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1. Introduction

In a recent investigation in the context of acoustic scattering, we encountered a Volterra integral equation 

of the second kind,

u(x)−

∞
∫

x

K(x, y)u(y) dy = f(x), x > 1, (1)

where f(x) is given and u(x) is to be found. The kernel is given by

K(x, y) =

y
∫

x

(

W (y)

W (η)

)2

dη, (2)

where

W (ξ) = ξ1/2Kν(µξ), (3)
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Kν is a modified Bessel function, and the parameters µ and ν will be specified shortly. Usually, Volterra 

integral equations of the second kind (such as (1)) can be solved by iteration. To justify this approach, 

a bound on |K(x, y)| is needed.

Fortunately, there is a recent paper by Baricz [2] containing a thorough review of the literature on known 

bounds on ratios of modified Bessel functions. From [2, eqn (3.6)],

Kν(x)

Kν(y)
> ey−x

( y

x

)1/2

, |ν| >
1

2
, 0 < x < y.

Hence

F (y, η) ≡
W (y)

W (η)
=

y1/2Kν(µy)

η1/2Kν(µη)
< eµ(η−y), 0 < η < y. (4)

This holds for real µ with µ > 0. Using the bound (4) in (2),

0 < K(x, y) <

y
∫

x

e2µ(η−y) dη =
1

2µ

(

1− e−2µ(y−x)
)

≤
1

2µ
,

as y ≥ x, and this uniform bound can be used to justify an iterative scheme.

Unfortunately, in the application we have in mind, the parameter µ is complex: it is essentially a Laplace 

transform variable, which explains why we are interested in the half-plane

Reµ > 0.

To see that some form of (4) may hold, use the standard asymptotic approximation [6, 10.25.3], Kν(z) ∼
√

π/(2z) e−z as z → ∞, | arg z| < 3
2π. Substitution in (3) gives

F (y, η) ∼ eµ(η−y) as µ → ∞,

suggesting that (4) may be valid. On the other hand, Kν(z) has zeros in the half-plane Re z < 0 [7, §15.7], 

implying that we cannot expect a bound when Reµ < 0.

We are able to prove a natural generalization of (4) but only when the order ν = n + 1
2 , where n

is an integer. This special case, which corresponds to modified spherical Bessel functions, is exactly the 

case that arises when the three-dimensional wave equation is solved using Laplace transforms with respect 

to time and spherical polar coordinates. We leave the general case (with arbitrary positive ν) to future 

work.

The paper has two more sections. In Section 2, we reduce the problem to one involving Bessel polynomials 

and then to one in which the signs of the terms in a certain polynomial have to be determined. This problem 

is solved using properties of generalized hypergeometric series; these calculations are collected in Section 3. 

The bound itself follows readily, and is given by (13) at the end of Section 2.

2. A bound for modified spherical Bessel functions

In what follows, we suppose that the order

ν = n+ 1
2 , n = 0, 1, 2, . . . .
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Let Fn(y, η; µ) = F (y, η) with ν = n + 1
2 , y > η > 1 and µ complex, with Reµ > 0. By definition [6, 10.47.9]

kn(z) =

√

π

2z
Kn+1/2(z)

where kn is a modified spherical Bessel function. Hence

Fn(y, η;µ) =
y kn(µy)

η kn(µη)
. (5)

As k0(z) = (π/2) e−z/z, F0(y, η; µ) = eµ(η−y). More generally [6, 10.49.12]

kn(z) =
π

2z
e−zLn(z) with Ln(z) =

n
∑

k=0

an
k (2z)

−k,

where

an
k =

(n+ k)!

k! (n − k)!
, k = 0, 1, . . . , n. (6)

Thus Ln(z) is a polynomial in 1/z of degree n (essentially, a Bessel polynomial [3]). Substitution in (5)

gives

Fn(y, η;µ) = eµ(η−y) Ln(µy)

Ln(µη)
. (7)

We want to estimate this quantity in the complex µ-plane. We show that

|Ln(µy)| < |Ln(µη)| for 0 < η < y and Reµ > 0. (8)

It is convenient to generalise the definition (6), replacing the integer n by a complex variable ω:

aω
k =

Γ(ω + k + 1)

k! Γ(ω − k + 1)
.

