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A sound pulse is scattered by a sphere leading to an initial–boundary value problem
for the wave equation. A method for solving this problem is developed using integral
representations involving Legendre polynomials in a similarity variable and Volterra
integral equations. The method is compared and contrasted with the classical method,
which uses Laplace transforms in time combined with separation of variables in spherical
polar coordinates.
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1. Introduction

We consider the scattering of a sound pulse by a sphere. This is a canonical problem in time-domain scattering theory,
a problem with an extensive literature. Nevertheless, the problem continues to attract attention; we shall cite references
later.

The incident field is a sound pulse, which means that there is a propagating wavefront with no disturbance ahead of the
wavefront.With t denoting time, we define t = 0 as the timewhen thewavefront first touches the boundary of the spherical
scatterer. Consequently, the scattered field solves an initial–boundary value problem (IBVP), with zero initial conditions and
a boundary condition.

The standard method for solving an IBVP for a sphere is to combine the Laplace transformwith separation of variables in
spherical polar coordinates. This method was first used in the 1950s; see Section 3.4 for references. The relevant separated
solutions are recalled in Section 2.1 and themethod itself is developed in Section 3; connectionswith the literature on Bessel
polynomials are made.

An alternative method is developed in Section 4. It uses integral representations involving similarity variables, building
on an old solution found by Bateman in 1938; this solution has the form Pn(ct/r)Y

m
n where Pn is a Legendre polynomial and

Ym
n is a spherical harmonic. These solutions (and a few others) are derived in Sections 2.2 and 2.3.
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Both methods assume that the desired solution is continuous. This means that it is appropriate to solve for a velocity
potential; doing this does not exclude interesting solutions exhibiting pressure step-pulses, for example. This limitation on
the use of Laplace-transform techniques for hyperbolic problems usually goes unremarked.

We apply both methods to IBVPs with three different boundary conditions: Dirichlet condition (velocity potential
specified), pressure condition (this is the sound-soft case) and Neumann condition (rigid, or sound-hard case). The Dirichlet
problem is discussed in most detail because it has already received the most attention in the literature (even though,
physically, it is perhaps the least interesting problem). Our discussion includes some asymptotic analysis (correcting some
previous work and relegated to the Appendix).

Some concluding remarks can be found in Section 5. For more background, see [1] and references therein.

2. Some solutions of the wave equation

Small-amplitude acoustic disturbances are governed by the wave equation,

∇2u = c−2∂2u/∂t2 = 0, (1)

where c is the constant speed of sound. In what follows, we always assume that u is the velocity potential. Thus the excess
pressure p and the fluid velocity v are given by

p = −ρ
∂u

∂t
and v = grad u,

where ρ is the constant fluid density in the absence of motion. Any solution of the wave equation is called a wavefunction.
Using spherical polar coordinates, (r, θ, φ), Eq. (1) becomes

1

r2

∂

∂r

(

r2
∂u
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r2 sin θ
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∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂φ2
=

1

c2

∂2u

∂t2
. (2)

For spherically symmetric solutions (with no dependence on θ and φ), we have

u(r, t) = r−1 {f1(r − ct)+ f2(r + ct)} , (3)

where f1 and f2 are arbitrary (piecewise smooth) functions. These functions can be determined explicitly from initial and
boundary conditions. See [1] for details, examples and references.

More generally, let us seek solutions of Eq. (2) in the form

u(r, t) ≡ u(r, θ, φ, t) = un(r, t) Y
m
n (θ, φ),

where Ym
n is a spherical harmonic. We find that un satisfies the partial differential equation (PDE)

1

c2

∂2(run)

∂t2
−
∂2(run)

∂r2
+ n(n + 1)

un

r
= 0. (4)

When n = 0, u is spherically symmetric and Eq. (4) leads back to Eq. (3).
Various solutions of Eq. (4) are available. We describe some of these, separated solutions in Section 2.1 and solutions

built with a similarity variable in Sections 2.2 and 2.3.

2.1. Separated solutions

The standard procedure for solving Eq. (4) is to look for separated solutions, un(r, t) = R(r) est , where s is a parameter.
We use the letter s because, later, we will use Laplace transforms with s as the transform variable. The differential equation
for R(r) can be solved. Thus (as is well known) separated solutions of Eq. (4) are

un(r, t) = {A in(sr/c)+ B kn(sr/c)} est , (5)

where in and kn are modified spherical Bessel functions and A and B are arbitrary constants.

Properties of in and kn can be found in [2, Chapter 10] (where our in is denoted by i
(1)
n ). For example, in(x) is bounded at

x = 0 but exponentially large as x → ∞ whereas kn(x) is unbounded at x = 0 but exponentially small as x → ∞. Also,
from [2, 10.49.12], we have

ex kn(x) =
π

2x

n
∑

j=0

(n + j)!
(2x)jj! (n − j)!

. (6)

Thus xexkn(x) is a polynomial in 1/x of degree n. Equivalently,

(2/π)xn+1exkn(x) = θn(x), (7)

a polynomial in x of degree n known as a reverse Bessel polynomial; see Eq. (29). Similarly, from [2, 10.49.8],

2(−x)n+1in(x) = e−xθn(x)− exθn(−x). (8)
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2.2. Similarity solutions

Making the substitution un(r, t) = r−1V (r, t) in Eq. (4) gives

1

c2

∂2V

∂t2
−
∂2V

∂r2
+

n(n + 1)

r2
V = 0. (9)

Next, introduce a dimensionless similarity variable, ζ (r, t) = ct/r , and look for a solution of Eq. (9) in the form V (r, t) =
v(ζ ). After some calculation, we find that v(ζ ) satisfies

(1 − ζ 2)v′′(ζ )− 2ζv′(ζ )+ n(n + 1)v(ζ ) = 0, (10)

which is Legendre’s equation. Solutions are Pn(ζ ) andQn(ζ ), where Pn is a Legendre polynomial andQn is a Legendre function.
Thus

un(r, t) = r−1 {APn(ct/r)+ BQn(ct/r)} . (11)

The solution with B = 0, un(r, t) = r−1Pn(ct/r), was found by Bateman in 1938 [3]; for other occurrences, see [4, p. 63],
[5, §IV] and [6, Eq. (6)].

