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Summary

Mixed boundary-value problems for Laplace’s equation inside a wedge-shaped region are
formulated and solved. There is a homogeneous Neumann condition on both straight sides of
the wedge except for one finite piece of one side where a Dirichlet condition is imposed. Solutions
are sought with specified logarithmic behaviour at both the tip of the wedge and at infinity. Exact
solutions are constructed by solving an integral equation.

1. Introduction

In the first volume of the Quarterly Journal of Mechanics and Applied Mathematics, there is a paper
by C. J. Tranter on ‘The use of the Mellin transform in finding the stress distribution in an infinite
wedge’ (1). Indeed, this has become the traditional method for solving boundary-value problems in
wedge-shaped regions. For the method to work, the Mellin transform of the unknown function,

(o8]
U(z, 0) = / “Yu(r, 0) dr
0

must exist for z in a strip in the complex z-plane, og < Rez < 0. Unfortunately, there may not
always be such a strip.z For example, in the context of Laplace’s equation, simple solutions such
as # = 1 and u = log r do not have Mellin transforms. On the other hand, if u(r, 8) = O(log r) as
r— Oand u(r,0) = O(r—7) as r — 0o, with y > 0, then we can take oyg = 0 and o1 = y.

The difficulty described above is easily remedied for pure boundary-value problems, such as the
Neumann problem for Laplace’s equation (section 3). But our interest is in mixed boundary-value
problems; in a wedge 0 < 6 < o, we place homogeneous Neumann conditions on both 6 = 0 and
0 = o except for one piece of @ = 0, a < r < b, where a Dirichlet condition is imposed. This can be
seen as an anti-plane elasticity problem with a ‘punch’ on one face of the wedge; indeed, our main
interest is with plane-strain elasticity problems and composite wedges, but the present harmonic
problem may have some independent interest.

As one might expect, the behaviour of # near » = 0 and as r — oo has to be restricted. We allow
logarithmic growth at both locations, with u ~ By logr as r — 0 and u ~ Bso logr as r — o0. The
constants By and B, can be specified arbitrarily. Once that has been done, the mixed boundary-value
problem is uniquely solvable. We construct the solution, explicitly, by solving an integral equation.
The article ends with some remarks on analogous problems arising in plane elastostatics.
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374 P. A. MARTIN

The problem of solving Laplace’s equation in a wedge, with a variety of boundary conditions, can
be solved by a variety of methods. One possibility is to open out the wedge into a half-plane using
a conformal mapping. (Later, essentially this mapping is used to simplify an integral equation; see
(4.24) below.) We do not use this approach because we are mainly interested in plane-strain elasticity
problems (although such problems may be solved using Kolosov—Muskhelishvili potentials (2)) and
because we want to keep control of the singular behaviour near » = 0 and as r — oo. Another
possibility would be to introduce an appropriate Green function, as done by Williams (3). A direct
treatment using Mellin transforms seems preferable; this is reminiscent of how D. S. Jones simplified
the application of the Wiener—Hopf technique (4, p. vii).

2. Mellin transforms

Define the Mellin transform of f by

F(z2) = M{f} = f ) dr, 2.1)
0

where z = o + it is a complex variable. Typically, F(z) is an analytic function of z in a strip,
00 < 0 < 0, Where the numbers o and o, are determined by the behaviour of f(r) as r — 0 and
r — 00, respectively. For example, if

f) ~f0rﬁ asr — 0 and f(r) ~foor ¥ asr — oo, (2.2)
then op = —f and o0 = y.
The inverse Mellin transform is

flr)= i / r*F(2)dz, (2.3)
27Tl Br

where Br is a Bromwich contour in the strip of analyticity; in other words, when f satisfies (2.2), Br
isacontouro = ¢, —00 < T < 00 With g < ¢ < 0.

3. Neumann problem
3.1 Formulation

Suppose that u(r, 9) satisfies Laplace’s equation, V24 = 0, in a two-dimensional wedge-shaped
region, r > 0,0 < 6 < «, where r and 0 are plane polar coordinates. We henceforth assume that
all lengths have been scaled so that r is dimensionless: this is important because we will encounter
logr.

