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incoming spherical wave and an outgoing spherical wave? We review the rele-
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we answer the question for Herglotz wavefunctions, using a combination of the
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1 | INTRODUCTION

Let u be a regular wavefunction. These are source-free solutions of the Helmholtz equation, (V2 + k*)u = 0, everywhere
in 3-dimensional space; the suppressed time dependence is 7', k = w/c is real and positive, and c is the constant speed
of sound. This work began with the following question: when is it legitimate to write
. eikr . —ikr

u(r) ~ Zout(¥) r + Zinc(F) kr
Here, r is the position vector of a typical point with respect to an arbitrary origin O, r = |r|, ¥ = r/r, and g, and g;,.
are functions of direction # only. The first term on the right-hand side represents an outgoing spherical wave (because the
time dependence is e~!), and the second term represents an incoming spherical wave.

The Sommerfeld radiation condition ensures that scattered fields are purely outgoing; for such fields, g;,. = 0 and
gout(P) is the far-field pattern. Moreover, a purely outgoing field cannot be regular everywhere (unless it is identically
zero)."corollaty 39 Thys, the main interest of (1) lies in its application to incident fields.

The formula (1) has a long history. In fact, there is a physics thread (Section 2) and a mathematics thread (Section 3),
with little interaction. We start with the physics thread and a paper by Gerjuoy and Saxon.> After giving some simple
counterexamples to (1) (such as a plane wave), we critique an attempt by Gerjuoy and Saxon to extend (1) to plane waves.
This leads to a preliminary discussion of a lemma due to Jones,* which gives far-field approximations for certain integral
representations of regular wavefunctions. These are superpositions of plane waves propagating in all directions §,

as r— oo? 1)

g(r) = / q(8)e" Q@) )
Q
where Q is the unit sphere and g is a given function defined on Q. The Jones Lemma gives the far-field behaviour of u,

when g is smooth. Indeed, it gives an answer to our question: u(r) does have the behaviour (1) if u can be written as u,
with a smooth q.
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We pick up the mathematics thread in Section 3, which is concerned with ug; when g is square integrable, g € LX(Q).
Then u, is known as a Herglotz wavefunction; these have been studied since the 1950s, but they became more familiar
later because of their prominent role in inverse scattering theory.* s¢¢tion 3.3 Herglotz knew that his wavefunctions may not
satisfy (1) in every direction ¥, although they do satisfy a weaker averaged version of (1); see (17) below.

The far-field behaviour of integrals such as (2) can be investigated using the 2-dimensional method of stationary
phaseﬁ’SBCtion 846 This method is summarised in Section 4, and the Jones Lemma is recovered. As we are interested in
violations of (1) by u,, we examine two simple choices for g in Section 5. In the first, q is piecewise constant with a dis-
continuity around the equator of the sphere € (Section 5.1). We find that u, does satisfy (1) in all directions except along
the axis perpendicular to the equatorial plane. The second example (Section 5.2) is more complicated in that g has an
integrable singularity around the equator; the singularity strength can be varied, so that ¢ € L*(Q) or ¢ ¢ L*(Q); this
difference is shown to have a profound effect on the far-field behaviour.

2 | PHYSICS THREAD

The physics thread seems to startin 1954 with a statement in a paper by Gerjuoy and Saxon? P1#8; “At infinity [the incident

field] is composed of incoming and outgoing spherical waves. Hence [as the scattered field is outgoing and] neglecting

terms of order 1/r? [the total field p satisfies]

ikr e—ikr
r 2

lim p(rf) = F1(§) = + Fa®)
r—-oo

3)

where” F; and F, are related by a so-called scattering matrix. Similarly, in 1955, Saxon” P?7 wrote “We now decompose
the asymptotic solution for r = rf, r - oo, into incoming and outgoing waves along r; that is, we write” Equation 1,
without further ado. See also Saxon.® ¢4 2

One feature of (1) is that its right-hand side — 0 as r — oo. This property is not enjoyed by the simplest incident field,
a plane wave, defined by

Upw(r) = exp(ikr - §), 4

for which |upw(r)| = 1 everywhere. (The unit vector § gives the direction of propagation.)
Another feature of (1) is that its right-hand side is O(r™!) as r — oco. For an example that does not have this behaviour,
take an axisymmetric Bessel beam,

upy(r) = exp(ikr cos 0 cos f)Jo(krsin 6 sin ff),

where r and 0 are spherical polar coordinates, f§ is a real parameter, and J, is a Bessel function. We see that uy,;, decays
as (kr)~'/2 in all directions # except along the z-axis (§ = 0, x); here, we have used the Digital Library of Mathematical
Functions.” 1078