Evidently, we can replace ζ by c(t − τ)/r , where τ is a parameter, and then construct more solutions by integrating with
respect to τ . For example,

un(r, t) =
1

r

∫ t2

t1

f (τ )Pn(c[t + t0 − τ ]/r) dτ

is a wavefunction, where f is an arbitrary function and t0, t1 and t2 are constants.
Solutions can also be constructed with variable limits of integration,

un(r, t) =
1

r

∫ t+t0−r/c

t1

f (τ )Pn(c[t + t0 − τ ]/r) dτ . (12)

This can be verified by direct calculation. (The upper integration limit can be replaced by t + t0 + r/c , but wavefunctions
with the retarded argument t − r/c are more useful.) It is interesting to note that if we replace Pn in Eq. (12) by the Legendre
function Qn, then we do not obtain a wavefunction.

2.3. A Bateman-like wavefunction

There is a useful generalization of Bateman’s similarity solution. Instead of un = r−1Pn(ct/r), look for a solution of
Eq. (4) in the form

un(r, t) = r−1Pn(ϕ/r), (13)

whereϕ(r, t) is to be found. Proceeding as in Section 2.2, put V = Pn(ζ ) in Eq. (9) and comparewith the differential equation
satisfied by Pn(ζ ), Eq. (10). Doing this gives
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= −2ζ .

The substitution ζ = ϕ/r then gives
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1

c2

∂2ϕ

∂t2
−
∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
= 0. (15)

We seek ϕ(r, t) satisfying both of these PDEs. To do this, we look for solutions of the linear homogeneous PDE, Eq. (15), and
then see if any of these satisfy Eq. (14). It turns out that interesting solutions are obtained by writing ϕ(r, t) = R(r)+ T (t)
in Eq. (15), resulting in ϕ = A(r2 − c2t2) + Bct + C + Dr3. This function also solves Eq. (14) provided B2 + 4AC = 1 and
D = 0. Thus Eq. (13) gives a wavefunction when

ϕ(r, t) = A(r2 − c2t2)+ Bct + C with B2 + 4AC = 1. (16)

Dimensionally, because ϕ/r is dimensionless, the constant A is an inverse length, B is dimensionless and C is a length. As an
example, the choices A = 1

2
r−1
0 , B = 0 and C = 1

2
r0, where r0 is a constant (length), give the solution

un(r, t) =
1

r
Pn

(

r2 + r20 − c2t2

2rr0

)

. (17)

This solution can be found in Copson’s 1958 survey of known Riemann functions [7, p. 341]; for some later occurrences, see
[8, Eq. (12)], [5, Eq. (8)], [9, Eq. (14)] and [10, Eq. (23)].
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3. Scattering by a sphere: use of Laplace transforms

Suppose that the sphere has radius a. Our scattering problem reduces to an IBVP for the scattered field u(r, θ, φ, t) for
r > a and t > 0. For an incident sound pulse, we can take zero initial conditions on u at t = 0. There is also a boundary
condition at r = a.

In general, we expect discontinuities across wavefronts. However, it is simplest if we assume that the velocity potential
u is continuous. This assumption does not preclude discontinuities in the pressure or velocity across wavefronts, and such
discontinuities are of great interest physically. Moreover, for most boundary conditions, this assumption can be made
without any loss of generality; for an exception, see Section 3.1.

It is natural to use Laplace transforms to solve IBVPs. Thus, suppose that u(r, t) satisfies Eq. (1). Define the Laplace
transform of u(r, t)with respect to t by

U(r, s) = L{u} =
∫ ∞

0

u(r, t) e−st dt. (18)

Formally applying L to Eq. (1) gives

∇2U − (s/c)2U = 0, (19)

where we have used the zero initial conditions. We have also used the continuity of u across possible wavefronts: if u is not
continuous, Eq. (19) acquires an additional term on its right-hand side involving the (unknown) discontinuity in u. For more
details, see [1].

Eq. (19) is the modified Helmholtz equation, an elliptic PDE. If it can be solved together with the Laplace-transformed
boundary condition, we can then invert to obtain u from U ,

u(r, t) = L
−1{U} =

1

2π i

∫

Br

U(r, s) est ds, (20)

where Br is the Bromwich contour in the complex s-plane.
The method outlined above is the standard way to solve IBVPs for a sphere. Separating variables in spherical polar

coordinates, (r, θ, φ), we find solutions of Eq. (19),

in(sr/c) Y
m
n (θ, φ) and kn(sr/c) Y

m
n (θ, φ);

see Section 2.1. We discard the solutions containing in(sr/c) because of their exponential growth with r . For simplicity, we
also assume that the incident wave is axisymmetric about the z-axis. Then we can write

U(r, s) = U(r, θ, s) =
∞

∑

n=0

Bn(s) kn(sr/c) Pn(cos θ), (21)

where the functions Bn(s) (n = 0, 1, 2, . . .) are to be determined from the boundary condition on the sphere. Then,
inverting L,

u(r, θ, t) =
∞

∑

n=0

un(r, t) Pn(cos θ), (22)

where

un(r, t) =
1

2π i

∫

Br

Bn(s) kn(sr/c) e
st ds. (23)

3.1. Dirichlet boundary condition

For the axisymmetric Dirichlet problem, the boundary condition is

u(a, θ, t) = d(θ, t), 0 ≤ θ ≤ π, t > 0. (24)

To impose it, let us expand d similarly to Eq. (22),

d(θ, t) =
∞

∑

n=0

dn(t) Pn(cos θ); (25)

orthogonality of Legendre polynomials gives

dn(t) =
2n + 1

2

∫ π

0

d(θ, t)Pn(cos θ) sin θ dθ. (26)
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We assume that

dn(t) is continuous for t > 0 with dn(0) = 0, n = 0, 1, 2, . . . . (27)

These conditions ensure that u(r, t) is continuous so that we can use Laplace transforms directly.
Applying L to the boundary condition un(a, t) = dn(t) gives Bn(s) kn(sa/c) = Dn(s), where Dn(s) = L{dn}. Hence

