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It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic

waves can be calculated by evaluating certain integrals of velocity potentials over a sphere sur-

rounding the scatterer. The goal is to evaluate these integrals using far-field approximations and

appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections

are made to textbook derivations of optical theorems.VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Time-harmonic acoustic waves of small amplitude A
exert a steady second-order (proportional to A2) force on

obstacles. This acoustic radiation force has been studied

extensively; it may be used to levitate or manipulate small

particles, for example. For reviews, see Refs. 1–3.

The computation of the radiation force can be reduced

to the evaluation of an integral over a sphere of radius r, Sr.

This sphere encloses the scatterer but is otherwise arbitrary:

the value of the integral does not depend on r. The integrand

involves quadratic combinations of first-order quantities. It

is natural to try to simplify the calculation by letting r ! 1,

so that familiar far-field quantities appear: this was first done

by Westervelt.4,5 However, it turns out that the limiting pro-

cess is not straightforward.

To begin, recall the basic equations giving the radiation

force in terms of the time-harmonic velocity potential U. For

simplicity, consider axisymmetric motions only (implying

that both the incident field and the geometry are axisymmet-

ric about the z-axis) and compute the axial component of the

radiation force, Fz. The relevant formulas involve contribu-

tions from the incident potential Ui and the scattered poten-

tial Us, with U ¼ Ui þ Us.

At this point, all formulas are exact. Then far-field

(r ! 1) approximations for Us are introduced, followed by

taking the limit as the sphere Sr expands.

First the two-dimensional (2-D) case is examined: scat-

tering by a cylinder. The calculations are straightforward;

leading-order far-field approximations for Us suffice.

The three-dimensional (3-D) case is more complicated.

An orders-of-magnitude argument shows that two contribu-

tions to Fz were omitted in earlier papers. One of these

comes from a higher-order contribution to the far-field

behavior of Us: the leading-order term is proportional to 1=r
but the next term, proportional to 1=r2, should be retained.

The second contribution comes from an angular derivative

of Us, tangential to Sr. Thus

Fz ¼ OðrÞ þ N ðrÞ þ oð1Þ as r ! 1;

where OðrÞ contains the old previously published contribution

and NðrÞ contains the new contributions; all of these are

defined by integrals over Sr. As Fz does not depend on r, it is

natural to let r ! 1. It is shown that OðrÞ has a well-defined
limit, and that limit is computed for a wide class of incident

fields Ui. This is done using a plane-wave representation (also

known as a Herglotz wave function) for Ui containing a den-

sity function q; see Eq. (25) below. The resulting limit contains

q and the far-field pattern f; see Eq. (29) below.

It is also shown that NðrÞ ! 0 as r ! 1. This is one

of those situations where careful analysis does not lead to

something new (apart from clarifying and justifying previous

work).

Known results for incident plane waves and for incident

Bessel beams are recovered.

In an Appendix, it is shown that similar criticisms can

be made of some derivations of optical (or forward scatter-

ing) theorems. An optical theorem is proved for general inci-

dent fields defined using the density function q. It agrees

with a formula found in Ref. 6.

II. BASIC EQUATIONS

The starting point is the following formula:

Fz ¼ ÿ
ð

Sr

q0huzuridS

þ
ð

Sr

q0
2
hjuj2i ÿ 1

2q0c
2
0

hp2i
� �

nz dS; (1)

which agrees with Eqs. (3) and (4) in Ref. 7, Eq. (10) in Ref.

8, and Eq. (12) in Ref. 9, for example. This formula gives

the component of the radiation force in the z-direction on the

scatterer, which is assumed to be surrounded by inviscid

compressible fluid of density q0.

In Eq. (1), uz and ur are components of the first-order

velocity u, c0 is the sound speed, p is the first-order pressure,

Sr is a sphere (circle in two dimensions) of radius r enclosing

the scatterer, and nz is the z-component of the outward nor-

mal vector on Sr. The angled brackets denote time average

over one period.