For another example, we have

u(r) = Jo(krsin @) rcos 0,

which grows with r in all directions except in the plane § = 7 /2.
Gerjuoy and Saxon? try to fit incident plane waves into (1). Removing the scattered waves from their equations (30) and
(31) leads to the following calculation,

exp(ikr - 8) = 4z Y i"ju(kr)Y,"®)Y}(S)
nm

2 mea\ym g § okt n n—ikr
= ﬁZmY ®Y;® { ~ (-1e} )

eikr —ikr
=268 —1)— — 2768 + ) —,
ikr ikr




MARTIN W l L EY 2963

where j, is a spherical Bessel function and Y}" is a spherical harmonic. The first equality is a standard result,' ¢4 440 the
second step makes use of the standard asymptotic approximation® 10--3

. 1 D" .
jn(w)fv;mn(w—n?”):m{e —(-D"™} asw— oo 6)

(although this is not stated in Gerjuoy and Saxon?), and the third defines the “spherical delta function” by Jackson*® ¢ 3-56

5@ —£)= ) Y ®Y®). @
n,m
Gerjuoy and Saxon® ®4 32 go on to assert that (5) is a “special case” of (1), with gou(®) = 276(8 — #) and gin.(F) = —276(8 +
#) = —gou(—1). For another formal derivation of (5), see Nieto-Vesperinas and Wolf.!22Ppendix A Roman!3 P163 writes “The
asymptotic form of ¢’*% is obtained from

ez — Z(Zn + 1)i"j,(kr)P,(cos 0) (8)

n=0
and (6) as”

sin(kr — nz /2)

kr ©)

elke ~ Z(Zn + 1)i"P,(cos 9)
n=0
Here, P, is a Legendre polynomial, and (8) is a special case of the first equality in (5).
The derivation of (5) given above is open to two criticisms. The first is that the series (7) is divergent. Nevertheless, it is
customary to take its meaning to be such that

Y = / 565 — HYT$) Q).

Q

where Q is the unit sphere, or, more generally,

/F(§)6(§ —1)dQ(8) = F(¥), (10)

Q

where F is an arbitrary continuous function defined on Q.

The second criticism stems from the use of (6): that asymptotic expansion holds asw — oo for fixed n and so it cannot
be substituted into an infinite series with respect to n (without further justification). Indeed, it was this step that led to
the divergent series in (7).

Related to this criticism is the peculiar nature of the ubiquitous formula (9); it is found in many books apart from
Roman, such as Joachain, €& 458 Sakurai,'s <& (768) and Gonis and Butler.!® ¢ (340) Often, the ~ is replaced by 7 — .
Although it is difficult to assign a meaning to (9), some of the related calculations could be reworked after first subtracting
the incident plane wave.

Now, it turns out that we can bypass the second criticism, but only if we already believe that (1) is valid! Thus, given a
regular wavefunction u, suppose that (1) is true and suppose that we can write

g.(®) = z g Y (®), a =outinc.
n.m

We know that any regular wavefunction u has an expansion

) = Y drjukn)Y;'(®).

Then, as the spherical harmonics are orthonormal, (1) gives

m " eikr m e—ikr 1
dyjnkr) = g o + &piinc i +o(r ), r— oo.
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As n is fixed, we can use the asymptotic approximation (6) for large r on the left; comparison of the exponential terms
then gives

1, . 1.
gnm.out = 5(_1)nd;ln7 g:zinc = _Elnd:ln’ (11)

and these determine g, and g;,.. In particular, as the spherical harmonics satisfy'> ¢d 3-8
Yy (=f) = (D)"Y (®), (12)

we find that ginc(¥) = —gout(—F). If we apply this method to the plane wave (4), we find d}J} = 4ni"%, and then we are
led back to the divergent series (7).