Eqs. (22) and (23) give u(r, θ, t)with

un(r, t) =
1

2π i

∫

Br

Dn(s)
kn(sr/c)

kn(sa/c)
est ds. (28)

Recall that kn(x) can be written in terms of the reverse Bessel polynomial, θn(x) (see Eq. (7)),

2

π
xn+1ex kn(x) = θn(x) =

n
∑

j=0

(2n − j)! xj

2n−jj! (n − j)!
. (29)

For example, θ0(x) = 1, θ1(x) = x + 1 and θ2(x) = x2 + 3x + 3. Much is known about these polynomials; see [11, §4.10],
[2, §18.34] and the book by Grosswald [12]. For example, all zeros of θn(x) are simple [12, p. 75] and they are in the left
half of the complex x-plane. We denote them by βn,m with m = 1, 2, . . . , n: θn(βn,m) = 0 with Reβn,m < 0. Asymptotic
properties of βn,m for large n are described in the Appendix.

In terms of θn, Eq. (28) becomes

un(r, t) =
1

2π i

(a

r

)n+1
∫

Br

Dn(s)
θn(sr/c)

θn(sa/c)
es(t−[r−a]/c) ds. (30)

In particular, as θ0 = 1 and L{d0(t − b)H(t − b)} = e−sbD0(s), the spherically symmetric component is

u0(r, t) = (a/r) d0(T )H(T ) with T = t − (r − a)/c, (31)

where H(t) is the Heaviside unit function. Eq. (31) is known [1, §7(a)].
Motivated by Eqs. (30) and (31), define Ψn(r, s) by

Ψn(r, s) =
anθn(sr/c)

rnθn(sa/c)
− 1 (32)

so that Eq. (30) becomes

un(r, t) = (a/r){dn(T )H(T )+ wn(r, t)} (33)

with

wn(r, t) =
1

2π i

∫

Br

Dn(s)Ψn(r, s) e
sT ds. (34)

Now, as x−nθn(x) → 1 as x → ∞ (see Eq. (29)), Ψn(r, s) → 0 as s → ∞, implying that there is a function ψn(r, t)with
L{ψn} = Ψn. Then, by the convolution theorem,

Dn(s)Ψn(r, s) = L

{∫ t

0

dn(t
′) ψn(r, t − t ′) dt ′

}

and hence Eq. (33) becomes

un(r, t) =
a

r

{

dn(T )+
∫ T

0

dn(t
′) ψn(r, T − t ′) dt ′

}

H(T ). (35)

This is [13, Eq. (15)]. To use Eq. (35), we need dn(t) (which is defined by Eq. (26) as an integral of the boundary data d(θ, t))
and ψn(r, t) (which is defined by inverting Eq. (32)).

To obtain ψn from Ψn, we can use a partial-fraction expansion or, equivalently, a residue calculation. We know that
θn(sa/c) has simple zeros at s = (c/a)βn,j, j = 1, 2, . . . , n, n ≥ 1. Hence

ψn(r, t) =
1

2π i

∫

Br

Ψn(r, s) e
st ds =

c

a

n
∑

j=1

an,j(r/a) exp(βn,j ct/a), (36)

where

an,j(̺) =
θn(̺βn,j)

̺n θ ′
n(βn,j)

=
̺ kn(̺βn,j)

k′
n(βn,j)

exp{(̺ − 1)βn,j} (37)
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and the second form comes by differentiating Eq. (29):

θ ′
n(β) = (2/π)βn+1eβ k′

n(β) when kn(β) = 0. (38)

We conclude thatψn(r, t) is a linear combination of n exponential functions of t with coefficients that are rational functions
of r . As the dependence on r and t is separated, the integral term in Eq. (35) becomes

c

a

n
∑

j=1

an,j(r/a) exp(βn,j cT/a)

∫ T

0

dn(t
′) exp(−βn,j ct

′/a) dt ′.

When this is used in Eq. (35), we obtain a formula stated byWilcox [14] in 1959; see also [13, Eq. (13)]. Computationally, this
formula is not useful ‘due to catastrophic cancellation in carrying out the summation’ [13, p. 193]: the coefficients an,j(r/a)
grow exponentially with n, and the rate increases with r . These facts are derived in the Appendix. Greengard et al. [13]
advocate using a recursive version of Eq. (35).

Although the convolution form of Eq. (35) is attractive, we could evaluate wn(r, t) directly from the contour integral in
Eq. (34). The integrand has n simple poles coming from Ψn(r, s) (at the zeros of θn(sa/c)) and additional poles coming from
Dn(s). To examine the latter, let us consider scattering of a plane sound pulse, defined by

uinc(z, t) = winc(t − [z + a]/c)H(t − [z + a]/c), (39)

where H is the Heaviside unit function andwinc(t) is specified. The total field is u+uinc. As the incident pulse does not reach
the sphere until t = 0, u satisfies zero initial conditions. The Dirichlet boundary condition for scattering by the sphere,
u + uinc = 0 at r = a, gives d = −uinc with

d(θ, t) = −winc(t − [1 + cos θ ]a/c)H(t − [1 + cos θ ]a/c).
Then D = L{d} is given by

D(θ, s) = −
∫ ∞

(1+cos θ)a/c

winc(t − [1 + cos θ ]a/c) e−st dt

= −e−sa/ce−(sa/c) cos θ Winc(s)

= e−sa/cWinc(s)

∞
∑

n=0

(−1)n+1(2n + 1) in(sa/c)Pn(cos θ)

whereWinc(s) = L{winc} and we have used [2, 10.60.9]

e−w cos θ =
∞

∑

n=0

(−1)n(2n + 1) in(w)Pn(cos θ).

Comparison with Eq. (25) gives

Dn(s) = (2n + 1)(−1)n+1e−sa/c in(sa/c)Winc(s), (40)

which shows that Dn inherits its singularities from those ofWinc. For example, ifwinc(t) = sinω0t ,Winc(s) = ω0/(s
2 +ω2

0),
which has simple poles at s = ±iω0.

From Eq. (8), 2(−x)n+1in(x) = e−xθn(x)− exθn(−x). Hence, if β is a zero of θn, Eq. (40) gives

2Dn(βc/a) = −(2n + 1)β−n−1θn(−β)Winc(βc/a).

