Asymptotic Approximations for Radial Spheroidal
Wavefunctions with Complex Size Parameter

By P A. Martin

Radial spheroidal wavefunctions are functions of four variables, usually
denoted by m, n, x, and y, the last of which is known as the size parameter.
This parameter becomes complex when the problem of scattering of a sound
pulse by a spheroid is treated using a Laplace transform with respect to
time together with the method of separation of variables. Several asymptotic
approximations, involving modified Bessel functions, are developed and
analyzed.

1. Introduction

The problem of scattering of a sound pulse by an obstacle leads to an initial
boundary value problem for the three-dimensional wave equation. Applica-
tion of the Laplace transform with respect to time ¢ then gives a boundary
value problem for the modified Helmholtz equation, VZu — (s/c)’*u =0,
where c is the speed of sound and s is the Laplace transform parameter. If
the boundary value problem for u can be solved, the time-domain solution
can then be found by inverting the Laplace transform, using a contour inte-
gral in the complex s-plane.

The method outlined above was first worked out by Jacques Brillouin in
1950 for scattering by a sphere [1]; see [2,3] for details and references.
Separation of variables in spherical polar coordinates shows that the radial
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(r) part of the solution is given in terms of modified spherical Bessel
functions,

kn(sr/c), where k,(z) = /7/(22) K,1112(2), (N

and K,(z) is a modified Bessel function [4, 10.47.9]. It is known that all the
zeros of k,(z) lie in the left half of the z-plane, and good approximations
for their locations are available. The zeros give rise to poles in the s-plane
which are then exploited when the inversion integral is evaluated using the
calculus of residues.

It is natural to use a similar method for scattering by a spheroid,
using separation of variables in spheroidal coordinates. Let & denote
the “radial” variable, so that the spheroid is at & =&, for some & >
1. The relevant radial spheroidal wavefunctions (defined in Section 2)
are

S"ONE, ish/c),

where 24 is the interfocal distance of the spheroid. As before, the
task is to locate the zeros of SZ’G)(SO,ish/c) in the complex s-plane.
This is appropriate for sound-soft spheroids (Dirichlet problem). For
sound-hard spheroids (Neumann problem), zeros of the &-derivative are
needed.

For axisymmetric (m = 0) Neumann problems, some numerical results
were given by Bollig and Langenberg [5] in 1983; we are not aware of
any earlier results, which is surprising. For extensions to Dirichlet and
Neumann problems (with several values for m), there are a few papers
from the 1980s [6-8]; we are not aware of any later results, which is also
surprising.

Spheroidal wavefunctions such as S,'f’m(x, y) are complicated functions
of four variables implying that many different approximations covering
various parameter domains are to be expected. After a brief review
of basic definitions and properties in Section 2, we develop asymptotic
approximations for large complex y in Section 3. In the special case where
y is real and positive, we recover an approximation due to Miles [9].

The method used to derive our large-y approximation is based on one
found in Olver’s well-known book [10]. Unfortunately, the approximation
itself is not immediately useful in the context of our specific application,
namely, locating zeros of Sy*)(&,ish/c) in the complex s-plane (see
Section 3.6). Consequently, we develop another approximation in Section 4,
one in which y is fixed but » and x are large; the resulting approximation
involves a modified spherical Bessel function. This is attractive because
it permits fairly straightforward estimation of zero locations using known
properties of k,.
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2. Spheroidal wavefunctions

The spheroidal wave equation can be written as [4, 30.2.1]

d? d m?
(l—xz)a);—Zxay—i-(A—i-yz(l—xz)—l_xz)yzo, (2)
where we assume that x is real, m is a nonnegative integer and y is
a complex parameter. The standard special cases are: associated Legendre
equation, y = 0; axisymmetric, m = 0; prolate, y is real and positive; and
oblate, y = iu, u is real and positive.

The first step is to determine eigenvalues A = A”(y?) so that y(x) is a
bounded solution of (2) for —1 < x < 1. The integer » is a counter; we take
it to satisfy n > m. The eigenfunctions corresponding to the eigenvalues
A"(y?) are denoted by Ps”(x,y?), n=m,m~+1,m+2,..., and they are
called angular spheroidal wavefunctions.

The axisymmetric case (m = 0) has been studied extensively; for exam-
ple, there is a book [11] dedicated to properties of Ps’(x, y?) when y? is
real and positive.