But brushing aside any anxieties about its derivation, how should the formula (5) be interpreted? The presence of the
delta functions implies that u,y(r) ~ 0asr — oo for # # £8§, which is clearly false. In Nieto-Vesperinas and Wolf,'> footnote 9
the authors write: “A plane homogeneous wave (4) formally has the asymptotic behaviour (5) as kr — oo ... Hence a plane
wave provides both incoming and outgoing contributions at infinity.” A similar difficulty arises when trying to interpret
(9)_13, eq. 3-57

Another possibility is to multiply (5) by a smooth “test function” g(8) followed by integration over Q, giving

e—ikr

ikr’

ug(r) = / q(8)e* S dQ(8) ~ 27 q(F) % — 2w q(—F) (13)

Q

after using (10). In fact, this formula gives a rigorous asymptotic far-field estimate of u,(r) (replace ~ by = with an error that
iso(r!)asr — co) provided q is smooth and bounded. This result is due to Jones?; his proof uses the 2-dimensional method
of stationary phase and requires that g be twice differentiable. The Jones Lemma is stated by Born and Wolf!” 2ppendix XII
but without the crucial smoothness requirement on q. Indeed, if g is not smooth and bounded, then u, need not behave
as in (13); examples will be given in Section 5. But first, we introduce Herglotz wavefunctions, and then (Section 4) we
recall and apply the 2-dimensional method of stationary phase.

3 | MATHEMATICS THREAD: HERGLOTZ WAVEFUNCTIONS
Recalling the formula (13), write

u(r) = / q(8)e*r3dQ(s). (14)

Q

This defines a regular wavefunction u for any integrable q as a superposition of plane waves (4) propagating in all directions
8. This type of integral representation goes back to Whittaker.'* It is also called a plane-wave expansion!%P%0and¢g. 6.34 g
an angular spectrum representation.?” ¢ 230 It has been said (erroneously) that “the plane waves form a complete set into
which any incident wave can be expanded” in the form (14)' P247; here, the word “any” is too broad. (Approximation of
regular wavefunctions by plane waves is a topic of current research; for example, see Moiola et al.*')

Instead of trying to write a given wavefunction in the form (14), we focus on properties of u given g. Colton and
Kress* definition 3.18 a1l y a Herglotz wavefunction when q is square integrable, ¢ € L?(Q). Herglotz was interested in the
growth of regular wavefunctions. Specifically, we have the following result* theorem 3.30:

Theorem 1. A regular wavefunction u has the growth property

sup = / ()2 dV(r) < oo (15)
R>0 R /

ifand only if it is a Herglotz wavefunction, that is, ifand only if there is a function g € L*(Q) such that u can be represented
in the form (14). In (15), By is a ball of radius R.

This theorem is due to Hartman and Wilcox.?» th®or*m4 We note that the growth condition (15) is satisfied if ru(r) is
bounded everywhere.
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Now, given g € L*(Q), we can write

g®) = Y qYiE) with g = / gEY7E) Q).
n.m Q

Then substituting in (14) gives
u(r) = 4z ) i"qpjukr)Y;'(®).

If we insert the asymptotic approximation (6), “there results formally an approximation for u(r) for large r given by”?% 251
—ikr

kr
U = 2= o L (e - e YY) = 20 q(0) S - 27— S (16)

where we have used (12). Note that U(r) is the same as the right-hand side of (13). The plausible “formal” derivation just
given might lead one to hope that u(r) ~ U(r) as r — oo, but “Herglotz has pointed out (in 1945) that, in general, one
does not have u(r) — U(r) = o(1) as r — co even under the boundedness condition” (15).2*P252 In fact, although we may
not have u(rt) — U(rt) = o(1) as r — oo for each choice of direction &, a weaker result is available?® ¢4 26:22 €. 2.5.

%/ lu(r) — U@)|>dV(@x) > 0 asR — . 17)

Bg

The fact that the density function g(8) appearing in (14) also appears as q(xf) in (16) is a known property of Herglotz
wavefunctions; see Hartman and Wilcox.2% lemma 4.1 and theorem 4

4 | TWO-DIMENSIONAL METHOD OF STATIONARY PHASE
One way to find the far-field behaviour of regular wavefunctions defined by (14) is to use the method of stationary phase
(MSP). Start by introducing spherical polar coordinates so that

= (sinfcos ¢, sinfsing, cosf), 8§ = (sinacospf,sinasinf, cosa).