Introduce a first-order velocity potential /, with

/ ¼ RefU eÿixtg. Thena)Electronic mail: pamartin@mines.edu
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uz ¼
@/

@z
; ur ¼

@/

@r
; juj2 ¼ jr/j2; p ¼ ÿq0

@/

@t
:

Time averaging gives

huzuri ¼
1

2
Re

@U

@r

@U�

@z

� �

; hp2i ¼ 1

2
q20x

2 jUj2;

hjuj2i ¼ 1

2
rUð Þ � rU

�ð Þ;

where the asterisk denotes complex conjugation. Hence

Fz ¼ ÿq0

ð

Sr

1

2
Re

@U

@r

@U�

@z

� �

dS

þ q0
2

ð

Sr

1

2
rUð Þ � rU

�ð Þ ÿ k2jUj2
� 	

nz dS;

where k ¼ x=c0. This agrees with Eq. (11) in Ref. 8.

Suppose there is a given potential for the incident wave

Ui and an unknown potential for the scattered waves Us.

Thus put U ¼ Ui þ Us giving Fz ¼ Fi
z þ Fs

z þ Fc
z , where Fi

z

contains terms involving products of Ui with itself, Fs
z con-

tains terms involving products of Us with itself, and Fc
z con-

tains cross terms. Noting that ReZ ¼ 1
2
Z þ Z�Þð for any

complex Z,

Fi
z ¼ ÿ q0

4

ð

Sr

2Re
@Ui

@r

@U�
i

@z

� ��

ÿ jrUij2 ÿ k2jUij2
ÿ �

nz

o

dS;

Fs
z ¼ ÿ q0

4

ð

Sr

2Re
@Us

@r

@U�
s

@z

� ��

ÿ jrUsj2 ÿ k2jUsj2
ÿ �

nz

o

dS;

Fc
z ¼ ÿ q0

4

ð

Sr

@Ui

@r

@U�
s

@z
þ @Us

@r

@U�
i

@z

�

þ @U�
i

@r

@Us

@z
þ @U�

s

@r

@Ui

@z

�

dS

þ q0
2

ð

Sr

Re rUsð Þ � rU
�
i

ÿ �

ÿ k2UsU
�
i

n o

nz dS

¼ q0
2

Re

ð

Sr

rUsð Þ � rU
�
i

ÿ �

ÿ k2UsU
�
i

h i

nz

n

ÿ @Ui

@r

@U�
s

@z
ÿ @Us

@r

@U�
i

@z

�

dS:

It is well known8 that Fi
z � 0: there is no radiation force in

the absence of scattering.

The formulas above for Fs
z and Fc

z are general: they do

not depend on the shape or composition of the scatterer

(which is inside Sr) and they do not depend on the form of

the incident wave Ui. (Of course, the computed values of

Fc
z and Fs

z do depend on all these factors.) Moreover,

Fz ¼ Fs
z þ Fc

z does not depend on the radius r (provided Ui is

a regular solution of the governing Helmholtz equation). It is

this r-independence that suggests simplifying the calculation

by letting r ! 1. The 2-D and 3-D cases are examined sep-

arately in Secs. III and IV.

The 2-D case is straightforward. Simple far-field

approximations for Us lead to integrals that can be approxi-

mated using the method of stationary phase.

The 3-D case is more complicated. This paper is con-

cerned with axisymmetric problems but it seems likely that

more general problems can be treated using similar methods.

