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The scattering cross section for a cluster of scatterers can be calculated using various methods, either
exactly or by invoking various approximations. Of special interest are methods in which the scatter-
ing properties of individual members of the cluster are used. The underlying question is: Can the
contribution to the cluster’s cross section from any one member of the cluster be identified? Except
for situations in which all effects of multiple scattering are ignored, no such method of identification
has been found. © 2018 Acoustical Society of America. https://doi.org/10.1121/1.5024361

[PLM]

I. INTRODUCTION

When a time-harmonic sound wave encounters an obsta-
cle, it is scattered. The scattering cross section oy gives a
measure of how much energy is scattered by the obstacle.
Energy may also be absorbed by the obstacle itself; how much
is quantified by the absorption cross section o, Therefore,
the extinction cross section o, defined by

Oex = Osc + Oap, (D

quantifies how much energy has been taken from the inci-
dent wave by the scattering process.

Much is known about the computation and interpreta-
tion of cross sections. This knowledge is often framed in the
context of scattering by a single object, although that object
can be a cluster of many smaller objects. For cluster prob-
lems, multiple scattering may be important, and then one can
ask how does any individual object in the cluster contribute
to the scattering properties of the cluster as a whole?

A reviewer noted that the desired contribution is defined
by subtraction: Solve the N-object cluster problem, remove
one object, and then solve the (N — 1)-object cluster prob-
lem. But the main question of interest here is this: Can one
extract the contribution of any one object in the cluster from
a knowledge of the solution to the N-object problem alone?

No definitive answer has been given. Indeed, no mean-
ingful way to extract the effects of any one scatterer on the
global characteristics of the cluster has been found. This
accords with arguments advanced by Twersky 30 years ago
(see Sec. V below), and is contrary to the views of Mitri and
his so-called “intrinsic cross sections” (see Sec. IV G below).

Sections II and IIT contain information on scattering by
one object, even though most of the calculations are valid
for a cluster of objects. They include basic definitions, when
an integration surface can be moved, far-field patterns, the
T-matrix, and the effect of moving a scatterer’s location. The
last of these gives a useful (and known) result: For incident
plane waves, a scatterer can be moved without changing its
scattering cross section.
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Multiple scattering is considered in Sec. IV, with a focus
on the scattering cross section of a cluster, denoted by XZ.
An explicit exact formula for X . is obtained [see Eq. (46)
below], but it is very complicated. However, it can be used to
develop approximations. For example, if the effects of multi-
ple scattering are discarded, a classical result is recovered:
. 1s equal to the sum of the individual scattering cross sec-
tions (Sec. IVE). Another option is to adopt Foldy’s model,
where each scatterer is represented by a monopole source.
The consequences of using Foldy’s model are investigated in
Sec. IVF. Finally, Mitri’s cross sections are defined and dis-
cussed in Sec. IV G, with concluding remarks in Sec. V.

Il. SCATTERING PROBLEMS
A. Preliminaries

Suppose that u is a regular solution of the Helmholtz
equation (V>+k*)u =0 everywhere in D, a fixed bounded
volume with boundary S. Without loss of generality, assume
that u is dimensionless. Assume also that £k = w/c is real and
positive, where the suppressed time dependence is e '’ and
¢ is the constant speed of sound. Thus the fluid in D is homo-
geneous, compressible and lossless.

An application of Green’s theorem in D to u and its
complex conjugate u gives

1 ou ou Ou
(a2 ) as=1m| a Las=o0 2
2iL<u on u8n> S mLu On S ’ )

where Ju/On = n - grad u is the normal derivative of u on S,
and the fact that > is real has been used. Equation (2) will
be used repeatedly later.

B. Formulation

Consider a cluster of N scatterers Bj, j=1,2,...,N. Let §;
be the boundary of B; and put § = Uj-\’: 1S;. Surround the clus-
ter by a sphere of radius R, Sk, implying that a choice of a
primary origin O within the cluster has been made. Spherical
polar coordinates, r, 0, and ¢, are used, so that Si is r =R.

For many purposes, the cluster can be regarded as a sin-
gle scatterer (with boundary S and interior B = Uj-\’: 1B)), but
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the main goal is to elucidate the contributions of each con-
stituent scatterer B; to the scattering properties of the cluster.