There are Neumann boundary conditions on the two sides of the wedge,

10u

-— =0, 0=qa, r>0, (3.1
r a0
10u
-—=f(r), 6=0, r>0, (3.2)
r 00

where f is a specified function. (Sufficient conditions on f in terms of F = M{f} are readily derived
so as to justify the subsequent analysis.) Evidently, the solution of the problem, u, is not unique
because we can always add A + Blog r, where A and B are arbitrary constants.
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ON MIXED BOUNDARY-VALUE PROBLEMS IN A WEDGE 375

Suppose that u ~ Bglogr as r — 0 and u ~ By logr as r — 00. Green’s theorem then gives

a(Boo — Bo) = /Oof(r) dr =F(1), (3.3)
0

using (2.1). Equation (3.3) is a relation between By, Boo and f. If we interpret u as a velocity potential
for an incompressible flow, (3.3) expresses mass conservation: fluid entering through the straight
wall at & = 0 must leave through the tip at » = 0 or flow out to infinity.

Now, to have a uniquely solvable boundary-value problem for u, we specify that

u(r,0) >0 asr—>00,0<6 <a. (3.4)
Near the tip, we have
u(r,0) =Ag+ Bglogr+o(l) asr — O, (3.5)
where, from (3.3),
By = —F(1)/a. (3.6)

The constant Ay will be calculated (see below) and is not arbitrary. (It is analogous to the so-called
blockage coefficient in other potential flows.) Once u has been determined, we can add any arbitrary
constant and any multiple of log r; for example, subtracting B log r would give a solution that is
bounded at r = 0 (but logarithmically large at infinity).

3.2  Solution

The function % cos (z(@ — «)) satisfies Laplace’s equation and the boundary condition at § = «,
(3.1), for any choice of z. Therefore, we consider the (Mellin) superposition,

u(r,0) = 2%” /B g(x)r ?cos(z(0 — o)) dz, (3.7)

where g is unspecified and Br is an appropriate Bromwich contour; both will be chosen later. Then
the boundary condition at 8 = 0, (3.2), gives

1
fr) = —/ 8@ Vsinzadz, r>0.
2mi JBr

As M{rf(r)} = F(z + 1), we obtain F(z 4+ 1) = zg(z) sin za, whence (3.7) gives

cos (z(0 — ) dz

: (3.8)
Z sinzo

1
u(r,9) = E/ Fiz+1Dr 2
Br

The integrand has a double pole at z = 0 and simple poles at z = o0, where 0, = nw/a,n =1,2, .. ..
There may be additional singularities due to the presence of F(z + 1).

The main idea now is to move the inversion contour Br in (3.8), picking up residue contributions as
we encounter poles. Moving to the left will generate an expansion that is useful near r = 0, whereas
moving to the right will produce an expansion that is effective for large r.
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376 P. A. MARTIN

To start, we have to specify where to locate Br in (3.8). Because of (3.4) and (3.5), we choose Br
justto the right of z = 0. Nearz = 0, F(z + 1) ~ F(1) + zF'(1), r % = exp(—zlogr) ~ 1 — zlog r
and the integrand in (3.8) is approximately

F(1) n F’(l)—F(l)logr‘

az? oz
Moving the contour to the left, the residue at z = 0 gives (3.5) with By = —F(1)/« (in agreement
with (3.6)) and Ag = F'(1)/c.
Residues from the simple poles at z = —o;, generate terms
(— l)n-i-l

r°"F(1 — 0y,) cos (0,(60 — o).
nm

There may also be residue contributions from F. For example, suppose that f(r) = fo for 0 < r < rg
and is zero otherwise, where f(y and r( are constants. Then

ro
F(z+ 1)=f fortdr =——
0 z

has a simple pole at z = —1. This contributes a term

rcos(@ —a)

1n o

to the expansion of u.
If we move Br in (3.8) to the right, we encounter simple poles at z = +o0,, with residue contributions

(— 1)n+1

nm

r~ %" F(1 + o,) cos (0,(0 — )

(noting that the contour around the pole is traversed clockwise). The resulting expansion contains
only negative powers of r, so that (3.4) is satisfied.

Moving the contour requires some justification but this is easily done using simple estimates for
large |7]| of the integrand in (3.8) for 0 < 6 < «. For example, a sufficient condition would be
IFz+ 1D =o0()ast =Imz — +ooin -1 <o < op.