In general, A"(y?) and Ps”(x, y?) are complex valued. Nevertheless, an
argument of Sturm—Liouville type gives orthogonality,

1
| sy Py dx =0 when 227) £ 420
-1

Numerical methods for computing A”(y?) are available; the paper by
Barrowes et al. [12] gives a good survey. Analytically, it is known that [4,
30.3.8]

o0
My =nm+ D)+ ™, |y < 3)
k=1

where the coefficients £, can be computed and estimates for the radii of
convergence ;' have been given [13, section 3.2]. It is also known that
there are branch points in the complex y-plane; these were first noted and
their locations computed by Oguchi [14]. See [12, 15] for further studies and
references.

Some asymptotic approximations for A”(y?) are also available. Put
y = |yle'. For large |y|, we have [4, 30.9.1]

1
AZ’()/Z) ~ —y24+2vy when x =0 <prolate case; v=n—m+ E) 4)

but [4, 30.9.4]
A™(y?) ~2qly| when x = /2 (oblate case); (5)
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here, g =n+1 when n—m is even and ¢ =n when n —m is odd.
For other values of x, it appears that one obtains either the prolate
approximation or the oblate approximation, depending on the value of x and
the locations of the branch points (which depend on n and m). Quoting [12,
section 3.3]: “At these branch points, two spheroidal eigenvalues merge and
become analytic continuations of each other.”

The complications for large y and fixed n contrast strongly with the
situation for fixed y and large n. Then we have [4, 30.3.2]

Ay =nn+1)—y?/2+0m?) asn— oo. (6)

This simple estimate (which comes from (3)) holds for arbitrary fixed y.
Once A"(y?) has been determined, we can consider solving (2) for

x > 1 so as to define so-called radial functions. We are interested in the

solution that — 0 as x — oo when Imy > 0. This solution is denoted by

SO (x, y). Specifically, we have [4, 30.11.6]
SO0 y) = B (14 0G7) - asx — oo @

for fixed y, where hg,l) is a spherical Hankel function. For fixed x > 1,
m>0, and n > m, S;,”G)(x,y) is an analytic function of y. We are
interested in the analytic continuation of S."® (x,y) into the lower half of
the y-plane, because that is where we expect to find zeros.

3. Asymptotic approximations for large y

3.1. Prolate and oblate cases

For the prolate case (x = 0), Miles [9, eq. (3.11)] gives the asymptotic
approximation

g
SOy~ [ HP X asy =yl > oo ®)

for 1 < x < o0, where

X =& — (v/y)arctan&, E=+vx2 -1, v:n—m—l-% 9)

(see (4)) and m and n are fixed. As a check, when x is large, y X ~
yx — v /2. Then, using [4, 10.2.5], (8) gives

elrx

3
§06 )~ g

which agrees with (7) after use of [4, 10.52.4].
For more information and related approximations, see [16—19].



On Radial Spheroidal Wavefunctions 259

For the oblate case (x = m/2), some asymptotic approximations are
available for large |y|; see [20,21].

3.2. Use of Olver’s method

Returning to (2), remove the first-derivative term in the usual way by
writing

y(x) =8V, ) = (¢ = )7 w(x). (10)

The result is

d2w k;;z + J/2 _ y2x2 m2 -1
dx2

1 + 2 = 1)2) w(x). (11)

We assume that Imy > 0 (so the oblate case is included). We want to solve
for w(x) with x > 1, and we want to choose w so that w(x) — 0 as x —
o0o. Indeed, from (7), the decay should be given by w(x) ~ i™"(iy)"'e”* as
x — oo; evidently, this behavior comes from the term —y2x?/(x?> — 1) on
the right-hand side of (11).

It is convenient to put ¥y =iu so that Reu > 0. In this half-plane, w(x)
solves

d2 2.2 .2 )Lm_2 2_1
w _ (wxT —u+ (—u?)  m w(x) (12)
dx? x2—1 (x2 —1)?
and is required to decay exponentially as x — oc.
Connecting with the notation in Olver’s book [10], write (12) as
d’w
T = W@ g, x> 1, (3)
where u is the large parameter,
x? —p? m? —1
S iy = 14
fO="5T g =y (14)
and the parameter B is defined by (cf. [19])
B2 =1—uA"(—u?). (15)

It follows from the discussion in Section 2 that the behavior of S as
y — oo depends on argy. In prolate-type regions of the complex y-plane,
B — 0 as |y| — oo, whereas in oblate-type regions 8 — 1. These results,
which follow from (4) and (5), will be used in Sections 3.4 and 3.5.