For scattering problems, write the total field as u = uj,c
iy, where ujn(r) is the specified incident field and wu.(r)
is the unknown scattered field. The field u,. is a regular solu-
tion of the Helmholtz equation everywhere outside S and it
satisfies the Sommerfeld radiation condition. For later use,
note that u. is not defined inside S; if an analytic continua-
tion of ug is made through S into B, singularities will be
encountered.

The incident field u;,. may have singularities outside S.
For example, one could consider incident waves generated
by a point source. However, in this paper, it is assumed that
Uine 18 a regular solution of the Helmholtz equation every-
where inside the sphere Sg. For information on the scattering
cross section with point-source generated incident fields, see
Refs. 1 and 2.

C. Cross sections

Let S = S U Sk with D being the region between S and
Sgr. As u is a regular solution of the Helmholtz equation in
D, Eq. (2) gives

ImJ ﬁ@dS—ImJﬁ@dS:O, 3)
Sk or Ky on

where the normal vector on S; points out of B;, j=1,2,...,N.
Substituting u = uine + Uge gives

O ou
Imj Tine ——= dS—{-ImJ e —= dS
Sk ¢ (9 Sk 5 ar
__ Olljne Olise Ou
+ ImJSR (MSC 8—) — Uinc ar ) ds — J Ma— dsS=0.

)

The first term on the left-hand side of Eq. (4) is

1 6uin 8 Uip,
ZJSR<Minc a—rc_uinc o C) dS =0,

because uin(r) is a regular solution of the Helmholtz equa-
tion everywhere inside Sg.

The second term on the left-hand side of Eq. (4) involves
the scattered field only; it is closely related to the scattering
cross section. Define

a SC
0w = klmj e 25 d, 5)
Sk 7

where the factor k has been inserted so that . is dimension-
less. Physically, o4 represents the radiated acoustic power.

The fourth term on the left-hand side of Eq. (4) involves
the total field on S; it is closely related to the absorption
cross section. Define

Oap = —kImJ 7 3_ ds. (6)
on
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Physically, o, represents the acoustic power absorbed by
the scatterers (if they are lossy).

Combining Egs. (1) and (4), define the extinction cross
section by

Oltine O0llsc
ex — —k1 ? — Uinc ds. 7
0 mLR (u o u r ) (7)

D. Moving the integration surface

The integration surface in Egs. (5) and (7) can be moved.
For example, considering o, its value does not depend on R,
as is well known [Eq. (6) in Ref. 3, Eq. (4.7) in Ref. 4].
Indeed, if Eq. (5) is written as

k J ( Oulge 8usc> as
O = — g —— — Uge ———
SC 2i SR SC ar SC 8}’ b)

it is seen that the integration surface can be moved onto the
scatterers themselves,

O = kImJ use 4. (8)
S (9/1

recall that the normal vector on S points outward. The deri-
vation uses Green’s theorem, and so it requires that . satis-
fies the Helmholtz equation everywhere between S and Sg,
and that the wavenumber £ is real (which it is, because the
exterior medium is assumed to be lossless). Alternatively,
letting R — oo, far-field approximations to u. can be used in
Eq. (5) (see Sec. III B).

E. The scatterers and the absorption cross section

Many kinds of scatterers are of interest. If they are
sound-soft (#=0 on §;) or sound-hard (Qu/On=0 on §)),
they are lossless and then Eq. (6) gives ., =0, whence Eq.
(1) gives Gex = 0.

One way to introduce loss is to impose an impedance
(Robin) condition du/On+ Au=0 on S whence o,, will be
positive for some choices of A.

For penetrable scatterers, a transmission problem can be
formulated. Suppose that (V2 + kz)uj =0 in B; with trans-
mission conditions u = u; and du/dn = ¢ Ou;/ 811 on §;, where
k; can vary with position in B; and g; is a d1men510nless con-
stant.’ Using the divergence theorem,

Ou
J “on S = QiJB (Igradu;,|2 _ ka|w|z> v
Then Eq. (6) gives

aab_kZJ {Im(g;k7)wl* — Im(g;)|grad u;|*} dV,
)

and this will be positive for certain choices of ¢; and k;
j=12,...,N; these choices are also sufficient to ensure
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uniqueness for the transmission problem itself (see p. 309 of
Ref. 5).