4. Mixed problem
4.1 Formulation and uniqueness

Let us change the boundary condition on one side of the wedge, 8 = 0. Thus w(r, 0) satisfies Laplace’s
equation, V2 = 0, forr > 0,0 < 0 < «, with a Neumann condition at 0 = «,

10w
I o, 0=a r>o. @.1)
r 060

There are mixed boundary conditions at 0 = 0,

1 ow
-— =0, 6=0, O<r<a and r>b, (4.2)
r 00

Downl oaded from https://academ c. oup. conf gj man arti cl e-abstract/ 70/ 4/ 373/ 4056069
by Col orado School of M nes user
on 20 Novenber 2017



ON MIXED BOUNDARY-VALUE PROBLEMS IN A WEDGE 377

and
w(r,0) =wo(r), a<r<bhb, 4.3)

where wy is a specified function. Recall that a, b and r are dimensionless.
Define v(r) by

10
v(r) = blcdid evaluatedat® =0, a <r <b.
r 960

Of course, this quantity is unknown at present; it will be found by solving an integral equation. As
in section 3.1, if w ~ Bglogr as r — 0 and w ~ By logr as r — 00, Green’s theorem gives the

constraint .
a(Bsy — Bg) = /a v(r)dr. 4.4
Suppose that, in more detail, w has the following behaviour:
w(r,0) = Bologr +Ag + OG™*), r— 0 4.5)
w(r, 0) = Boo 10g 7 + Ao + O™/, r - . (4.6)

Then, if we specify both By and B, w is unique. This can be proved using a standard argument as
follows. Suppose there are two solutions, wy and wy. Their difference, wi — wy = ¢, say, satisfies
homogeneous boundary conditions. Moreover, ¢(r, 6) has the form (4.5) near r = 0 but with By = 0,
and the form (4.6) for large r but with Bo, = 0. Apply Green’s theorem to ¢,

9
/|grad¢|2dA=f¢—¢ds,
D s on

where D is a piece of the wedge bounded by circular arcs r = rg and r = r, 0 < 0 < 0, d¢p/0n
is the outward normal derivative of ¢, and S is the boundary of D. Using the known behaviour of ¢
on S, we let rp — 0 and roc — 00. We infer that |grad ¢| = 0 everywhere in the wedge. Then, as
¢ =0o0nf =0fora < r < b, we must have ¢ = 0 so that w; = wy.

Return to w, satisfying V2w = 0 in the wedge, together with (4.1), (4.3), (4.5) and (4.6), where
both By and B, are specified. Then the constants Ag and A, are uniquely defined but unknown.

4.2 Reduced problem

The function w does not have a Mellin transform. Therefore, motivated by section 3, define
u(r,0) =w(r,0) — B logr — Aso, 4.7

so that V2u = 0 in the wedge, together with (3.1), (3.2), (3.4),

u(r,0) = A+ Blogr+o(l) asr— 0, (4.8)
and
u(r,0) =ug(r), a<r<», 4.9)
where
A=Ay —Ax, B=By— B, (4.10)

Downl oaded from https://academ c. oup. conf gj man arti cl e-abstract/ 70/ 4/ 373/ 4056069
by Col orado School of M nes user
on 20 Novenber 2017



378 P. A. MARTIN

uo(r) = wo(r) — Boo logr — Aso, 4.11)

0, O<r<aandr > b,
fr)y = {v(r), a<r<», (4.12)

and B is related to v by (4.4).
To find u, we proceed as in section 3.2. We write u(r, 6) as (3.7),
1 _
wr )= [ oo cos 0 — (“.13)
2mi Bry

where the Bromwich contour is just to the right of z = 0 and

F(z+1 1 b
g8(@) = (Z. +D_ . / £ () dt. (4.14)
ZSin zo Zsmzo Jg

We see that g(z) has a double pole at z = 0 and simple poles at z = +nw/a,n=1,2,....
Near z = 0, the integrand in (4.13) is approximately

b 1 [P logr [?
2—/ v(t)dt + —/ v(t)logtdt — —/ v(t) dt,
7o Jg o Jg o Jg

so that moving the contour to the left confirms (4.8) with

1 [ 1 [t
A= —/ v(t)logtdt and B = ——/ v(t)dt. (4.15)
o Ja @ Jg
Moving the contour further to the left, the next pole encountered is at z = —m /«. It contributes
the next term to (4.8),
1 b
Cr/®cos (70 /o) with C=—— / T () dt. (4.16)
T Ja