Let us apply Olver’s recipe formally. Thus [10, chapter 12, section 2],
introduce a new independent variable ¢ and a new dependent variable W



260 P. A. Martin

according to
1 (de\* (A2

The result is

w et T “7)

where Y is given in terms of f and g by [10, p. 439, eq. (2.06)]. If we

neglect ¥ in (17), solutions are Z1,,(uZ) and ZK,,(uZ), where Z = ¢'/2.
Integrating the first of (16),

X X d
z=c= [yorra= [e-pr = ay

We choose the branch so that (1> — 2)"/?2 ~ ¢ as t — 400, whence Z ~ x
as x — 4o00; in detail, the substitution y = /¢ — 1 gives

Z=vVx2=14+Zy+0x7") asx — oo,

where the constant

00 > YNV
zozf <(y+1 'B)/—1>dy. (19)
0

d2W_<u2 m? — 1 w)W

NG
With this choice,

W)~ AoyZK,,(uZ) asu — oo,Reu > 0, (20)
where A is an arbitrary constant. From (16),

2/ — '
(x2 — B2)I/4

w(x) ~ Ay K, (uZ) asu— oo,Reu > 0. (21)

Hence, using (10),
IO iu) ~ Ao(Z/2) {6 - DEE - ) Kz @)

as u — oo with Reu > 0. The constant 4, can be found by letting x — oo

and then comparing with the known asymptotic behavior of S,',"G). From (22)
and [4, 10.25.3],

Sm(3)(x 1u) ~ Aoﬁe—u(.\‘—&-Zo)
! ' 2x./u ’
using Z ~ x + Z;. On the other hand, it is known [4, 30.11.6 and 10.52.4]
that

—ux

SZl(S)(x’ 1u) ~ hg[l)(iux) ~ =i , (23)
ux
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whence 4y = —2i7"e“%*(ru)~"/?. (This calculation also provides a check on
the functional form of the approximation (22).) Thus, from (22),

—QZ)V2e" % K, (uZ)
i (ru)'2{(x* — D(x* — )}/

537(3)(% i) ~ asu — oo,Reu > 0. (24)

This is our basic approximation for SrC) for large u.

3.3. Endpoint behavior

By design, the approximation (24) behaves correctly as x — oo. It also has
the correct functional form as x — 14. To see this, we note from (18) that
Z(x) ~ {(x* = 1)(1 — B*)}'/? as x — 14. Then, using [4, 10.30.2], we find
that
_2m/2(m _ 1)| euZo

in(znu)l/Z um(l _ 132)171/2
This can be compared with the approximation obtained by combining
16.11 (18) and 16.12 (2) in [22]; both have the same dependence on x
multiplied by complicated combinations of the other variables.

S x, iu) ~ x—D7"7 asx—>14. (25

3.4. Prolate case

Although (24) was derived assuming that Reu > 0, let us apply it when
Reu = 0, which is the prolate case. From u = —iy and [4, 10.27.8],

K,uZ) = (x/2)i" " H(y 2).
Also, from (4) and (15),
B2=1+ y‘z)\g(yz) ~2v/y asy — o0 (26)

B2 is small. Hence, from (18),

£ 2 172
Z:/ (1— P ) dy
0 y2+1

: B B’
N/() (1_m) dyzg—jarctan%‘, (27)

where & = +/x2 — 1. Making use of (26), we see that Z reduces to X in
Miles’ approximation (9). Also, Z, ~ —mfB?/4 ~ —mwv/(2y). This follows
from (27). Alternatively, (19) and [23, 3.169 (2)] give

Zo = (1 - BHK(B) — E(B), (28)

where K and E are complete elliptic integrals. Some further calculation
then shows that we recover precisely the approximation obtained by Miles

[91 (8).
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3.5. Oblate case

In this case, u is real, positive and large. From (5) and (15), B> ~ 1 —2q/u
as u — oo: B2 is close to 1. From (28), [23, 8.113 (3)] and [23, 8.114 (3)],

g2 (1 4 o , 2

Then (24) leads to an approximation for oblate spheroidal wavefunctions. It
is likely that this approximation is known although we have not found it in
the literature.