Some authors prefer to formulate scattering problems as
a forced Helmholtz equation, (V2 + k?)u = —k*n(r)u, with
n defined in B; by k*(1+1n) =ki(r), j=1,2,....N, and
n=0 outside the scatterers. This is equivalent to taking
0j=1,j=12,....N; in this case, Eq. (9) reduces to Eq. (7) in
Ref. 6. However, it is known that this simplification does not
respect the proper acoustic transmission conditions across
interfaces (unless there is no density mismatch across those
interfaces).7

lll. ONE SCATTERER

In this section, known facts concerning scattering by
one obstacle are recalled; the obstacle could be a single scat-
terer (N = 1) or a cluster of scatterers (N > 1).

A. Spherical wavefunctions

In the vicinity of the sphere Sg, Ui, and ug. can be
expanded as follows:

uinc Z dm n k’ Ym (10)

n,m

Use (1 Zc’”hn kr) Y (r), (11)

n,m

where j, is a spherical Bessel function, 4, = hf,l) is a spheri-

cal Hankel function, Y?" is a spherical harmonic, r = |r|, F

=r/r, d} and ¢! are coefficients, and

nm n=0 m=-—n

(The notation is as in Ref. 8.) On Sg, dS = R? dQ(#), where Q
is the unit sphere. The spherical harmonics are orthonormal,

J YZIYT'L/L dQ = 5}11/5mu- (12)
Q

Starting with Eq. (5), direct calculation [put A" = 0 and
B = "in Eq. (A4)] gives

o = |enf. (13)

nm

Similarly, starting with Eq. (7) [put AV
and C' = d" in Eq. (A3)],

Oex = —Im Y icfd!' = —Re Y cdy. (14)

n.m n,m

— Dm — m _ .m
_Dn _O’Bn =

B. The far-field pattern
Introduce the far-field pattern, f (), defined by

U (r) ~ (ikr) ™" e f(#) asr — oc. (15)
Then the following expansion is obtained from Eq. (11),

J. Acoust. Soc. Am. 143 (2), February 2018

FE) =D ()"ery(#). (16)

n,m

(For a proof, see Theorem 2.16 in Ref. 9.) The well-known
formula

O :j I (7)PdQ (17)
Q

is obtained by substituting Eq. (16) in the integrand followed
by use of Egs. (12) and (13). Alternatively, simply insert Eq.
(15) in Eq. (5) followed by letting R — oo. See Ref. 10 for
these and related computations of acoustic radiation forces.

C. The T-matrix

Waterman’s T-matrix is a convenient way to represent
waves scattered by a single obstacle. It connects ¢ and d}
in Egs. (10) and (11),

= Z Tk, (18)

v

Substituting in Egs. (13) and (14) gives

o =D D didy )y T T, (19)

nm v,u 27
1
Oox = =5 SO dya: (T,’;;j‘ + Tﬁ,’,”) . (20)
nm v

For lossless scatterers, the identity o, = g.x combined with
the arbitrary nature of the incident field leads to a relation that
must be satisfied by the T-matrix; see Theorem 7.4 in Ref. 8,
where the restriction to lossless scatterers was overlooked.

D. Incident plane waves

Up to now, the incident field u;,. has not been specified.
For an incident plane wave, uin(r) = exp(ikr - &), where a
is a unit vector in the direction of propagation. Then the
coefficients d) in Eq. (10) are given by Eq. (4.40) in Ref. 8,

d" = 4ni"Ym(a). 1)

Denoting the corresponding far-field pattern by f(7;é), com-

bining Egs. (16) and (21) gives

m _1m
fla;a) crdm.

n.m

Then, for lossless scatterers, Eqs. (14) and (17), and o (&)
= Gex(&) give

0e(®) = Llf(f; HPIQ = Re {dnf(@a)}). (@2

This is the famous optical theorem; its early history was
reviewed by Newton.'!
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E. Moving the scatterer

It is interesting to see what happens to the far-field pattern
when the scatterer is moved (see Sec. 4.6.1 in Ref. 8). Start by
assuming an incident plane wave. Without loss of generality,
take the origin O at some point inside the scatterer and sup-
pose that the same point is moved to O; when the scatterer is
moved (translated). Let b, be the position vector of O; with
respect to O and let f; (r; &) be the new far-field pattern. Let
ry =r — by so that u;,. = exp(ikb; - &) exp(ikr; - &). In the
far field, the scattered field behaves as

exp(ikb, - &) (ikr) 'e* f(F1;@) asr =|r| — o0, (23)
where 7y = r/ri. Butry ~r—by -F and ¥y ~ F as r; — oo
for fixed b;. Hence

fi(Fa) = exp {ik(a —7) - bi}f (F; ).