In particular aω
0 = 1 and an

k = 0 when k is any integer greater than n. Then, with µ̄ denoting the complex 

conjugate of µ,

|Ln(µy)|
2
= Ln(µy)Ln(µ̄y)

=
∞

∑

k=0

∞
∑

j=0

an
kan

j

1

µkµ̄j(2y)j+k
=

∞
∑

k=0

∞
∑

p=k

an
kan

p−k

1

µkµ̄p−k(2y)p

=
∞

∑

p=0

1

(2y)p

p
∑

k=0

an
kan

p−k

1

µkµ̄p−k
=

∞
∑

p=0

1

(2|µ|y)p
Sn

p , (9)

say, where

Sω
p =

p
∑

k=0

aω
k aω

p−k

|µ|p

µkµ̄p−k
. (10)



432 P.A. Martin / J. Math. Anal. Appl. 454 (2017) 429–438

Evidently, |Ln(µy)|2 is a polynomial in 1/y of degree 2n, so that (9) reduces to

|Ln(µy)|
2
= 1 +

n
∑

p=1

1

(2|µ|y)2p
Sn

2p +
n−1
∑

p=0

1

(2|µ|y)2p+1
Sn

2p+1.

Now, as µ is complex, write

µ = |µ| eiδ

for some real δ. Substituting in (10) gives

Sω
p =

p
∑

k=0

aω
k aω

p−k e
i(p−2k)δ =

p
∑

j=0

aω
p−jaω

j e
−i(p−2j)δ

whence

Sω
p (δ) =

p
∑

k=0

aω
k aω

p−k cos {(p − 2k)δ}. (11)

This formula confirms that Sn
p (δ) is real but it does not reveal its sign. To determine the sign of Sn

p , we 

express cos {(p − 2k)δ} as a polynomial in cos δ, and then show that Sn
p has a similar representation in 

which all the coefficients in the polynomial are positive. We do this in Section 3, making use of generalized 

hypergeometric series pFq and their properties. The final formula (obtained by combining (22) and (25)

below) is

Sn
p (δ) =

[p/2]
∑

j=0

p! (2 cos δ)p−2j

j! (p − 2j)!
an

p−j , (12)

where [p/2] = m when p = 2m or p = 2m + 1. Thus Sn
2p(δ) is positive for all δ, but S

n
2p+1(δ) is positive if 

and only if cos δ > 0; here is where the restriction to Reµ > 0 enters.

Returning to (8), we have

|Ln(µη)|2 − |Ln(µy)|2 =
2n
∑

p=1

1

(2|µ|)p

(

1

ηp
−

1

yp

)

Sn
p ,

which is seen to be positive when y > η > 0. Hence (5) and (7) give the main result,

∣

∣

∣

∣

y kn(µy)

η kn(µη)

∣

∣

∣

∣

< eµr(η−y) (13)

where µr = Reµ > 0 and 0 < η < y. Interestingly, Lin and Santosa [4, eqn (5.10)] have conjectured a similar 

bound for Kn,

∣

∣

∣

∣

Kn(µy)

Kn(µη)

∣

∣

∣

∣

< eµr(η−y) (14)

where µr > 0 and 0 < η < y: “its proof remains completely open”.
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3. Evaluation of Sn

p

It is convenient to consider two cases, depending on whether the integer p is even or odd.

3.1. Evaluation of Sn
2p

Let us start with Sω
2p,

Sω
2p =

2p
∑

k=0

aω
k aω

2p−k cos {(2p − 2k)δ}.

We write cos 2mδ as a polynomial in cos2 δ, noting that cosnθ = Tn(cos θ) defines the Chebyshev poly-

nomial Tn. In detail [5, p. 24],

T2m(x) = (−1)m +
m−1
∑

j=0

c
(2m)
j x2m−2j , m = 0, 1, 2, . . .

where the sum is absent when m = 0 and

c
(2m)
j = m (−1)j

22m−2j(2m − j − 1)!

j! (2m − 2j)!
, m = 1, 2, 3, . . . .

Hence

Sω
2p =

2p
∑

k=0

aω
k aω

2p−k(−1)
p+k +

2p
∑

k=0
k Ó=p

aω
k aω

2p−k

(

cos {(2p − 2k)δ} − (−1)p+k
)

.