This is useful when evaluating Dn at the poles of Ψn.

3.2. Pressure boundary condition: sound-soft scatterers

The Dirichlet problem discussed in Section 3.1 does not correspond to a physical problem. For a realistic problem, we
can consider the sphere to be sound-soft, which means the total (excess) pressure is zero at r = a. (For frequency-domain
problems, the Dirichlet problem is equivalent to the sound-soft problem.) Thus, the axisymmetric pressure condition is
−ρ ∂u/∂t = pa(θ, t) on r = a for 0 ≤ θ ≤ π and t > 0, where pa is specified. If we write

pa(θ, t) = −ρ
∞

∑

n=0

qn(t)Pn(cos θ), (41)

we find that Bn in Eq. (23) is given by sBn(s) kn(sa/c) = Qn(s), where Qn(s) = L{qn}. Hence, as in Section 3.1, Eqs. (22) and
(28) give u(r, θ, t)with

un(r, t) =
1

2π i

∫

Br

Qn(s)

s

kn(sr/c)

kn(sa/c)
est ds. (42)
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As s−1Qn(s) = L

∫ t

0
qn(η) dη, we can write Eq. (42) as Eq. (35) with dn(t) replaced by

∫ t

0
qn(η) dη,

un(r, t) =
a

r

{∫ T

0

qn(η) dη +
∫ T

0

ψn(r, T − t ′)

∫ t ′

0

qn(η) dη dt
′
}

H(T )

=
a

r

∫ T

0

qn(η)

{

1 +
∫ T

η

ψn(r, T − t ′) dt ′
}

dη H(T ). (43)

When n = 0, this agrees with a known result for spherically symmetric solutions [1, §7(b)].

3.3. Neumann boundary condition: sound-hard scatterers

For the axisymmetric Neumann problem, the boundary condition is ∂u/∂r = v(θ, t) on r = a for 0 ≤ θ ≤ π and t > 0,
where v is specified. This boundary condition is appropriate for rigid scatterers. Expanding v(θ, t) =

∑∞
n=0 vn(t)Pn(cos θ)

and differentiating Eq. (23) with respect to r , we obtain

(s/c) k′
n(sa/c)Bn(s) = Vn(s) = L{vn}.

Hence Eqs. (22) and (23) give u(r, θ, t)with

un(r, t) =
1

2π i

∫

Br

Vn(s)
kn(sr/c)

(s/c) k′
n(sa/c)

est ds. (44)

From [2, 10.51.5], xk′
n(x) = nkn(x)− xkn+1(x). Combining this with Eq. (29) gives

(2/π)xk′
n(x) = x−n−1e−xφn(x) with φn(x) = nθn(x)− θn+1(x),

which shows that the denominator in Eq. (44) has n + 1 zeros. Hence Eq. (44) becomes

un(r, t) =
a

2π i

(a

r

)n+1
∫

Br

Vn(s)
θn(sr/c)

φn(sa/c)
esT ds, (45)

with T = t − (r − a)/c , as previously; see Eq. (31).
Denote the zeros of φn(x) by β

′
n,m: φn(β

′
n,m) = 0 for m = 1, 2, . . . , n + 1. They are the zeros of k′

n(x) and they have the
same qualitative properties as the zeros of θn(x). They are tabulated in [15, Table 1] for n ≤ 25.

As θ0 = 1 and φ0(x) = −θ1(x) = −(1 + x), we can confirm that the spherically symmetric component, u0, agrees with
the known result [1, §7(c)]. More generally, define

Λn(r, s) =
an+1θn(sr/c)

c rn φn(sa/c)
. (46)

AsΛn(r, s) → 0 as s → ∞, there is a function λn(r, t)with L{λn} = Λn. Hence

un(r, t) =
ac

r
H(T )

∫ T

0

vn(η)λn(r, T − η) dη. (47)

We could now calculate λn in the same way as we calculated ψn in Section 3.1, making use of the zeros of φn(sa/c).

3.4. Literature

There are many papers where Laplace transforms are used to solve the wave equation exterior to a sphere. For problems
that are not spherically symmetric (see [1] for those), the earliest work is by Brillouin [16]; his long two-part French paper
was given a detailed exposition by Hanish [17, §§2.1 & 7.4]. A variety of Neumann radiation problems are solved.

Friedlander [18, pp. 166–174] constructed Green’s function for a hard sphere (Neumann boundary condition); the
incident field is generated by a simple source at a point on the z-axis outside the sphere. At about the same time,Wilcox [14]
published a ‘preliminary report’ on the Dirichlet problem with zero initial conditions; his short note is discussed in [13].

In 1960, Barakat [19] discussed the scattering of a plane pulse, uinc = H(z− ct)eik(z−ct), by both Dirichlet and sound-hard
spheres. Cohen and Handelman [20] considered other incident plane pulses. The Neumann problem, with various forcings,
has been studied in other papers from the 1960s [21–23]. For example, Tupholme [23] gave a detailed study when only a
cap of the sphere moves.

Huang and Gaunaurd [24] consider acoustic scattering of a plane step pulse in pressure by a hard sphere with emphasis
on calculating p at r = a. The series expansion of this quantity, using spherical harmonics, is not uniformly convergent:
this is an example of Gibbs’ phenomenon [25]. To compensate for this phenomenon, the authors use Cesàro summation,
extending previous work by others [26,27]. Better remedies are available [28,25], but these do not seem to have been used
for transient scattering problems.

Hamilton and Astley [15] solved the Neumann problem with various forcings. Greengard et al. [13] gave results for
Dirichlet and Robin problems. For the latter problem, see [29].