3.6. Complex u

In the general case, we have the estimate (24) in which g8, Z, and Z; are
given by (15), (18), and (19), respectively. Also, (24) was derived assuming
that Reu > 0. The complicated branch-point structure of the eigenvalues
A"(—u?) in the u-plane makes it difficult to use (24), unless one is
interested in the behavior along a particular ray on which argu is fixed.
In the applications we have in mind, we want to continue our estimates
analytically into the left half of the u-plane, Reu < 0, where we expect to
find zeros. Consequently, we proceed to look for alternative approximations.

4. Asymptotic approximations for fixed u

The standard methods described in Olver’s book do not seem to work for
large n but fixed u. To see the difficulty, write (12) as

d*w 5 A (—u?) m? — 1
ax? (M * x2—1 * (x2 — 1)2> v @

where A7 is large; from (6),
A (—u?)=n(n+ 1)+ u?/2+0m?) asn— oo. (30)

When x is large, the u? term on the right-hand side of (29) is dominant
and crucial, because it gives the required exponential decay, as e ** when
x — oo. For finite x and large n, the second term on the right-hand side of
(29) is dominant.

Let us follow Olver again [10, chapter 10, section 1], starting with

d*w

e P’ f() + g)hw(), 1)
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where p is the large parameter. Comparing (29) and (31), we put

2 mg_,2 1 ,, m—1
o= 4, (=u), J(x) = R glx)=u +m- (32)
Still following Olver, make the substitution
wx) =x"2WE), & =dv/dg (33)
in (31). The result is [10, p. 363, eq. (1.02)]
%V = (P () + Y@M, (34)
where
Y(€) = Pg(x) + 1"/ /dgH)x 2, (35)
Now, we know that one solution of
%=<M2+v2—‘l‘)v (36)

is £'2K,(u£); see [10, p. 374]. This solution decays exponentially with &,
behavior that comes from the w? term in (36). The analogous behavior in
(34) comes from v, via the u? term in g. On the other hand, the large
parameter in (34), p, is associated with f. Therefore, if we suppose that v is
large, comparing (34) with (36) suggests that we try

Pfx) =67 (37

(This is not one of the three cases studied by Olver [10, p. 363].)
Integrating,

X d[
logé = / = arccoshx = log (x +VxZ— 1)
1

Vit —1
whence
1
x=cosh(log$)=§+; , E=x++Vx2—-1. (38)
Thus
2= 1—E2, 42— 1) =41 — E2)P = 4E%42, (39)

xl/Z(dZ/dé_J)xfl/Z — 3(52 _ 1)72.
Substituting in (35), using (32);,

2 2
_ 2.2 m-—1 -1/2d .12
V=1 (“ +m)+x @
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o (1_§_2)2+m2—1 L3
T4 gix2 (82— 1)
uru?
T Tt
say, with
u? 4m? — 1
= —4+ . 40
WO = 1mt @y (40)
Substituting for ¢ in (34), using (32); and (37), we obtain
d>w w1 2
@ =5 (e =) rup e

This equation is exact.
We note that y4(£) = O(E~*) as & — oo (thus explaining the notation
“¥4”). If we discard 4, (41) becomes (36) with

1 2
u:g, V- 2= A= u)—— (42)
suggesting the approximation
W(E) ~ &K, (u§) = Wo(§), say. (43)

By discarding 14, we may expect that this approximation can be justified as
& — oc.
For large n and fixed u, we have the estimate (30). Then (42) gives

vi—l=nn+1)+ O(n_z) as n — oo, whence

1
v:n+§+0(n’3) as n — oo (44)
implying that v =n + % to high accuracy when # is large.

4.1. Error analysis

To investigate the approximation (43), we try an analysis patterned on one
given by Olver [10, chapter 6, section 2] in the context of Liouville-Green
approximations.
Put W (&) = Wy(&){1 + h(£)}, where h is to be estimated. We have
W= Wyl + h)+ Woh', W" = W1+ h)+2Wih' + Wyh".
Substitute for W in (41) (with (42)). As W, satisfies (36), we find that
2Wih' + Woh" = YaWo(1 + h), which we write as

[Woh'] = w5 (1 + h).
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Integrating once gives
#E) = DR [ OB+ Ao .
Integrating again gives

he) = /g (] f PaOUTOTAL + h(1)) dr d
n

- /g K€, ) ya(o){1 + h(0)} dr, (45)

" W) ?
]C(?;‘,t)—/; <W0(77)) dn. (46)

Equation (45) is a Volterra integral equation of the second kind for 4. Such
equations can (usually) be solved by iteration.