Denote the first sum by Aω
2p; it does not depend on δ. Then, splitting the second sum,

Sω
2p = Aω

2p +

p−1
∑

k=0

aω
k aω

2p−k

p−k−1
∑

j=0

c
(2p−2k)
j x2p−2k−2j +

2p
∑

k=p+1

aω
k aω

2p−k

k−p−1
∑

j=0

c
(2k−2p)
j x2k−2p−2j ,

with x = cos δ. Put k = p − q in the first sum and k = p + q in the second sum, giving

Sω
2p = Aω

2p + 2

p
∑

q=1

aω
p−qaω

p+q

q−1
∑

j=0

c
(2q)
j x2q−2j = Aω

2p + 2

p
∑

q=1

aω
p−qaω

p+q

q
∑

m=1

c
(2q)
q−mx2m

= Aω
2p + 2

p
∑

m=1

x2m

p
∑

q=m

aω
p−qaω

p+qc
(2q)
q−m.

Finally, put q = m + k and m = p − j giving

Sω
2p = Aω

2p + 2

p−1
∑

j=0

x2p−2j

j
∑

k=0

aω
j−kaω

2p+k−jc
(2p+2k−2j)
k . (15)

Denote the double sum by Bω
2p; we shall evaluate A

ω
2p and Bω

2p below.
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3.1.1. Evaluation of Aω
2p

The first term in (15) is Aω
2p, defined by

Aω
2p =

2p
∑

k=0

aω
k aω

2p−k(−1)
p+k = (−1)p

∞
∑

k=0

Ck,

say, with

Ck = (−1)kaω
k aω

2p−k =
(−1)kΓ(ω + k + 1)Γ(ω + 2p − k + 1)

k! Γ(ω − k + 1) (2p − k)! Γ(ω − 2p+ k + 1)
.

In particular

C0 =
Γ(ω + 2p+ 1)

(2p)! Γ(ω − 2p+ 1)
. (16)

Some calculation gives

Ck+1

Ck
=

(−1)(ω + k + 1)(ω − k)(2p − k)

(k + 1)(ω + 2p − k)(ω − 2p+ k + 1)
=

(k + ω + 1)(k − ω)(k − 2p)

(k + 1)(k − ω − 2p)(k + ω − 2p+ 1)
.

Equivalently,

(k + 1)(k − ω − 2p)(k + ω − 2p+ 1)Ck+1 = (k + ω + 1)(k − ω)(k − 2p)Ck,

which implies that Ck = 0 for k ≥ 2p + 1. Hence Aω
2p can be expressed as a generalized hypergeometric 

series (see [1, p. 61]),

Aω
2p = C0(−1)

p
3F2(a1, a2, a3; b1, b2; 1)

where

a1 = ω + 1, a2 = −ω, a3 = −2p b1 = −ω − 2p, b2 = ω − 2p+ 1.

We notice that a1+ b1 = a2+ b2 = a3+1: the series is well poised [6, 16.4.1] and so it can be summed using 

Dixon’s formula. Thus, using [6, 16.4.5] (with k = p, b = a1 and c = a2 therein) and (16),

Aω
2p =

(−1)p Γ(ω + 2p+ 1)

(2p)! Γ(ω − 2p+ 1)

[(2p)!]2Γ(p+ ω + 1)Γ(p − ω)

(p!)2Γ(2p − ω) Γ(ω + 2p+ 1)

=
(−1)p(2p)! Γ(p+ ω + 1)Γ(p − ω)

(p!)2Γ(1− [2p − ω]) Γ(2p − ω)
.

If we use the reflection formula Γ(z)Γ(1 − z) = π/ sin πz, once with z = 2p − ω and once with z = p − ω, we 

obtain

Aω
2p =

(2p)! Γ(ω + p+ 1)

(p!)2Γ(ω − p+ 1)
.

In particular, when ω = n, we obtain

An
2p =

2p
∑

k=0

an
kan

2p−k(−1)
p+k =

(2p)!

p!
an

p , (17)

using (6). Thus An
2p > 0.
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3.1.2. Evaluation of Bω
2p

The second term in (15) is Bω
2p, defined by

Bω
2p(δ) = 2

p−1
∑

j=0

x2p−2j

j
∑

k=0

aω
j−kaω

2p+k−jc
(2p+2k−2j)
k ,

where x = cos δ. We have

aω
j−kaω

2p+k−jc
(2p+2k−2j)
k =

Γ(ω + j − k + 1)Γ(ω + 2p+ k − j + 1)(p+ k − j)(−1)k22p−2j(2p+ k − 2j − 1)!