III. TWO DIMENSIONS

In two dimensions, Sr is a circle of radius r. In plane

polar coordinates, z ¼ r cos h; nz ¼ cos h; dS ¼ r dh,

@U

@z
¼ @U

@r
cos hÿ sin h

r

@U

@h
; (2)

ðrUÞ � ðrWÞ ¼ @U

@r

@W

@r
þ 1

r2
@U

@h

@W

@h
: (3)

Hence

Fs
z ¼ÿq0r

4

ð2p

0

2Re
@Us

@r

@U�
s

@r
coshÿ sinh

r

@U�
s

@h

� �� �

dh

þ q0r

4

ð2p

0

�

�

�

�

@Us

@r

�

�

�

�

2

þ 1

r2

�

�

�

�

@Us

@h

�

�

�

�

2

ÿ k2jUsj2
 !

coshdh

¼ÿq0r

4

ð2p

0

�

�

�

�

@Us

@r

�

�

�

�

2

ÿ 1

r2

�

�

�

�

@Us

@h

�

�

�

�

2

þ k2jUsj2
 !

coshdh

þ q0
2

ð2p

0

Re
@Us

@r

@U�
s

@h

� �

sinhdh: (4)

This formula is exact. Now, allow r to become large. The

radiation condition gives

Usðr; hÞ ¼
f ðhÞ
ffiffiffiffiffi

kr
p eikr þ O rÿ3=2ð Þ as r ! 1; (5)

where f is the far-field pattern. It follows that the second inte-

gral in Eq. (4) is Oðrÿ1Þ as r ! 1. Similarly, the middle

term in the first integrand is negligible. Hence

Fs
z ¼ ÿq0k

2

ð2p

0

jf ðhÞj2 cos h dh; (6)

in agreement with the first term in Eq. (13) of Ref. 8.

Next, the cross terms give

Fc
z ¼ÿq0r

2
Re

ð2p

0

@Us

@r

@U�
i

@r
ÿ 1

r2
@Us

@h

@U�
i

@h
þk2UsU

�
i

� �

� coshdhþq0
2
Re

ð2p

0

@Ui

@r

@U�
s

@h
þ@Us

@r

@U�
i

@h

� �

sinhdh:

Using Eq. (5), the second integral is Oðrÿ1=2Þ as r ! 1
(assuming that Ui and its derivatives do not grow with r).

Similarly, the middle term in the first integrand is negligible,

leaving

Fc
z ¼ ÿq0

2
lim
r!1

ð2p

0

rRe ik
@U�

i

@r
þ k2U�

i

� ��

� f ðhÞ eikr
ffiffiffiffiffi

kr
p

�

cos h dh: (7)
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This expression agrees with the second and third terms in

Eq. (13) of Ref. 8 once the approximation @U�
i =@z ¼ ð@U�

i =
@rÞ cos hþ Oðrÿ1Þ [see Eq. (2)] is used.

Now, the limit in Eq. (7) must exist because Fc
z does not

depend on r. However, the limiting process seems delicate at

first sight.

To examine further, choose a simple incident wave, a

plane wave propagating at angle a to the z-axis with poten-

tial Ui ¼ eikr cosðhÿaÞ. Substituting in Eq. (7) gives

Fc
z ¼ ÿ q0k

2
lim
r!1

ffiffiffiffiffi

kr
p

Re

ð2p

0

f ðhÞ
 

� 1þ cos hÿ a½ �ð Þ eikr 1ÿcos hÿa½ �ð Þ
cos h dh

!

:

To estimate the integral, use the method of stationary

phase.10 Assuming for simplicity that 0 < a < p, the points

of stationary phase are at h ¼ a and h ¼ aþ p. At the sec-

ond of these, 1þ cosðhÿ aÞ ¼ 0 so that the dominant contri-

bution comes from h ¼ a. That contribution is [using Eq.

(6.1.5) in Ref. 10]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p=ðkrÞ
p

2f ðaÞ cos a eip=4 þ Oðrÿ1Þ;

whence

Fc
z ¼ ÿq0k

ffiffiffiffiffiffi

2p
p

cos aReff ðaÞ eip=4g: (8)

Then Fz ¼ Fc
z þ Fs

z with F
s
z given by Eq. (6).