Similar computations have been made for transient electromagnetic and elastodynamic problems but we do not give
references here.
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4. Scattering by a sphere: use of an integral representation

As an alternative to using Laplace transforms, let us use the representation Eq. (12) for the wave field generated in the
exterior of a sphere of radius a. We take t0 = a/c and t1 = 0, giving

un(r, t) =
a

r

∫ t−(r−a)/c

0

fn(τ )Pn

( c

r

[

t − τ +
a

c

])

dτ . (48)

Zero initial conditions, un = 0 and ∂un/∂t = 0 at t = 0 for r > a, are enforced by requiring that fn(τ ) = 0 for τ < 0.
Before using Eq. (48),we confirm that it is equivalent to themore familiar representation obtained by combining a Laplace

transform with separation of variables (Section 3). Let T = t − (r − a)/c so that Eq. (48) becomes

un(r, t) =
a

r

∫ T

0

fn(τ )Pn

( c

r

[

T − τ +
r

c

])

dτ , T > 0. (49)

The right-hand side is a Laplace convolution, so we take the Laplace transform with respect to T ,

∫ ∞

0

un(r, t) e
−sT dT =

a

r
Fn(s)K(s; r), (50)

where Fn(s) = L{fn} is the Laplace transform of fn,

K(s; r) =
∫ ∞

0

e−stPn

( c

r

[

t +
r

c

])

dt =
2r

πc
esr/ckn(sr/c) (51)

and we have used [30, 7.143.1]. Once Fn has been determined using the boundary condition (see below), we invert the
Laplace transform, which means we multiply Eq. (50) by esT and integrate over the Bromwich contour, Br. This gives

un(r, t) =
a

π2c i

∫

Br

Fn(s)kn(sr/c) e
s(t+a/c) ds, (52)

which has the same form as Eq. (23). Alternatively, we could invert Fn(s) giving fn(t), and then Eq. (48) provides a different
representation for un(r, t), one whose properties have not been fully investigated.

4.1. Dirichlet boundary condition

For the Dirichlet boundary condition, use of un(a, t) = dn(t) in Eq. (48) gives

∫ t

0

fn(τ )Pn

( c

a

[

t − τ +
a

c

])

dτ = dn(t), t > 0, (53)

a Volterra integral equation of the first kind for fn. Implicit in this equation is the constraint dn(0) = 0, which is consistent
with Eq. (27). Once fn has been found, un is given by Eq. (48).

As a check, we can solve Eq. (53) by taking its Laplace transform. Doing this gives

Fn(s)K(s; a) = Dn(s), (54)

where Dn = L{dn} and K is defined by Eq. (51). Solving for Fn followed by substitution in Eq. (52) gives precisely Eq. (28).
Let us go further. From Eqs. (29), (51) and (54), we have

Fn(s) =
Dn(s)

K(s; a)
=
(sa/c)n

θn(sa/c)
sDn(s) = (1 + Xn(s)) sDn(s), (55)

say, where

Xn(s) =
(sa/c)n − θn(sa/c)

θn(sa/c)
= L{χn}

for some function χn(t). This function can be found by inverting Xn:

χn(t) =
c

a

n
∑

j=1

bn,j exp(βn,jct/a), (56)

where

bn,j =
(βn,j)

n

θ ′
n(βn,j)

=
π exp(−βn,j)

2βn,j k
′
n(βn,j)

, (57)
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andwe have used Eq. (38). It turns out that, just like an,j(r/a) in Eq. (36), bn,j grows exponentially with n (see the Appendix).
However, there is no dependence on r .

We have sDn(s) = L{d′
n} (recall that dn(0) = 0) and Xn(s) = L{χn}. Hence, inverting Eq. (55),

fn(t) = d′
n(t)+

∫ t

0

d′
n(η) χn(t − η) dη.

Substituting in Eq. (49) gives

un(r, t) =
a

r

∫ T

0

fn(τ )Qn(r, T − τ) dτ

=
a

r

∫ T

0

d′
n(η)Qn(r, T − η) dη +

a

r

∫ T

0

∫ τ

0

d′
n(η) χn(τ − η)Qn(r, T − τ) dη dτ

=
a

r

∫ T

0

d′
n(η)

{

Qn(r, T − η)+
∫ T

η

χn(τ − η)Qn(r, T − τ) dτ

}

dη

=
a

r

∫ T

0

d′
n(η)Ln(r, T − η) dη, T = t − (r − a)/c > 0, (58)

where Qn(r, t) = Pn(1 + ct/r) and

Ln(r, t) = Qn(r, t)+
∫ t

0

χn(σ )Qn(r, t − σ) dσ .

Notice that Qn depends on r but χn does not. Eq. (58) is an exact formula for the solution of the Dirichlet problem with zero
initial conditions.

Let us make another observation concerning the Volterra integral equation of the first kind for fn, Eq. (53). Make the
substitution fn(t) = g ′

n(t)with gn(0) = 0. After an integration by parts, we find that gn satisfies

gn(t)+
c

a

∫ t

0

gn(τ ) P
′
n(1 + [t − τ ]c/a) dτ = dn(t), t > 0, (59)

a Volterra integral equation of the second kind. Such equations are attractive because they can always be solved by iteration.
Similar equations (with different right-hand sides) can be found in [4, Eq. (3.12)] and [31, Eq. (A.6)], and below as Eq. (61).
In terms of gn, Eq. (49) gives

un(r, t) =
a

r
gn(T )+

ac

r2

∫ T

0

gn(τ ) P
′
n

( c

r

[

t − τ +
a

c

])

dτ , T = t − (r − a)/c > 0. (60)

4.2. Pressure boundary condition

For the pressure boundary condition, we differentiate Eq. (48) with respect to t ,

∂un

∂t
=

a

r
fn(T )+

ac

r2

∫ T

0

fn(τ )P
′
n

( c

r

[

t − τ +
a

c

])

dτ ,

using Pn(1) = 1. The boundary condition, ∂un/∂t = qn(t) at r = a (see Eq. (41)), gives

fn(t)+
c

a

∫ t

0

fn(τ )P
′
n(1 + [t − τ ]/t0) dτ = qn(t), t > 0, (61)

where t0 = a/c . Eq. (61) has the same form as Eq. (59). We can solve it by applying L. From Eq. (51), we have

L{Pn(1 + t/t0)} = (2/π)t0e
st0kn(st0) = K(s; ct0), (62)

whence

L{P ′
n(1 + t/t0)} = t0(sK − 1) (63)

and Eq. (61) gives sK(s; a)Fn(s) = Qn(s). Substitution for Fn in Eq. (52) leads back to Eq. (42).
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4.3. Neumann boundary condition

For the Neumann boundary condition, ∂un/∂r = vn(t) on r = a, we differentiate Eq. (48) and obtain

∂un

∂r
= −

un

r
−

a

rc
fn(T )−

ac

r3

∫ T

0

fn(τ )
(

t − τ +
a

c

)

P ′
n

( c

r

[

t − τ +
a

c

])

dτ .

