularizing integrals and not need binding the

singular point with the local polar coordinate system.

4. Basing on linear temporal and constant space approxima-

tions of the solution, the analytical values of convolution

integrals as well as subelement technique for the calcula-

tion of integrals over “active” part of the source boundary

elements are incorporated into the numerical scheme.

All these factors increase the solution accuracy and calcu-

lation efficiency, in particular suggest the savings in computer

memory and time under extension of actual time diapason,

and allow the computing long duration transient processes

without numerical error accumulation.

Observed numerically inertial effects in the system “mat-

rix-disc-shaped rigid inclusions” can be generalized as the

following.

1. Apair of coplanar inclusions subjected to transient elastic

wave incidence is distinguished by the damping effects

of inclusion interaction, especially in the cases of closely

located objects. They lie in the reduction of translation

magnitudes in the system of massive inclusions as the

rigid units in comparison with the single inclusion con-

figuration.

2. Movability of inclusions, in particular their rotations due

to the mutual influence, yields also the peaks reducing

and more monotonic character in the time dependencies

of dynamic SIF in the inclusions vicinities.

Noted phenomena confirm that the improved both stiff-

ness and strength dynamic properties of composite materials

can be achieved by using rigid thin-walled inclusions as the

structural elements.

Since the proposed algorithm is completely formulated

in the time-domain, it forms a basis for generalization of

time-domain BEM analysis of disk-shaped rigid inclusions

interaction from three-dimensional isotropic to anisotropic

and piezoelectric matrixes with involving appropriate funda-

mental solutions [40,41], in two-dimensional case of cracked

solids this possibility have beendemonstrated earlier [42,43].

Extensionof the time-domainBEManalysis onmultiple thin-

walled elastic inclusions can be also provided by using spring

contact models [35] for such inclusions.
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Appendix 1: Analytical values of retarded-type operator

acting on linear shape function

Evaluation of operatorBR
1 involved in Eq. (26)with the shape

function (27) gives

BR
1 [ϑl(t)]

∣

∣

∣

t=tr =r1t
= Br−l+1

1 + Br−l
2 , (31)

where after the temporal integration different expressions

take place for the coefficients B H
1 and B H

2 (H = r − l +
1, r − l) depending on the distance R. With the denotation

E = H−1 they are:

Case I: R < Ec21t or R > Hc11t , then

B H
1 = B H

2 = 0; (32)

Case II: Ec21t < R < Hc21t and R < Ec11t , then

B H
1 =

1

2
H −

2

3

R

1tc2
+
1

2

(1t)2c22

R2
E2

(

1+
1

3
E

)

,

B H
2 = −

1

2
E +

2

3

R

1tc2
−
1

6

(1t)2c22

R2
E3; (33)
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Case III: Ec11t < R < Hc21t , then

B H
1 =

1

2
H −

2

3

R

1tc2
+
1

2
γ2

(

H −
2

3

R

1tc1

)

,

B H
2 = −

1

2
E +

2

3

R

1tc2
−
1

2
γ2

(

E −
2

3

R

1tc1

)

; (34)

Case IV: Ec11t < R < Hc11t and R > Hc21t , then

B H
1 = −

1

2
γ2

(

H −
2

3

R

1tc1

)

−
1

6
H3 (1t)2c22

R2
,

B H
2 = −

1

2
γ2

(

E −
2

3

R

1tc1

)

−
1

2

(1t)2c22

R2
H2

(

1−
1

3
H

)

; (35)

Case V: Hc21t < R < Ec11t , then

B H
1 = −

1

6

(1t)2c22

R2
(3E + 1) ,

B H
2 = −

1

6

(1t)2c22

R2
(E + 2H) . (36)

Appendix 2: Coefficients of resulting system of lin-

ear algebraic equations for piecewise-constant spatial

approximation

From Eqs. (26) and (27) it follows

c
(n)
i =

∫ ∫

S̃ni

sin η(n)
1 d Sη,

c
(n)
j i =

∫ ∫

S̃ni

sin2 η(n)
1 (δ1 j sinη

(n)
2 − δ2 jcosη

(n)
2 )d Sη,

S̃ni :
{

π(m − 1)Ln/(2Qn) ≤ η(n)
1 ≤ πmLn/(2Qn);

2π(l − 1)/Ln ≤ η(n)
2 ≤ 2πl/Ln

}

,

m = 1, 2, . . . , Qn/Ln; n = 1, 2, . . . , Ln;
i = (m − 1)Ln + l. (37)

After integration we obtain

c
(n)
i =

2π

Ln

{cos [π(m − 1)Ln/(2Qn)]−cos [πmLn/(2Qn)]} ,

c
(n)
j i =

1

4
δ1 j {cos [2π(l − 1)/Ln]

− cos [2πl/Ln]} {sin [π(m − 1)Ln/Qn]

− sin [πmLn/Qn]+ πLn/Qn}

+
1

4
δ2 j {sin [2π(l − 1)/Ln]

− sin [2πl/Ln]} {sin [π(m − 1)Ln/Qn]

− sin [πmLn/Qn]+ πLn/Qn} . (38)
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