IV. THREE DIMENSIONS

In three dimensions, Sr is a sphere of radius r. Use

spherical polar coordinates, r, h, /, with z ¼ r cos h. For sim-

plicity, suppose that the problem is axisymmetric, with no

dependence on /. Then nz ¼ cos h; dS ¼ 2pr2 sin h dh, and

Eqs. (2) and (3) remain valid. Hence

Fs
z ¼ÿpq0r

2

2

ðp

0

�

�

�

�

@Us

@r

�

�

�

�

2

ÿ 1

r2

�

�

�

�

@Us

@h

�

�

�

�

2

þ k2jUsj2
 !

� cosh sinhdh

þ pq0r

ðp

0

Re
@Us

@r

@U�
s

@h

� �

sin2 hdh: (9)

This formula is exact. Now, allow r to become large. The

radiation condition gives

Us r; hð Þ ¼ f ðhÞ
ikr

eikr þ O rÿ2ð Þ as r ! 1; (10)

where f is the (axisymmetric) far-field pattern. It follows that

the integrand in the second integral in Eq. (9) is Oðrÿ2Þ as
r ! 1. Similarly, the middle term in the first integrand is

negligible. Hence, letting r ! 1,

Fs
z ¼ ÿpq0

ðp

0

jf ðhÞj2 cos h sin h dh: (11)

This agrees with the I1 term in Eq. (3) of Ref. 11. It appears

in many other papers going back at least as far as Westervelt

[see Eq. (2) in Ref. 5].

Next, consider the contribution from the cross terms:

Fc
z ¼ pq0r

2 Re

ðp

0

@Us

@r

@U�
i

@r
þ 1

r2
@Us

@h

@U�
i

@h
ÿ k2UsU

�
i

� �

� cos h sin h dhÿ pq0r
2 Re

�
ðp

0

@Ui

@r

@U�
s

@r
cos hÿ sin h

r

@U�
s

@h

� ��

þ @Us

@r

@U�
i

@r
cos hÿ sin h

r

@U�
i

@h

� �
�

sin h dh

¼ ÿpq0r
2 Re

ðp

0

@Us

@r

@U�
i

@r
ÿ 1

r2
@Us

@h

@U�
i

@h
þ k2UsU

�
i

� �

� cos h sin h dhþ pq0rRe

�
ðp

0

@Ui

@r

@U�
s

@h
þ @Us

@r

@U�
i

@h

� �

sin2 h dh:

Using the far-field approximation, Eq. (10), one difference

from the 2-D case is seen immediately: the second integral is

not negligible because the integrand is Oðrÿ1Þ as r ! 1.

However, in the first integral, the middle term is negligible,

as before. Also two terms can be combined exactly using

@U�
i

@z
¼ @U�

i

@r
cos hÿ sin h

r

@U�
i

@h
;

whence

Fc
z ¼ÿpq0r

2Re

ðp

0

@Us

@r

@U�
i

@z
þ k2UsU

�
i cosh

� �

sinhdh

þ pq0rRe

ðp

0

@U�
i

@r

@Us

@h
sin2 hdhþO rÿ1ð Þ; r !1:

(12)

If the approximation Eq. (10) is inserted in the first inte-

gral in Eq. (12), it is found to be approximately

ÿpq0rRe

ðp

0

eikrf ðhÞ @U�
i

@z
ÿ ikU�

i cos h

� �

sin h dh ¼ Fc
1;

(13)

say; this agrees with Eq. (6) in Ref. 7, Eqs. (3), (5), and (6)

in Ref. 11, and Eq. (14) in Ref. 9, taking the definition in Eq.

(10) into account. However, this calculation ignores the sec-

ond integral in Eq. (12). Moreover, the first integral in Eq.

(12) is multiplied by r2, suggesting that the far-field approxi-

mation of Eq. (10) should be refined.

It is known that (see Corollary 3.8 in Ref. 12, for

example)

Us r; hð Þ ¼ eikr

ikr
f ðhÞ þ f1ðhÞ

ikr

� �

þ O rÿ3ð Þ (14)

as r ! 1, where

f1ðhÞ ¼
i

2 sin h

d

dh
sin h

df

dh

� �

:
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(In fact, Usðr; hÞ can be reconstructed exactly for all r > r0
from f ðhÞ, where r¼ r0 is the smallest sphere enclosing the

scatterer; this is known as the Atkinson–Wilcox theorem.)