Applying the boundary condition, we find that

fn(t)+
c

a

∫ t

0

fn(τ )Kn(t − τ) dτ = −cvn(t), t > 0, (64)

where

Kn(t) = Pn(1 + t/t0)+ (1 + t/t0)P
′
n(1 + t/t0).

Eq. (64) is a Volterra integral equation of the second kind for fn. Again, to solve it, we apply L. Using Eqs. (62), (63) and

L{tP ′
n(1 + t/t0)} = −t20

∂K

∂t0
= −t20

{

(s + t−1
0 )K + (2/π)st0e

st0k′
n(st0)

}

,

we obtain

L{K(t)} = K + t0(sK − 1)− t0
{

(s + t−1
0 )K + (2/π)st0e

st0k′
n(st0)

}

= −t0 − (2/π)st20e
st0k′

n(st0),

and then Eq. (64) gives

(2/π)st0e
st0k′

n(st0)Fn(s) = cVn(s). (65)

Solving for Fn and substitution in Eq. (52) gives precisely Eq. (44).

5. Discussion

Wehave solved IBVPs for a sphere using the integral representation forun(r, t), Eq. (48), containing Legendre polynomials
in a similarity variable, Pn(ct/r). The density function in the integral representation, fn, solves a Volterra integral equation;
there is a different integral equation depending on the choice of boundary condition on the sphere. If these integral equations
are solved by Laplace transforms, we recover the equations that would have been obtained if the IBVPs had been treated by
the classical approach: Laplace transform in t combinedwith separation of variables. However, we could avoid using Laplace
transforms and solve the Volterra integral equation directly. For each IBVP, we obtained an integral equation of the second
kind, so convergent iterative schemes are available. Good numericalmethods are also available [32].We leave investigations
in this direction for future work.

Scattering by a sphere is a relatively simple problem. Recently, there has been increased activity on scattering by objects
of other shapes, using time-domain boundary integral equations; see the reviews by Ha-Duong [33] and Costabel [34] and
the book by Sayas [35]. Nevertheless, we anticipate that benchmark solutions for scattering by a sphere will continue to be
valuable.

Appendix. Some asymptotics

Recall the definition of the reverse Bessel polynomial, Eq. (29),

θn(z) = (2/π) zn+1ez kn(z) = (2z/π)1/2 zn ez Kn+1/2(z),

where Kν is a modified Bessel function. Let β denote any zero of θn: θn(β) = kn(β) = 0. It is known that all zeros satisfy
Reβ < 0.

We are interested in estimating

an(ρ) =
θn(βρ)

ρn θ ′
n(β)

and bn =
βn

θ ′
n(β)

(A.1)

as n → ∞, where ρ > 1; see Eqs. (37) and (57). It is known that, asymptotically, the zeros of θn lie on a certain convex arc,
symmetric about the real axis, meeting the imaginary axis at ±in and crossing the real axis at −nζ0 with ζ0 ≃ 0.66:

β ∼ nζ eiπ as n → ∞ for some ζ with ζ0 < |ζ | ≤ 1 and | arg ζ | <
1

2
π. (A.2)

Thus, both n and |β| are large. The number ζ0 is defined by

ζ0 =
√

t20 − 1 where t0 is the positive real root of coth t0 = t0. (A.3)

These results are due to Olver [36, p. 354]; for the convex arc, rotate any of the following figures clockwise by π/2:
[36, Fig. 15], [37, Fig. 9.6], [2, Fig. 10.21.6]. For a plot of the zeros of θ10 and θ11, see [13, Fig. 5]. For an early tabulation
of βn,m, n ≤ 7, see [38, Table I].



78 P.A. Martin / Wave Motion 67 (2016) 68–80

Use of standard asymptotic methods

Suppose ζ in Eq. (A.2) is real. In this special case, we can use integral representations combined with Laplace’s method

[39, §5.1], [40, Chapter 3, §7]. From [37, 9.6.23], we have the integral representation

Kν(z) =
√
π (z/2)ν

Γ (ν + 1/2)

∫ ∞

1

e−zξ
(

ξ 2 − 1
)ν−1/2

dξ,

valid for Re ν > − 1
2
and Re z > 0. As kn(z) =

√
π/(2z) Kn+1/2(z),

kn(z) =
π

2

(z/2)n

n!

∫ ∞

1

e−zξ
(

ξ 2 − 1
)n

dξ, Re z > 0.

Then, using the definition θn(z) = (2/π) zn+1ez kn(z) and the substitution ξ = t + 1,

θn(z) =
z2n+1

2n n!

∫ ∞

0

e−zt tn(2 + t)n dt, Re z > 0.

Differentiating,

θ ′
n(z) =

2n + 1

z
θn(z)−

z2n+1

2n n!

∫ ∞

0

e−zt tn+1(2 + t)n dt, Re z > 0.

These integral representations are valid for Re z > 0 whereas we want to evaluate θn(z) and θ
′
n(z) when Re z ≤ 0. To

effect the analytic continuation into this half of the z-plane, we rotate the contour of integration in the complex t-plane
[40, Chapter 4, §1]. Once the contour is on the negative real t-axis, we obtain

θn(z) =
z2n+1

2n n!
(−1)n+1

∫ ∞

0

ezt tn(2 − t)n dt, Re z < 0

and

θ ′
n(z) =

2n + 1

z
θn(z)−

z2n+1

2n n!
(−1)n

∫ ∞

0

ezt tn+1(2 − t)n dt, Re z < 0.

Suppose that β = −nζ with ζ real and positive. Then

θ ′
n(β) =

β2n+1

2n n!
(−1)n+1

∫ ∞

0

e−nζ t {t(2 − t)}n t dt. (A.4)

Splitting the range of integration at t = 2, write the integral as
∫ 2

0

enh1(t) t dt + (−1)n
∫ ∞

2

enh2(t) t dt

where

h1(t) = −ζ t + log t + log(2 − t) and h2(t) = −ζ t + log t + log(t − 2).