Then, with q(§8) = q(a, §), (14) becomes
u(r) = u(r,0,¢) = / / q(a, per®@P sin adpda, (18)

where ®(«, ) = sin 6 sin a cos(ff — ¢) + cos 6 cos a.
Let us begin with a special case, # = 0. Then ® = cos @ and

a

u(r’ 0’ ¢) — /qo(a)eikrcosa sinada = L/qo(a) ieikrcosada’
kr da
0

0

where go(a) = /7, q(a. §)dp.
Assuming that q, is differentiable, we can integrate by parts to give

—1kr

u(r,0,d) = 27rq(z)— —2rq(- z) gh(a)e*resady (19)

1k
0

using qo(0) = 27q(2) and qo(x) = 27q(—2), where Z is a unit vector along the z-axis (¢ = 0). For the remaining integral, we
can use the 1-dimensional MSP. This shows that the dominant contributions come from the stationary-phase (SP) points,
which are at @ = 0 and & = 7. If q;,(0) and gq((«) are finite, the integral is O(r~2) as r > o0, and so the last term in (19) is
asymptotically negligible. Hence,

—1kr

u(r,0, @) ~ 27rq(z)— —2rq(— z) asr — oo. (20)
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Similarly, when 6 = =,
eikr —ikr
~2ra(—3) S — 2 a(
u(r,m, ) ~ 2w q(—2) . nq(z) .

asr — oo. (21)

Having disposed of the cases @ = 0 and § = z, suppose now that 0 < 6 < 7. We use the 2-dimensional MSP.> section 8:4
The SP points are given by solving

0d

Fri sin 6 cos a cos(ff — ¢p) — cosfsina = 0, (22)
a
% = —sin#sin a sin(f — ¢) = 0. (23)

Equation 23 gives sin « = 0 or sin(f — ¢) = 0; of these options, the first is irrelevant because the integrand in (18) vanishes
when sina = 0. Hence, f = ¢ or f = ¢=x (Whichever satisfies |#| < ). Then, from (22), we obtain « = § when f = ¢
and ¢ = 7 — 6 when f = ¢=*x. In other words, there is one SP point at § = # and one at § = —¢.
If (ao, By) is an (isolated) SP point, it contributes
2 sin « . . .
o 40, fo)———— exp {ikr ®(av, fo) +i(z/4)sigA} (24)
r V| detA|

to the asymptotic behaviour of u(r), (18), as r — co.* 48444 Here, the 2x2 matrix A has entries A; = 0°®/0¢&;0¢; evaluated
at (ag, fy), &, = a, &, = f and sig A is the signature of A, equal to the number of positive eigenvalues minus the number
of negative eigenvalues. Some calculation gives

A(S) = A(ao, fo) = (

—sin 0 sin ay cos(fy — ¢p) — cos O cos ay — sin O cos g sin(fy — ¢P)
—sin @ cos ap sin(fy — ¢) —sin@sin agcos(fo — ¢P) |’

. -1 0 . N . A
A() = ( 0 —sin0 ) = —A(-t), SigA®) = -2, SigA(-t)=2.
Summing the contributions from both SP points, noting that ®(+#) = £1, we obtain

eikr —ikr
~ 2 ) — —2 —f
u(r) ~ 2z q(r) . nq(—T) o

asr — oo. (25)

We note that (25) agrees with the results for @ = 0(f = Z) and for 0 = #(¥ = —%), (20) and (21), respectively. In other
words, (25) holds in all directions #. This result is known as the Jones Lemma,* for smooth functions g. It shows that
Herglotz wavefunctions with smooth density functions q do satisfy (1), with gou(¥) = 27 q(¥) and gin(¥) = —27 q(—F).

4.1 | Discussion

The contribution from the SP point, (24), assumes that g(a, #) is smooth in a neighbourhood of (ay, f,): It arises from a
local analysis near the SP point. This contrasts with the analysis leading to (20) and (21), where a 1-dimensional integral
over 0 < ¢ < z was integrated by parts. Indeed, suppose we had tried to use the 2-dimensional MSP when 6 = 0; then
(22) gives @ = 0 and « = 7, whereas (23) is satisfied identically: We have 2 lines of stationary phase.

One could argue that this difficulty is spurious: For we could have chosen spherical polar coordinates on Q, (a/, ')
with polar axis aligned with r so that o’ = 0 is in the direction of # and # - § = cos &’. Then, writing q(8) = q(a’, f’; £) and
defining go(a’) = /” q(a’, p';#)dp’, (14) becomes

/2

u(r) = / Go(a") e e sin o' da’.
0

Hence, if §o(’) is sufficiently smooth, we can integrate by parts as we did above on the way to (20); the result is (25) again.