4.3 Deriving an integral equation

From (4.9) and (4.13), we have
1 2
ug(r) = —/ g()r*cos(za)dz, a<r <bh.
2mi Bry

Substituting for g from (4.14), we obtain an integral equation for v,
b
ug(r) = / K(r/tyv(t)dt, a<r <b, 4.17)
a
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ON MIXED BOUNDARY-VALUE PROBLEMS IN A WEDGE 379

where the kernel is defined by

1 coszo  _
K(t)= — — 1 ‘dz. (4.18)
2mi JBr, Zsinzo

Moving the contour to the left gives

1 1 1
K(r)=——2L_y~— (z”/“)" — log (r_”/“ - 1), 7] < L. (4.19)
o T
Moving the contour to the right instead gives
= 1 noo1
K==y — (f—"/a) = ~log (1 - r—”/“), 7| > 1. (4.20)
= nm b4

Combining (4.19) and (4.20) gives

logr 1

Kor/ty= —22L 4 Zog ‘t”/“ L S ) 4.21)
a T
Substituting in (4.17), together with (4.11), gives
1 b 1 [P
wo(r) — Boo logr — Ago = _ 087 v(t)dt + — / v(t) log ‘t”/o‘ - r”/"“ dt.
o Jg T Ja

But, using (4.4), the first integral is equal to (B, — Bp), whence

1 b
—/ v(t)log ‘t”/“ — 7 dt = q(r), a<r<b, (4.22)
T Ja

where
q(r) = wo(r) — Bplogr — Axo.- 4.23)

The integral equation for v, (4.22), is to be solved subject to (4.4). Note that the constant A, occurring
in (4.23) is also to be determined.

We obtained the integral equation (4.22) by considering a reduced problem for u = w — Ao —
Boo log r, withu — 0 as r — o0. As an alternative, we could have considered a reduced problem for
w —Ag — Bglog r = i1, say, so that i — 0 as r — 0. It turns out that this approach leads to exactly
the same integral equation for v; see Appendix A.1.

4.4  Solving the integral equation

To simplify the integral equation (4.22), let 8 = /7 and put

t=TF, r=RP, a=AP and b=nB°. (4.24)
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380 P. A. MARTIN
As dt = /STﬂ_1 dT, we obtain
B
ﬁ/ TP~ w(TP)log |T — R|dT = q(R®), A <R <B.
T JA

The constraint (4.4) becomes

1 B
—/ TA=1w(TP)dT = B~ — By.
T JA

Next, map the interval A < T < Bto —1 < 7 < 1, using
T=xit+u, with A=(B-A)/2, pn=({B+A))2.

Similarly, put R = Ap + u. AsT — R = A(t — p) and dT = Ldt, (4.25) becomes

A 1
’3—/ TP~ w(TP)log {AlT — pl}dr = q(RF), —1<p <1,
T J-

whereas (4.26) becomes
A 1
—/ TP~ wTPydr = Bo — By.
T J-1

Using this relation in (4.28) gives
Br [N st p
B(Bso — Bg)logh + — T w(T")log|t — pldt = q(R"), —1<p<]1.
T oJo

To simplify the notation, put
V(r) = AT ~'w(TP) and  Q(p) = q(RF) — B(Boo — Bo)log 1.,
whence
1 1
;/ V(D)loglt — pldz = Q(p), —1<p <1,
-1
with
1 1
- | v = b~ B
T J-1
To solve (4.30), we expand using Chebyshev polynomials, 7},(x),
1 o0 o
V(D) = —== ) VaTu(1).  Q(p) =) OnTn(p).
l—1 n=0 m=0

By definition, T,;(cos ) = cos nt, and we have orthogonality,

/1 dt O, n ;é ni,
() Ty(t)——= =37, n=m=0,
=1 Vi-r12 /2, n=m#0.
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ON MIXED BOUNDARY-VALUE PROBLEMS IN A WEDGE 381

However, the main reason for using 7}, is the expansion

= 2

log|z — pl = —log2 =} = T(v) Tu(p).

n=1
(This can be proved by rewriting the sum using p = cos ¥ and T = cos ¢, followed by use of (5,
1.314.3) and (5, 1.441.2).)