Let us estimate |IC(&,t)|. From eq. (3.6) in [24] (where an extensive
bibliography can be found),

where

K, 1,2
DoMD" w1 0<x<y
K.0) x 2
Hence,
1,2
Wo(t)  t/"K,(ut) < =0, 0<n<t. (47)

Won) — n'/2K,(1un)

This holds for real p with u > 0. We have shown elsewhere [25] that (47)
can be generalized to complex u when v =n + % (see (44)); specifically

Wy (1)

Wo(m)

for u; = Repu > 0.
Using the bound (48) in (46),

"2 K g1 /2(pat)
U1/2K11+1/2(W7)

< etn=1), 0O<n<t (48)

t
K&, 0l < / e dpy = 1 (1—emt9) <

1

£ Uy Ur
as t > &, where u, = Reu and we have used u = u/2, (42).
Define a sequence %;(§), j =0, 1,2, ..., with Ao = 0 and

hi(€) = /S KE OO +h@o) e, j=1.2.... (49
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In particular,

hy(E) = / K(E. 1) pa(r) dr (50)
&
whence (48) gives
(®)] < WE)  with W(E) = — / ()] dt. 51)
Ur Je

Next, from (49),
hi(§) — hj—1(§) =/€ K&, t) Ya(Oh;—1(t) — hj_o(0)} dt (52)
for j =2,3,.... In particular,

[ 1 ,
a(E) — hi(®)] < ~ f a()| () df = = [W(E)]
Uy Jg 2

and then an inductive argument gives

1 .
\hi(&) —h;(8)| < I [(wEY, j=123,.... (53)
Here, we have used
Lo R e e
o ooy a=— [ ooy e =S

Using a telescoping series and /¢ = 0, we have

q
he(8) =Y 1hi(€) = h;1(5)).

J=1

Letting ¢ — 00, we put & = h.; the bound (53) gives absolute convergence
for any & and the estimate

|h(€)] < eV — 1. (54)

Olver’s arguments [10, p. 195] show that the function 4 constructed does
solve the integral equation (45) and that it is twice differentiable.
To use (54), we estimate W, using (40) and (51). Thus

1 [ [(|lu)? |4m> —1]
vor= [ e L

L[ uP m -1 2 £-1
-l () @

using [23, 2.149.2 and 2.143.3]; the bound on the right is O(£7%) as
& — oc.
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4.2. Approximations for sy

Returning to (43) with u = u/2 and the large-n estimate (44), we obtain the
estimate

W(E) ~ A" Kop10(ué )2),

where A; is an arbitrary constant. This is justified for sufficiently large »
and &, and it was derived for Reu > 0.

From (33) and (39), w(x) ~ A;(x* — )"/* K, 11,2(u&/2), and then (10)
gives

S;[n(})(x’ lu) ~ Al(xz o 1)—1/4 K,H_]/z(u?;:/z) (56)

The constant A4; can be found by letting x — 0o and then comparing with
(23). As & ~ 2x (see (38)), we obtain 4; = —i~"(2/[ru])"/? after using [4,
10.25.3]. Hence

—(26)'2 ky (u§ /2)

i 7T (xz _ 1)1/4 ’

where k, is a modified spherical Bessel function (1) and § = x + +/x? — 1.

S (x, iu) ~

(57)

4.3. Discussion

The approximation (57) is attractive because it is fairly simple, and it
involves k,; much is known about locating the zeros of k,(u£/2) and they
are in the left half of the u-plane as expected. The functional form also
gives the correct behavior as x — oo, but it is not valid as x — 1+ (a limit
that is not relevant in the application to scattering problems).

However, there is one surprising feature: m is absent. Looking back, we
see that we lost m in two places. First, we discarded 4; m occurs in the
estimate (55). Second, we accepted the estimate (44) for v. This can be
improved. Thus, referring to (3) and [4, 30.3.8], we find

20, = —1—@2n)2@m* — 1)+ O(n™>) and 20, = (4n)2 + O(n™>)
as n — oo; all higher £, are smaller. Hence, (6) is refined to
M (—uP)=nn+1)+u’/2+An"?+ 0n>) asn— oo,
where A = tu?(4m* — 1)+ s5u®. Substitution in the definition of v, (42),,
then refines (44) to
= +1+A+0(—4) — (58)
v=nto+o3 n as n — oo.

This may then be inserted in the expression for Wy(§), (43). The resulting
estimate then depends (weakly) on m (through A) but is no longer a
modified spherical Bessel function.
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