Hence

@Us

@r
¼ eikr

r
f þ 1

ikr
f1 ÿ fð Þ

� �

þ O rÿ3ð Þ (15)

as r ! 1. Substituting in Eq. (12) gives

Fc
z ¼ Fc

1 þ Fc
2 þ Oðrÿ1Þ;

where Fc
1 is defined by Eq. (13) and

Fc
2 ¼

pq0
k

Im

ðp

0

eikr f ÿ f1ð Þ @U
�
i

@z

�

þikf1U
�
i cos hþ f 0

@U�
i

@r
sin h

�

sin h dh: (16)

It will be shown that, in general, Fc
2 ! 0 as r ! 1:

A. Two examples

As before, the value of Fc
z does not depend on r, so that

the limit r ! 1 exists but, apparently, the limiting opera-

tion is delicate. To investigate, start with the simplest exam-

ple, an axisymmetric incident plane wave, Ui ¼ eikz. From

Eq. (13),

Fc
1 ¼ ÿpq0kr Im

ðp

0

WðhÞf ðhÞ ð1þ cos hÞ sin h dh;

where WðhÞ ¼ eikrð1ÿcos hÞ. As W0ðhÞ ¼ ikrWðhÞ sin h,

Fc
1 ¼ pq0 Re

ðp

0

W
0ðhÞ 1þ cos hð Þf ðhÞ dh

¼ ÿ2pq0 Reff 0ð Þg

ÿ pq0 Re

ðp

0

WðhÞ d

dh
1þ cos hð Þf ðhÞ

� 	

dh;

after an integration by parts. The remaining integral ! 0 as

r ! 1; this can be shown using the method of stationary

phase.10

A similar calculation shows that Fc
2 ! 0 as r ! 1,

whence

Fz ¼ ÿ2pq0 Reff ð0Þg ÿ pq0

ðp

0

jf ðhÞj2 cos h sin h dh:

(17)

The optical theorem, Eq. (A6), can be used to express

Reff ð0Þg in another way. In particular, if the scatterer is

lossless, this gives

Fz ¼ pq0

ðp

0

jf ðhÞj2ð1ÿ cos hÞ sin h dh: (18)

This agrees with Eq. (13) in Ref. 11.

For a second example, consider an incident axisymmet-

ric Bessel beam, defined by

Ui ¼ eikz cos bJ0ðk. sin bÞ; (19)

where b is a parameter, . ¼ r sin h; and z ¼ r cos h are cylin-

drical polar coordinates, and J0 is a Bessel function.

Substitution in Eq. (13) gives

Fc
1 ¼ ÿpq0kr Im

ðp

0

eikrgðhÞU�
i dh

¼ ÿ 1

2
q0kr Im

ðp

0

ð2pÿd

ÿd

gðhÞ eikru h;wð Þ dw dh; (20)

where gðhÞ ¼ f ðhÞ ðcos bþ cos hÞ sin h,

uðh;wÞ ¼ 1ÿ cos h cos bþ sin h sin b cosw

and a convenient integral representation for J0,

J0 wð Þ ¼ 1

2p

ð2pÿd

ÿd

eiw cosw dw; 0 < d < p

has been used. The integral in Eq. (20) can be estimated for

large kr using the 2-D method of stationary phase.10 Assume

for simplicity that 0 < b < p. Then there is just one relevant

point of stationary phase, and it is at ðh;wÞ ¼ ðb; pÞ ¼ x0,

say. (Here, gð0Þ ¼ gðpÞ ¼ gðpÿ bÞ ¼ 0 has been used to

eliminate other potential stationary-phase points.) Then, using

Eq. (8.4.44) in Ref. 10, the double integral asymptotes to

2p

kr

gðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

jdetAj
p exp ikru x0ð Þ þ i p=4ð Þ sigA� 	

as r ! 1, where the 2� 2 matrix A has entries Aij

¼ @2u=@ni @nj evaluated at x0; n1 ¼ h; n2 ¼ w; and sigA is

the signature of A, equal to the number of positive eigenval-

ues minus the number of negative eigenvalues. Some calcu-

lation gives

A ¼ 1 0

0 sin2 b

� �

; detA ¼ sin2 b; sigA ¼ 2;

gðx0Þ ¼ gðbÞ ¼ 2f ðbÞ cos b sin b and uðx0Þ ¼ uðb; pÞ ¼ 0.