Substituting these expansions in (4.30), making use of orthogonality, gives
~Volog2 =00, -n"'V,=0, n=12..., (4.34)

whereas (4.31) gives Vy = B(Bx — Bo). Equating the two expressions for Vj gives

Qo = B(By — Boo) log 2, (4.35)

and this can be used to determine Ao : the coefficient Qy is related to Q by (4.32),, Q is related to g
by (4.29);, and q is related to A, by (4.23). We also have (4.15)1,

1 1
Ao — Ao = — / V(@log (it + o) dr. (4.36)

To evaluate this integral, we expand the logarithmic term. We have
log(At + ) =logp +log(l1+ Qr) with 0<Q=2A/u <1,
noting from (4.27) that © > A > 0. We also have (5§, 1.514)
2
— Z Z(—/c)" cosnt = log (1 + k2 + 2k cos ) for |k| < 1.
n=1

Setting © = 2« /(1 + k2), we solve for x and obtain

B—VA b —a 1
o YB-VA _ 2 with y=— =2, 4.37)
VB JA b +a 28" 2

after use of (4.27) and (4.24). Thus
o0
2 n
log (At + n) = —log 2k /A1) — Z Z(—K) T,(1) (4.38)
n=1

using log i — log (1 + k2) = —log (2« /).
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Substituting (4.38) in (4.36), together with (4.32), (4.33) and (4.34),, gives

o0
1
Ap = Avo = —Volog (2k/3) = D ~(=K)"Vy

n=1

= B(By — Boo) log (26c/3) + ) (—K)" Q. (4.39)

n=1
This completes the solution of the problem: given By, Bo and wo(r) for a < r < b, we are able

to calculate w(r, ) uniquely. An example follows.

4.5 An example

As a simple example, take wo(r) = W + Wyr, where Wy and Wy are constants. Then
q(r) = Wo+ Wir —Asc — Bolog r,
gRP) = Wy — Ao + WiRP — BBy l0gR,

0(p) = Wo — Ass — BBy log (hp + 1) — B(Boo — Bo)log & + W (hp + ).

Next, we must expand Q(p) as (4.32);. To expand log (Ao + ), we can use (4.38). For the last term,
we have (Ap + n)? = uf(1 + Qp)f together with the expansion

(1+20) = Lo(B) +2_ Lu(B) Tu(p), (4.40)
n=1
where
oy TP n—p n—pB+1 2
L,(B) =(—) Tl F( 7 2 ,n—l—l,Q), 4.41)

(a)p = I'(a + n)/ I'(a) is the Pochhammer symbol and F(a, b; c; z) is the Gauss hypergeometric
function (see Appendix B.1). Thus

Qo =Wy —Ax + BBglog2x — BB log A + WluﬂLo(ﬂ), (4.42)
On = 2/n)BBo(—k)" + 2W1,uﬂLn(/3), n=172.... (4.43)

The function V(7) is then given by the Chebyshev expansion (4.32); with coefficients defined by
(4.34).
Substituting for Qg from (4.42) in (4.35) gives

Ao = Wo + WP Lo(B) + BBy logk — BBog log (1/2)
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ON MIXED BOUNDARY-VALUE PROBLEMS IN A WEDGE 383

and then (4.39) gives

Ao = Aco + BBy — Boo) l0g (2c/1) + Y (—=K)"Qn

n=1

= Wo + WP Lo(B) + BBy log (22 /3) — BBoo log k

o0 2n o0
+26B0 ) — +2Wiu? Y (=)' Lu(B).

n=1 n=1

in which the first sum is equal to — log (1 — «2).
Further terms in the expansions for small or large values of r can be calculated. For example, the
third term in the expansion near » = 0 is given by (4.16) in which

| )
C = _%/ (At + ,u)fﬁV(‘L') dt = —,uiﬂ ZLn(_ﬂ) Vi,
-1 n=0

using (4.32)1, (4.33) and (4.41). In this formula, V}, is related to Q, by (4.34), and then Q,, is given
by (4.42) and (4.43) for the linear choice of w(r).

5. Elasticity problems
5.1 Anti-plane contact problems

Anti-plane strain elasticity problems reduce to solving Laplace’s equation for w, the out-of-plane
displacement component. Anti-plane contact problems are not of great interest except as a vehicle
for developing techniques. However, one feature is noteworthy: w should be bounded everywhere
in the wedge, so that By = Bx, = 0.

Singh et al. (6) have considered a related contact problem in which the Neumann boundary at
0 = «, (4.1), is replaced by a Dirichlet condition, w(r, @) = 0 for r > 0. This is a simpler problem
because the Mellin transform of w exists for —y < o < y; see (2.2) and (4.37)5.

Another class of problems involving Laplace’s equation inside a wedge concerns surface water
waves interacting with a plane beach. For these problems, the Neumann boundary condition atd = 0,
(4.2), is replaced by a Robin condition,

10w

roo

]

where K is a positive constant. Problems of this kind have been attacked using Mellin transforms
by Ehrenmark and others; for example, see (7), where the role played by solutions with logarithmic
singularities at » = 0 is emphasised.