The argument just used, in which we chose spherical polar coordinate with respect to #, is not very convenient if the
function g is not smooth. For example, suppose that g(a, f) is not smooth across the curve « = r /2, the equator around
the unit sphere Q. Then, because the 2-dimensional MSP uses local arguments, we obtain exactly the estimate (25) for all
directions  that do not pass through the equator (« = 7/2); the directions ¥ = +Z(a = 0, ) may also require a special
treatment. We explore these potential deviations from (25) in Section 5 by studying two specific choices for q.
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51 TWO EXAMPLES

We investigate two examples of (18) in which g is not smooth. For simplicity, we suppose that q is axisymmetric, q(§) =
q(@). It follows that u is axisymmetric, so that (18) becomes

u(r) = u(r, 0) = / / 4(@) P sin adpda, (26)

0 -7
where ®(a, ) = sin 0 sin a cos f + cos 6 cos a. In particular, at the origin
u(0,0) = 2ﬂ/q(a) sin ada. 27
0

In both examples, g(«) is smooth except at the equator (@ = 7 /2). Hence, (25) gives the far field for 0 < # < z/2 and for
r/2<60 <.

In our first example (Section 5.1), q is piecewise constant, with ¢ = 1 on one half of Q and g = 0 on the other half. In
our second example (Section 5.2), g is singular around the equator.

5.1 | Piecewise-constant q

We consider a piecewise-constant g € L3(Q), with g(a) = 1for 0 < « < z/2 and q = 0 for 7/2 < @ < #. Equation 26
reduces to

/2 @
u(r,0) = //eik"b("’ﬁ) sinadfda. (28)
0 -7
The Jones Lemma (25) gives
u(r,0) ~ %eik’ asr— oo for0<6<nx/2, (29)
ikr
2% _ikr
u(r,0) ~——e asr — oo forz/2<6< . (30)

ikr
These results may have been anticipated: Plane waves are sent out from a hemisphere in all directions, so we expect to
see an outgoing spherical wave on one side (29) and an incoming spherical wave on the other side (30).

To see what happens when 6 = r /2, we recall that the SP points are at § = *t (see below (23), but the integration is
over 0 < a < w/2.Sowhen 0 < 6 < x/2, g(—%) = 0 and the SP point at § = f contributes, whereas when z/2 < 6 < =,
q(®) = 0 and the SP point at § = —# contributes. When 6 = /2, both SP points contribute, but their contributions are
halved® ©& 8446 because they are on the boundary of the domain integration. Hence, for § = z/2, we obtain the average
of (29) and (30). In fact, u(r, 7 /2) can be found exactly:

/2 & 72
u(r,z/2) = //eik”i““i“ﬂ sinada = 27z/Jo(krsin a)sinada = 27 s12 kr’
r
0 —-x 0

where we have used the Table of Integrals, Series, and Products.? 66838 This result is precisely the average of (29)
and (30).
Finally, on the axis, we have
/2
ikrcosa o 2% ¢ ikr
u(r,0) =2z [ e sinada = == (e —1),
ikr
0
/2
_ —ikrcosa o; _ 2z —ikr
ur,m) =2z [ e s1nada—7(1—e ).

1Kr
0



2968 W l L EY MARTIN

These exact results do not agree with (25) because the terms +2x /(ikr) are missed. They do give the correct result at the
origin, 2z, in agreement with (27). The deviation from (20) can be understood readily: In arriving at (19), we integrated
by parts, giving 2 endpoint contributions, and here, those endpoints are at « = 0 and /2, not « = 0 and =.

We conclude that, for the particular discontinuous choice of g, the estimate (25) is valid except along the z-axis (8 = 0, ).

5.2 | Singularq

Suppose g(@) = | cosa |“~! with 0 < u < 1: ¢ has an integrable singularity at the equator of Q, & = 7 /2. Also, ¢ € L*(Q)
when u > % The corresponding wavefunction is given by (26); as u(r, ) = u(r, # — 0), we can suppose that 0 < 0 < /2
without loss of generality.