(j − k)! Γ(ω − j + k + 1)(2p+ k − j)! Γ(ω − 2p − k + j + 1)k! (2p − 2j)!
.

Hence

Bω
2p =

p−1
∑

j=0

(2x)2p−2j

(2p − 2j)!

j
∑

k=0

Ck, (18)

say, with

Ck = 2
Γ(ω + j − k + 1)Γ(ω + 2p+ k − j + 1)(p+ k − j)(−1)k(2p+ k − 2j − 1)!

(j − k)! Γ(ω − j + k + 1)(2p+ k − j)! Γ(ω − 2p − k + j + 1)k!
.

In particular,

C0 =
(2p − 2j)! Γ(ω + j + 1)Γ(ω + 2p − j + 1)

(2p − j)! j! Γ(ω − j + 1)Γ(ω − 2p+ j + 1)
. (19)

Proceeding as in Section 3.1.1, we calculate

Ck+1

Ck
=
(k − j)(k + p − j + 1)(k − ω + 2p − j)(k + ω + 2p − j + 1)(k + 2p − 2j)

(k + 2p − j + 1)(k + p − j)(k + ω − j + 1)(k − ω − j)(k + 1)
.

It follows that Cj+1 = 0 and then Ck = 0 for k ≥ j + 1, implying that the k-sum in (18) can be written in 

terms of a generalized hypergeometric series:

j
∑

k=0

Ck = C0 5F4(a1, a2, a3, a4, a5; b1, b2, b3, b4; 1), (20)

where

a1 = p − j + 1, a2 = −j, a3 = −ω + 2p − j, a4 = ω + 2p − j + 1, a5 = 2p − 2j,

b1 = p − j, b2 = 2p − j + 1, b3 = ω − j + 1, b4 = −ω − j.

We notice that a1 + b1 = a2 + b2 = a3 + b3 = a4 + b4 = a5 + 1: the series is well poised. In addition, 

a1 = b1 + 1: the series is very well poised [6, §16.4(i)]. Hence we can use the Rogers–Dougall formula [6, 

16.4.9] (with a = a5, b = a3, c = a4 and d = a2 therein). Thus, denoting the right-hand side of (20) by 

C0 5F4(1), we find that

5F4(1) =
(2p − j)! Γ(ω − j + 1)Γ(−ω − j) Γ(−2p+ j)

(2p − 2j)! Γ(−2p) Γ(ω + 1)Γ(−ω)
.
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Multiplying by C0, (19),

j
∑

k=0

Ck =
Γ(ω + j + 1)Γ(ω + 2p − j + 1)

j! Γ(ω − 2p+ j + 1)

Γ(−ω − j) Γ(−2p+ j)

Γ(−2p) Γ(ω + 1)Γ(−ω)
.

Now

Γ(ω + j + 1)Γ(−ω − j)

Γ(ω + 1)Γ(−ω)
=

sin (π[−ω])

sin (π[−ω − j])
= (−1)j

whence

j
∑

k=0

Ck =
(−1)jΓ(ω + 2p − j + 1)Γ(−2p+ j)

j! Γ(ω − 2p+ j + 1)Γ(−2p)
.

Furthermore, we have

Γ(ω + 2p − j + 1)

Γ(ω − 2p+ j + 1)
= (2p − j)! aω

2p−j

and

Γ(−2p+ j)

Γ(−2p)
= (−2p)(−2p+ 1) · · · (−2p+ j − 1)

= (−1)j(2p)(2p − 1) · · · (2p − j + 1) =
(−1)j(2p)!

(2p − j)!
.

Hence, we obtain a very simple formula for the k-sum,

j
∑

k=0

Ck =
(2p)!

j!
aω

2p−j . (21)

3.1.3. Synthesis

Combining (15), (17), (18) and (21),

Sn
2p(δ) = An

2p +Bn
2p =

(2p)!

p!
an

p +

p−1
∑

j=0

(2x)2p−2j

(2p − 2j)!

(2p)!

j!
an

2p−j

=

p
∑

j=0

(2p)! (2 cos δ)2p−2j

j! (2p − 2j)!
an

2p−j , (22)

which is clearly positive for all δ.