5.2 Plane-strain problems and discussion

As noted in the Introduction, Tranter (1) used Mellin transforms for plane-strain elasticity problems
with tractions prescribed on the two sides of the wedge; see also (8, §49), (9, §4.4), (10) and (11).
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384 P. A. MARTIN

There are also many papers dealing with composite wedges, where two (or more) wedges are welded
together to form a larger wedge; see (12) and references therein. Inevitably, these studies involve
the so-called Williams eigenfunctions and their relatives; for lengthy reviews, covering theory,
applications and history, see (13-15). In particular, much is known about the behaviour as » — 0
and as r — o0.

Contact problems for a single elastic wedge have received some attention (16-19) but detailed
studies for composite wedges await further work.
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APPENDIX A
A.1  Reduced problem with zero at the origin

Instead of starting from (4.7), define
u(r,0) =w(r,0) — Bglogr — Ag. (A.1)

so that V2ii = 0 in the wedge, together with du/00 = 0 at 6 = « and du/d60 = rf(r) at & = 0, where f is
defined by (4.12). We have # — 0 as r — 0 and

w(r,0)=—-A—Blogr+o(l) asr— oo, (A.2)

with A and B defined by (4.10). Finally, we have

u(r,0) =ug(r), a<r<hn, (A.3)
where
up(r) = wo(r) — Bplogr — Ag. A4)
To find &, we write
1
ur,0) = ~— / g(x)r “cos (z(6 — @) dz, (A5)
2mi JBr_

where the contour is just to the left of z = 0 and g(z) is given by (4.14). Moving the contour to the right, the
double pole at z = 0 leads to (A.2) with A and B related to v by (4.15).
From (4.14), (A.3) and (A.5), we have

b
ug(r) = ﬁ/B g(z)r%cos(za)dz = / I?(r/t) v(t)ydt, a<r<b, (A.6)

where the kernel is defined by

~ 1 coszo . 1
K()=— ——— 1 “dz= —logt + K(1),
27i Jgr_ zsinza o

and K is defined by (4.18). Substituting in (A.6), together with (4.21) and (A.4), gives

1
wo(r) — Bglogr —Ag = —7/~
o

a

b 1 b
v(t)logtdt + — / (1) log ‘tn/oz . rn/a‘ dt.
T Ja

But, using (4.15), the first integral is equal to a(Ag — Ax), and so we obtain the same integral equation as
before, namely (4.22).
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APPENDIX B
B.1 A Chebyshev expansion

From the binomial expansion (5, 9.121.1), we have

(1 + Qp)ﬂ = F(=B, b; b; —Qp) = Z (— ﬂ)n

(—Qp)"
n=0
(— ﬁ)zn )2 o (—B)an—1 2n—1
=1+ Z n ), - ’; m(gp) s (B.1)

where F(a, b; c; z) is the Gauss hypergeometric function and (—p8),;, = I'(m — B)/ I'(—p) is Pochhammer’s
symbol. Put p = cos ¥ and use (5, 1.320)

1 (2n | J— 2n
2n o __
cos 9 = —22,1 ( " ) + PyT E <n —m) cos 2mi,

m=1

n
cos? 1y = ! Z 2n—1 cos (2m — 1)9.
22n-2 —m

n
m=1

After substitution in (B.1), change the order of summation; the result is (4.40)
In detail, consider the first sum in (B.1). It becomes

oo nQZn 2 e
X e (1) 2 S

where

22n

(=B Q¥ [ 2n ad (—Bon Q™
Lan= ) 2n)! ( ) =2

- — 2
n=m n—m = (n—m)! (n+m)! 221
_ N gt 9 oy P Z @m—pry 9
22 p=0 pLp +2m)! 2% 22m 220 (p +2m)! p!

Q2m (=B)om (m — B/2)p(m+[1 — B1/2), Q%
22m (2111)' Z Qm+ 1), o (B.3)

Here, we have used (—B)2p2m = (2m — B)op(—B)am and (—B)ay = 2%1(=B/2)n([1 — B1/2)n; the second of
these made use of the duplication formula for I"(2z) (5, 8.335.1). The remaining sum in (B.3) is

2m — 2m — 1
F<m2 ﬂ’ " 2ﬂ+ s 2m+1; 522>.

For L, combine the 1 on the right-hand side of (B.1) with the first sum in (B.2). Similar calculations, and also
for Ly,,,_1, yield (4.40) with (4.41).
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