We consider the cases § = 0,0 = z/2,and 0 < 6 < x /2, separately. When 6 = 0, (26) gives

T 1
u(r,0) = 27r/eik’°°s"| cosa|*!sinada = 27r/|t|"_1eik"dt
-1

0

1 kr
= 47r/t”_1 cos(krt)dt = 4z /x"_1 cosxdx (31)
(krym
0 0
~ (Ij;;ﬂ /x"‘l cosxdx = (:;;M I'(u) cos % r— oo,

0

where 0 < u < 1, T is the gamma function and we have used the Table of Integrals, Series, and Products.* 3761 Note how
u(r, 0) decays with r. Note also that the condition on y was used in the asymptotic step above, fokr ~ f0°°; if 4 > 1 (making
q non-singular), we could integrate by parts leading to a result in agreement with (20).

On the equatorial plane, where § = 7 /2, we can calculate u exactly. Thus

V3 b3
u(r,z/2) = //eik”if“”sm"|c:osoz|"‘1 sin adpda

0 —m
b4 /2
= 2ﬂ/]0(kr sina)| cosa|* !sinada = 4ﬂ/]0(kr sin a)(cos a)*~! sin ada (32)
0 0
1 (kr)
J r
_ _ 2/2-1,qp — Hl2
4 / To(krt) (1 — /> V¢ dt = 22T (u /2)—(kr/2)ﬂ ~

0

using the Table of Integrals, Series, and Products.* ®%%71 This shows decay as r~*#*+1/2 with r. We note that (32) gives the
correct result at r = 0; from (27), this value is 47/ u.

Suppose next that0 < 6 < z.Itisthen natural to partition Q into 2 hemispheres, Q,(0 < @ < z/2)and Q_(z/2 < a < 7),
followed by an application of the 2-dimensional MSP to the integrals over Q.. In standard applications, the boundary of
the domain of integration makes a smaller contribution than that coming from interior SP points,*P-3*° but this statement
may require modification when the integrand is singular at the boundary.

With this in mind, we partition Q into 2 spherical caps,0 < « < #/2—§and 7 /2+6 < a < r, and a narrow band around
the equator, /2 — 6 < @ < /2 + 6, where 0 < § < 1. Suppose that 0 is not near /2, so that a = @ is not in the band.

The 2-dimensional MSP shows that the spherical caps contribute terms of the expected form, e*¥" /(ikr); see (24).

From the band, we have

/246 ©

I= / / el @] cos af*~ sinadfda

n[2—6—-m

6
—i ina i i i ’ . —
— //e 1krc056'smaelkrsm9smﬂcosa |sma' " 1cosa’dﬁda'.

-6 -1
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In the second exponent, use the approximation cosa’ ~ 1. Then the integral with respect to g evaluates to 2zJy(kr sin 9),
whence, following the derivation of (31),

1)

. - 1 4 . —_—
I ~ 27 Jo(krsin ) / g—ikreosOsing’) oin o/ |H=1 cos o’ do’
s

sin krcos @sin é

i (33)
= 4xJo(krsin 9)/ t*~! cos(krt cos 9)dt = 47r'M / x*~1cosxdx
(kr cos O)u
0

Jo(kr sin 0) Ure
T ——I(u)cos—, r—-o0, O0<u<l.
(kr cos Q)+ ) 2 K

This estimate holds for 0 < 6 < = with 6 bounded away from 7 /2. Evidently, the estimate is not uniform in 6 as it fails at
0 = /2 (and recall that we have the exact result at @ = r/2, (32). It does agree with (31) when 6 = 0.

Approximating J, in (33) for large arguments,” 17 we see decay as r—#~'/2. We conclude that when % < u < 1, the
dominant contributions come from the spherical caps (via the points of stationary phase); recall that for these values of
U, q € L*(Q). For smaller values of 41,0 < u < %, the dominant contribution to the far field comes from the equatorial
singularity at « = 7 /2.

6 | CONCLUSION

We have seen that regular wavefunctions do not always behave as (1). When attention is restricted to Herglotz wavefunc-
tions (14) with g € L?(Q), it appears that (1) is typical, although it may be violated in some directions £. When q is smooth
(twice differentiable), the behaviour given in (1) is correct (Jones Lemma). When gq is integrable with ¢ ¢ L*(Q), the
example in Section 5.2 shows that the far-field behaviour can be more complicated. Thus, plane-wave representations do
not always behave as (1) in the far field, despite claims to the contrary.? P15
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