We estimate the integrals for large n using Laplace’s method. We have

h′
1(t) = h′

2(t) = −ζ + t−1 + (t − 2)−1.

Thus h′
j(t) = 0 at t = tj (j = 1, 2), where

t1(ζ ) = ζ−1
(

ζ + 1 −
√

ζ 2 + 1
)

and t2(ζ ) = ζ−1
(

ζ + 1 +
√

ζ 2 + 1
)

.

Note that 0 < t1(ζ ) < 1 and t2(ζ ) > 2 for all ζ > 0. Then Laplace’s method shows that the integral in Eq. (A.4) is
asymptotically proportional to

exp{nmax[h1(t1), h2(t2)]} as n → ∞.

Some calculation gives

h1(t1) = log(2/ζ )− 1 − ζ + η(ζ ) and h2(t2) = log(2/ζ )− 1 − ζ − η(ζ )

where

η(ζ ) = (1 + ζ 2)1/2 + log{ζ/[1 + (1 + ζ 2)1/2]}. (A.5)

We note that η(ζ0) = 0 where ζ0 ≃ 0.66 is defined by Eq. (A.3). This is relevant because there is a zero of θn close to −nζ0.
(For further discussion of η, see [40, p. 375].)
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We have h1(t1) − h2(t2) = 2η(ζ ). As η′(ζ ) = ζ−1(1 + ζ 2)1/2, we see that h1(t1) > h2(t2) for ζ > ζ0, whence the
dominant contribution comes from h1(t1) for such ζ . Then, from Eq. (A.4),

θ ′
n(β)

βn
≃
(−β)n

2n n!

(

2

ζ

)n

e−n(1+ζ ) enη(ζ ) =
nn

en n!
e−n{ζ−η(ζ )}.

Using Stirling’s formula, nn ≃ en n!, and ignoring algebraic factors, we obtain

bn =
βn

θ ′
n(β)

≃ en{ζ−η(ζ )} as n → ∞. (A.6)

In particular, bn grows approximately as enζ0 when β ≃ −nζ0.
Turning now to an(ρ), a similar calculation gives

θn(βρ)

βnρn
=
(βρ)n+1

2n n!
(−1)n+1

∫ ∞

0

e−nζρt tn(2 − t)n dt

≃
(nζρ)n

2n n!

(

2

ζρ

)n

e−n(1+ζρ) enη(ζρ) ≃ e−n{ζρ−η(ζρ)}

whence

an(ρ) ≃ enφ(ρ,ζ ) with φ(ρ, ζ ) = −(ρ − 1)ζ + η(ζρ)− η(ζ ), (A.7)

with η defined by Eq. (A.5). For example, when ρ = 2 and ζ = ζ0, φ(2, ζ0) = η(2ζ0)− ζ0 ≃ 0.30. We also note that φ(ρ, ζ )
is an increasing function of ρ.

When ζ is not real, we can no longer use Laplace’s method. Instead, we can use the method of steepest descent

[39, Chapter 7]. This applies to contour integrals of the form
∫

C
f (z) enh(z) dz; the contribution from a simple saddle point

z0 (where h′(z0) = 0) is found to be proportional to exp{nh(z0)} [39, Eq. (7.2.10)] (ignoring multiplicative factors that are
algebraic in n).

Use of known asymptotic approximations

From Eq. (A.1), we have

an(ρ) = e(ρ−1)β√ρ
Kν(βρ)

K ′
ν(β)

and bn =
√

π

2β

e−β

K ′
ν(β)

with ν = n +
1

2
. (A.8)

As β grows with n according to Eq. (A.2), we require the asymptotics of Kν(νz) for large ν. These are given by [2, 10.41.4]
or [37, 9.7.8] but only when Re z > 0whereas wewant asymptotics for Re z < 0. Therefore we first continue Kν analytically,
using [2, 10.34.2] or [37, 9.6.31]:

Kν(νζe
iπ ) = e−νπ iKν(νζ )− π i Iν(νζ ). (A.9)

Thus we also need the asymptotics of the other modified Bessel function Iν(νz), as given in [2, 10.41.3] or [37, 9.7.7]. Hence

Kν(νζe
iπ ) ∼

√

π

2ν

1

(1 + ζ 2)1/4

(

e−νπ ie−νη(ζ ) − i eνη(ζ )
)

as ν → ∞, (A.10)

where η(ζ ) is defined by Eq. (A.5) and | arg ζ | < 1
2
π .

Similarly, differentiating Eq. (A.9) with respect to ζ gives

K ′
ν(νζe

iπ ) = −e−νπ iK ′
ν(νζ )+ π i I ′ν(νζ )

∼
√

π

2ν

(1 + ζ 2)1/4

ζ

(

e−νπ ie−νη(ζ ) + i eνη(ζ )
)

as ν → ∞, (A.11)

after use of [2, 10.41.5 & 6] or [37, 9.7.9 & 10].
Assuming that e+νη is the dominant exponential in Eqs. (A.10) and (A.11), we obtain the estimate

an(ρ) ∼
−ζ√ρ enφ(ρ,ζ )

(1 + (ρζ )2)1/4(1 + ζ 2)1/4
(A.12)

from Eq. (A.8) using β ∼ −nζ and ν ∼ n. This result agrees precisely with Eq. (A.7). Similarly, we find agreement with
Eq. (A.6).

Greengard et al. [13] have given a rough argument for the exponential growth of an(ρ). Field and Lau [41] have made
a more detailed study but their argument is incomplete: they obtain growth as enψ with ψ(ρ, ζ ) = −(ρ − 1)ζ + η(ζρ)
(see [41, Eqs. (23) & (24)]), which differs from φ(ρ, ζ ) in Eq. (A.7) by the term η(ζ ). This difference vanishes when ζ = ζ0.