Then, letting r ! 1, Eq. (20) gives

Fc
1 ¼ ÿ2pq0 Reff ðbÞg cos b: (21)

In the limit b ! 0, the plane-wave result, Eq. (17), is recov-

ered as expected.

A similar calculation shows that Fc
2 ! 0 as r ! 1,

whence

Fz ¼ ÿ2pq0 Reff ðbÞg cos b

ÿ pq0

ðp

0

jf ðhÞj2 cos h sin h dh: (22)

As for plane-wave incidence, an appropriate form of

the optical theorem, Eq. (A7), can be used to express

Reff ðbÞg in another way. In particular, if the scatterer is

lossless,
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Fz ¼ pq0

ðp

0

jf ðhÞj2ðcosbÿ cos hÞ sin h dh; (23)

which agrees with Eq. (8) in Ref. 6.

B. Justification and generalization

Return to Fc
1, defined by Eq. (13), which is rewritten as

an integral over the unit sphere X,

Fc
1 ¼ ÿ q0r

2
Re

ð

X

eikrf ðr̂Þ @U�
i

@z
ÿ ikU�

i r̂ � ẑ
� �

dX; (24)

where r̂ ¼ r=r and ẑ is a unit vector in the z-direction. The

goal is to calculate limr!1 Fc
1.

For a general incident wave, express Ui using a plane-

wave representation,6

Ui rð Þ ¼ 1

4p

ð

X

qðŝÞ eikr�ŝ dXðŝÞ; (25)

where the density function q is specified on X. This kind of

integral representation goes back to Whittaker13 but is often

known as a Herglotz wave function. Substituting in Eq. (24)

gives

Fc
1 ¼ ÿ q0kr

8p
Im

ð

X

q�ðŝÞ
ð

X

eikr 1ÿr̂ �ŝÞ�ðŝþr̂ð Þ�ẑ f ðr̂Þ dXðr̂Þ dXðŝÞ:

(26)

The inner integral can be estimated for large kr using the 2-

D method of stationary phase.10 Doing this more generally

leads to what is known as the Jones lemma (see Appendix

XII in Ref. 14): for smooth functions G,

ð

X

Gðr̂Þ eÿikr�ŝdXðr̂Þ ¼ 2pi

kr
GðŝÞ eÿikr ÿ G ÿŝÞ eikr

ÿ 	�

þo rÿ1ð Þ as r ! 1:

(27)

When this result is applied to Fc
1, Eq. (26), it is found that

Fc
1 ¼ ÿ q0

2
Re

ð

X

q�ðŝÞ f ðŝÞ ŝ � ẑ dXðŝÞ þ o 1ð Þ (28)

as r ! 1. This result was also derived in Ref. 6.

A similar analysis for Fc
2, defined by Eq. (16), shows

that Fc
2 ! 0 as r ! 1.