3.2. Evaluation of Sn
2p+1

From (11), we have

Sω
2p+1 =

2p+1
∑

k=0

aω
k aω

2p+1−k cos {(2p − 2k + 1)δ}

=

p
∑

k=0

aω
k aω

2p+1−k cos {(2p − 2k + 1)δ}+

2p+1
∑

k=p+1

aω
k aω

2p+1−k cos {(2k − 2p − 1)δ}.
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Put k = p − q in the first sum and k = p + q + 1 in the second sum, giving

Sω
2p+1 = 2

p
∑

q=0

aω
p−qaω

p+q+1T2q+1(x),

with x = cos δ. Expanding the Chebyshev polynomial [5, p. 24],

T2m+1(x) =
m

∑

j=0

c
(2m+1)
j x2m+1−2j , m = 0, 1, 2, . . . ,

with

c
(2m+1)
j = (2m+ 1)(−1)j

22m−2j(2m − j)!

j! (2m+ 1− 2j)!
.

Hence

Sω
2p+1 = 2x

p
∑

q=0

aω
p−qaω

p+q+1

q
∑

j=0

c
(2q+1)
j x2q−2j = 2x

p
∑

q=0

aω
p−qaω

p+q+1

q
∑

m=0

c
(2q+1)
q−m x2m

= 2x

p
∑

m=0

x2m

p
∑

q=m

aω
p−qaω

p+q+1c
(2q+1)
q−m = 2x

p
∑

j=0

x2p−2j

j
∑

k=0

aω
j−kaω

2p+k−j+1c
(2p+2k−2j+1)
k .

Examining the terms in the k-sum, we find

aω
j−kaω

2p+k−j+1c
(2p+2k−2j+1)
k

=
Γ(ω + j − k + 1)Γ(ω + 2p+ k − j + 2)(2p+ 2k − 2j + 1)(−1)k22p−2j(2p+ k − 2j)!

(j − k)! Γ(ω − j + k + 1) (2p+ k − j + 1)! Γ(ω − 2p − k + j)k! (2p − 2j + 1)!
.

Hence

Sω
2p+1 =

p
∑

j=0

(2x)2p+1−2j

(2p − 2j + 1)!

j
∑

k=0

Ck (23)

with

Ck =
Γ(ω + j − k + 1)Γ(ω + 2p+ k − j + 2)(2p+ 2k − 2j + 1)(−1)k(2p+ k − 2j)!

(j − k)! Γ(ω − j + k + 1) (2p+ k − j + 1)! Γ(ω − 2p − k + j)k!
.

In particular

C0 =
(2p − 2j + 1)! Γ(ω + j + 1)Γ(ω + 2p − j + 2)

(2p − j + 1)! j! Γ(ω − j + 1)Γ(ω − 2p+ j)
. (24)

Some calculation gives

Ck+1

Ck
=
(k + ω + 2p − j + 2)(k + p − j + 3

2)(k + 2p − 2j + 1)(k − j)(k − ω + 2p − j + 1)

(k − ω − j)(k + p − j + 1
2 )(k + ω − j + 1)(k + 2p − j + 2)(k + 1)

.
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It follows that the k-sum can be written as (20) with

a1 = p − j + 3
2 , a2 = −j, a3 = −ω + 2p − j + 1, a4 = ω + 2p − j + 2, a5 = 2p − 2j + 1,

b1 = p − j + 1
2 , b2 = 2p − j + 2, b3 = ω − j + 1, b4 = −ω − j.

Again, the series is very well poised, and so it can be summed with the Rogers–Dougall formula:

5F4(1) =
(2p − j + 1)! Γ(ω − j + 1)Γ(−ω − j)Γ(−2p+ j − 1)

(2p − 2j + 1)! Γ(−2p − 1)Γ(1 + ω)Γ(−ω)
.

Multiplying by C0, (24),

j
∑

k=0

Ck =
Γ(ω + 2p − j + 2)Γ(ω + j + 1)Γ(−ω − j)Γ(−2p+ j − 1)

j! Γ(ω − 2p+ j) Γ(1 + ω)Γ(−ω) Γ(−2p − 1)

= aω
2p+1−j

(2p+ 1− j)! (−1)j Γ(−2p+ j − 1)

j! Γ(−2p − 1)

=
(2p+ 1)!

j!
aω

2p+1−j .

Hence, from (23),

Sn
2p+1(δ) =

p
∑

j=0

(2p+ 1)!(2x)2p+1−2j

j! (2p+ 1− 2j)!
aω

2p+1−j , (25)

which is positive when cos δ > 0, that is, when Reµ > 0.
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