80 P.A. Martin / Wave Motion 67 (2016) 68–80

References

[1] P.A. Martin, The pulsating orb: solving the wave equation outside a ball, Proc. R. Soc. A 472 (2016) 20160037.
[2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/.
[3] H. Bateman, A partial differential equation associated with Poisson’s work on the theory of sound, Amer. J. Math. 60 (1938) 293–296.
[4] F.G. Friedlander, On the radiation field of pulse solutions of the wave equation, Proc. R. Soc. A 269 (1962) 53–65.
[5] O.M. Buyukdura, S.S. Koc, Two alternative expressions for the spherical wave expansion of the time domain scalar free-space Green’s function and an

application: Scattering by a soft sphere, J. Acoust. Soc. Am. 101 (1997) 87–91.
[6] A. Shlivinski, E. Heyman, A.J. Devaney, Time domain radiation by scalar sources: Plane wave to multipole transform, J. Math. Phys. 42 (2001)

5915–5919.
[7] E.T. Copson, On the Riemann–Green function, Arch. Ration. Mech. Anal. 1 (1958) 324–348.
[8] V.V. Borisov, A.V. Manankova, A.B. Utkin, Spherical harmonic representation of the electromagnetic field produced by a moving pulse of current

density, J. Phys. A: Math. Gen. 29 (1996) 4493–4514.
[9] J. Li, D. Dault, B. Shanker, A quasianalytical time domain solution for scattering from a homogeneous sphere, J. Acoust. Soc. Am. 135 (2014) 1676–1685.

[10] J. Li, B. Shanker, Time-dependent Debye–Mie series solutions for electromagnetic scattering, IEEE Trans. Antennas Propag. 63 (2015) 3644–3653.
[11] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, 2005.
[12] E. Grosswald, Bessel Polynomials, in: Lect. Notes in Math., vol. 698, Springer, Berlin, 1978.
[13] L. Greengard, T. Hagstrom, S. Jiang, The solution of the scalar wave equation in the exterior of a sphere, J. Comput. Phys. 274 (2014) 191–207.
[14] C.H. Wilcox, The initial–boundary value problem for the wave equation in an exterior domain with spherical boundary, Notices Amer. Math. Soc. 6

(1959) 869–870.
[15] J.A. Hamilton, R.J. Astley, Exact solutions for transient spherical radiation, J. Acoust. Soc. Am. 109 (2001) 1848–1858.
[16] J. Brillouin, Rayonnement transitoire des sources sonores et problèmes connexes, Ann. Telecommun. 5 (1950) 160–172. & 179–194.
[17] S. Hanish, A Treatise on Acoustic Radiation, third ed., Naval Research Laboratory, Washington, D.C, 1989.
[18] F.G. Friedlander, Sound Pulses, Cambridge University Press, Cambridge, 1958.
[19] R.G. Barakat, Transient diffraction of scalar waves by a fixed sphere, J. Acoust. Soc. Am. 32 (1960) 61–66.
[20] D.S. Cohen, G.H. Handelman, Scattering of a plane acoustical wave by a spherical obstacle, J. Acoust. Soc. Am. 38 (1965) 827–834.
[21] O.G. Kozina, G.I. Makarov, N.N. Shaposhnikov, Transient processes in the acoustic fields generated by a vibrating spherical segment, Sov. Phys. - Acoust.

8 (1962) 53–57.
[22] M.C. Junger, W. Thompson Jr., Oscillatory acoustic transients radiated by impulsively accelerated bodies, J. Acoust. Soc. Am. 38 (1965) 978–986.
[23] G.E. Tupholme, Generation of an axisymmetrical acoustic pulse by a deformable sphere, Proc. Cambridge Philos. Soc. 63 (1967) 1285–1308.
[24] H. Huang, G.C. Gaunaurd, Transient diffraction of a plane step pressure pulse by a hard sphere: neoclassical solution, J. Acoust. Soc. Am. 104 (1998)

3236–3244.
[25] D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997) 644–668.
[26] B.S. Berger, D. Klein, Application of the Cesaromean to the transient interaction of a spherical acoustic wave and a spherical elastic shell, J. Appl. Mech.

39 (1972) 623–625.
[27] P. Zhang, T.L. Geers, Excitation of a fluid-filled, submerged spherical shell by a transient acoustic wave, J. Acoust. Soc. Am. 93 (1993) 696–705.
[28] A. Gelb, The resolution of the Gibbs phenomenon for spherical harmonics, Math. Comp. 66 (1997) 699–717.
[29] T. Tokita, Exponential decay of solutions for thewave equation in the exterior domainwith spherical boundary, J.Math. KyotoUniv. 12 (1972) 413–430.
[30] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, fourth ed., Academic Press, New York, 1980.
[31] A. Karlsson, G. Kristensson, Wave splitting in the time domain for a radially symmetric geometry, Wave Motion 12 (1990) 197–211.
[32] C.T.H. Baker, A perspective on the numerical treatment of Volterra equations, J. Comput. Appl. Math. 125 (2000) 217–249.
[33] T. Ha-Duong, On retarded potential boundary integral equations and their discretisation, in: M. Ainsworth, P. Davies, D. Duncan, B. Rynne, P. Martin

(Eds.), Topics in Computational Wave Propagation: Direct and Inverse Problems, Springer, Berlin, 2003, pp. 301–336.
[34] M. Costabel, Time-dependent problems with the boundary integral equation method, in: E. Stein, R. de Borst, T.J.R. Hughes (Eds.), Encyclopedia of

Computational Mechanics, Vol. 1, Wiley, New York, 2004, pp. 703–721.
[35] F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map, Springer, Switzerland, 2016.
[36] F.W.J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. R. Soc. A 247 (1954) 328–368.
[37] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
[38] V.H. Weston, Pulse return from a sphere, IRE Trans. Antennas Propag. 7 (1959) S43–S51.
[39] N. Bleistein, R.A. Handelsman, Asymptotic Expansions of Integrals, second ed., Dover, New York, 1986.
[40] F.W.J. Olver, Asymptotics and Special Functions, A.K. Peters, Natick, Massachusetts, 1997.
[41] S.E. Field, S.R. Lau, Fast evaluation of far-field signals for time-domain wave propagation, J. Sci. Comput. 64 (2015) 647–669.