Reverting to the earlier notation, combine Eqs. (11) and

(28) and obtain

Fz ¼ ÿpq0 Re

ðp

0

fq�ðhÞ þ f �ðhÞgf ðhÞ cos h sin h dh:

(29)

C. Axisymmetric Bessel beam: Reprise

Here the formula Eq. (29) is verified for the Bessel

beam, Eq. (19). It has the expansion

Uiðr; hÞ ¼ eikr cos b cos hJ0ðkr sin b sin hÞ

¼
X

1

n¼0

ð2nþ 1ÞinjnðkrÞPnðcos hÞPnðcos bÞ;

(30)

where jn is a spherical Bessel function and Pn is a Legendre

polynomial. This expansion is a special case of a formula

given by Watson [put � ¼ 1
2
in Eq. (9) on p. 370 of Ref. 16];

see also Eq. (B2) in Ref. 17. For a quick proof, note that

Uiðr; hÞ is an axisymmetric solution of the Helmholtz equa-

tion, so it is sufficient to check Eq. (30) on the axis where

h¼ 0, using J0ð0Þ ¼ 1; Pnð1Þ ¼ 1 and the known expansion

for eikr cos b (Theorem 3.19 in Ref. 15).

Axisymmetry also implies that qðŝÞ ¼ qðwÞ with

ŝ � ẑ ¼ cosw. Then, on the axis, Eq. (25) gives

Ui r; 0ð Þ ¼ 1

2

ðp

0

q wð Þ eikr cosw sinw dw:

Expanding the exponential and then comparing with Eq.

(30) evaluated at h¼ 0 gives

qn �
ðp

0

qðhÞPnðcos hÞ sin h dh ¼ 2PnðcosbÞ: (31)

Now, although qðhÞ does not have a convergent

Legendre expansion, the far-field pattern does have such an

expansion:

f ðhÞ ¼
X

1

n¼0

fnPnðcos hÞ: (32)

Substitution in Eq. (29) leads to

ðp

0

q�ðhÞ f ðhÞ cos h sin h dh ¼
X

1

n¼0

fnIn; (33)

where (as q is real)

In ¼
ðp

0

qðhÞPnðcos hÞ cos h sin h dh:

Evaluation gives I0¼ q1 and

ð2nþ 1ÞIn ¼ ðnþ 1Þqnþ1 þ nqnÿ1; n ¼ 1; 2; 3;…;

using ð2nþ1ÞtPnðtÞ¼ðnþ1ÞPnþ1ðtÞþnPnÿ1ðtÞ. Substituting
in Eq. (33), using Eq. (31), the sum is recognized as 2f ðbÞ.
Hence Eq. (29) reduces to Eq. (22).

V. CONCLUSIONS

A number of formulas for the acoustic radiation force

on a scatterer have been derived. The derivations take

account of contributions that had been ignored previously

but, nevertheless, existing formulas are recovered in the limit

as the radius of the surrounding sphere tends to infinity.

Formulas for this limit were found for general incident

waves, Eq. (29), and these were verified for plane waves and
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for Bessel beams. Generalizations beyond the axial compo-

nent of the force and to arbitrary scatterers should be feasible.

Similar derivations have been given of optical theorems.

Again, these derivations correct and clarify previous work,

although they do not change the final formulas in the theo-

rems themselves.
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APPENDIX: OPTICALTHEOREMS

Applying Green’s theorem to U and U
� in the region

between the sphere Sr and the scatterer gives

Im

ð

Sr

U
� @U

@r
dS ¼ Im

ð

S

U
� @U

@n
dS; (A1)

where the normal vector on the scatterer’s surface, S, points

outwards. Denote the right-hand side of Eq. (A1) by Iab; it

represents energy absorbed by the scatterer. For lossless

scatterers (for example, if U¼ 0 on S or @U=@n ¼ 0 on S),

Iab ¼ 0. Put U ¼ Ui þ Us and expand the left-hand side of

Eq. (A1). Assuming Ui satisfies the Helmholtz equation

everywhere inside Sr, Im
Ð

Sr
U

�
i ð@Ui=@rÞ dS ¼ 0. Hence

Im

ð

Sr

U
�
s

@Us

@r
dSþ Im

ð

Sr

U
�
i

@Us

@r
ÿ Us

@U�
i

@r

� �

dS ¼ Iab:

(A2)

Abandoning the restriction to axisymmetry, amend Eq.

(14) to

Us rð Þ ¼ eikr

ikr
f ðr̂Þ þ f1ðr̂Þ

ikr

� �

þ O rÿ3ð Þ (A3)

as r ¼ jrj ! 1, where r̂ ¼ r=r. Using the leading-order

approximation for Us in Eq. (A2) and letting r ! 1 gives

1

k

ð

X

jf ðr̂Þj2dXðr̂Þþ lim
r!1

Im

ð

Sr

U
�
i

@Us

@r
ÿUs

@U�
i

@r

� �

dS ¼Iab;

(A4)

where X is the unit sphere. Denote the second integral by I2;

as its integrand is Oðrÿ1Þ but dS ¼ r2 dX, retain both terms

in Eq. (A3). Hence

I2 ¼ r

ð

X

eikr f þ f1 ÿ f

ikr

� �

U
�
i

�

ÿ 1

ik
f þ f1

ikr

� �

@U�
i

@r

�

dXþ O rÿ1ð Þ (A5)

as r ! 1:
For a plane wave, Ui ¼ eikz. If the scatterer is axisym-

metric, f ðr̂Þ ¼ f ðhÞ. Then I2 simplifies to

2p

ik

ðp

0

f þ f1 ÿ f

ikr
þ f þ f1

ikr

� �

cosh

� �

W
0ðhÞdhþO rÿ1ð Þ

as r ! 1, with WðhÞ ¼ exp fikrð1ÿ cos hÞg. After an inte-

gration by parts, let r ! 1 whence Eq. (A4) gives

ðp

0

jf ðhÞj2 sin h dhþ 2Re f 0ð Þ
� 	

¼ k

2p
Iab: (A6)

This formula is usually known as the optical theorem or the

forward scattering theorem.

For the Bessel beam, Eq. (19), and an axisymmetric

scatterer, we can use the same stationary-phase method as

used to derive Eq. (21); this shows that I2 ¼ 4pikÿ1f ðbÞ
þOðrÿ1Þ as r ! 1. Hence Eq. (A4) gives

ðp

0

jf ðhÞj2 sin h dhþ 2Re f bð Þ
� 	

¼ k

2p
Iab: (A7)

This result is equivalent to Eq. (2) in Ref. 18. It reduces to

Eq. (A6) when b ! 0, as expected.

For a more general incident wave, write Ui using the

plane-wave representation, Eq. (25). Substituting in Eq. (A5)

gives

I2 ¼
r

4p

ð

X

q�ðŝÞ
ð

X

eikr 1ÿr̂ �ŝð Þ
1þ r̂ � ŝð Þf ðr̂Þ dXðr̂Þ dXðŝÞ

þ 1

4pik

ð

X

q�ðŝÞ
ð

X

eikr 1ÿr̂ �ŝð Þ

� 1þ r̂ � ŝð Þf1ðr̂Þ ÿ f ðr̂Þ
� 	

dXðr̂Þ dXðŝÞ:

The inner integrals can be estimated for large kr using the

Jones lemma, Eq. (27), giving

I2 ¼
i

k

ð

X

q�ðŝÞ f ðŝÞ dXðŝÞ þ oð1Þ as r ! 1

(with no dependence on f1) and then Eq. (A4) gives

ð

X

jf ðr̂Þj2dXðr̂Þ þ Re

ð

X

q�ðr̂Þ f ðr̂Þ dXðr̂Þ ¼ k Iab: (A8)

This is a generalization of the optical theorem. It holds for

arbitrary scatterers. It agrees with Eq. (9) in Ref. 6.

For a specific example, consider the scattering of an axi-

symmetric Bessel beam, Eq. (19), by an axisymmetric scat-

terer. Then if the far-field pattern is expanded as Eq. (32),

substitution in the second integral in Eq. (A8) gives

ð

X

q�ðr̂Þ f ðr̂Þ dXðr̂Þ ¼ 4p
X

1

n¼0

fnPnðcos bÞ ¼ 4pf ðbÞ;

using the Legendre coefficients of q, given by Eq. (31).

Hence Eq. (A8) gives Eq. (A7), as before.
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