This shows that, for incident plane waves, moving the scat-
terer changes the phase of the far-field pattern [that is, changes
the argument of the complex number f(r;&)] but does not
change |f(r;a)|. Thus, from Eq. (22), moving the scatterer
does not change the value of g

These results explain why the inverse problem of deter-
mining the shape of a scatterer from |f(F;&)| suffers from
non-uniqueness. Uniqueness may be restored by changing
the incident fields; for example, Klibanov'? uses waves gen-
erated by point sources.

Having seen what happens to f when the incident field is a
plane wave, consider now an arbitrary u;,.. There are expan-
sions of u;,. and ug. around O analogous to Egs. (10) and (11),

thne = > djulkry) Yy (1), (24)

n.m

= &y (kr) Y (#1), (25)

nm

with coefficients 67:7 and ¢)'. Asr = ri + by, an addition theo-
rem (Theorem 3.26 in Ref. 8) can be used to write Eq. (10) as

ine = Y di Y S (B1)ju (ki) YE(R),

n,m v

g . . .
. 18 known as a separation matrix. Comparison
with Eq. (24) gives

where S
=> d"S"" (by). (26)
v,

Having computed d
scatter that field

=Y Td,. 27)

[0

giving the incident field around Oy,

n’

Then re-expand the scattered field, Eq. (25), about O using
ri = r — by and another addition theorem (Theorem 3.27 in
Ref. 8)
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mp
Use = E : 2 :Snu

nm v,

(kr) Y7,(r),

valid for r > b;. Comparison with Eq. (11) gives

o QMM
m o __ § : I
Cn - IISI/H( bl)

v

For the far- ﬁeld pattern Eq. (16) can be used together
with a formula for S [Eq (3.79) in Ref. 8],

nv

S (b) = iHL exp (ikb - #) Y (F) Y5 (F) dQ, (28)

and the expansion formula

= Y6 16 7 ) di) 29)

n,m

The result is

fi(F) = exp(—iki - by) Y (—1)"érYy(F).

n.m

The same result can also be obtained directly from Eq. (25),
using Eq. 10.52.4 in Ref. 13 and the estimates below Eq. (23).
The corresponding scattering cross section is

G :J MPae=>" o

n,m

_§ :2 : i z : ——n
d d Tl/n Tz/u’

nm v v

where ci: is given by Eq. (26) in terms of d). This formula
for 6. should be compared with Eq. (19) for g, in general,
they are not equal.

For a plane wave, d” is defined by Eq. (21) whence Eqs.

(26), (28), and (29) give d"' = d" exp(ika - by). Thus, dd"
= @d{,‘ and 0y = 0y, as was already seen above for this
special case.

IV. MULTIPLE SCATTERING

As noted earlier, the calculations above are concerned
with scattering by one obstacle, but that obstacle could be a
cluster of N disjoint scatterers, each with its own scattering
properties. Denote the scattering cross section of the cluster
by Z; it is defined by Eq. (5) as

Ol

= s, (30)

Yo = kImJ Usc
Sr

where Sg is a sphere enclosing the cluster.
As in the derivation of Eq. (8), the integration surface
can be moved onto the scatterers themselves. Hence,

€Y

[
M
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with

. 9
g klmj u_sc% ds. (32)
s; n

This decomposes 2. into an integration over each scatterer,
but the integrand involves u,., which is the solution of the
full N-body multiple scattering problem.

For each j=1,2,...,N, choose an origin O; inside (or
near) S; and let Sj+ be the escribed sphere to S;. (Thus, S;r is
the smallest sphere, centered at O, that encloses §;.) Then in
the formula for X/, Eq. (32), S; can be replaced by AR
giving

¥ = klmj = e g (33)

uSC
S+ 8’1
J

This is convenient if one wants to represent the scattered
field using outgoing spherical wavefunctions centered at O
see Eq. (35) below.

A. Use of spherical wavefunctions

Let a typical point P have position vectors r with respect
to the primary origin O, and r; with respect to the (local) ori-
gin O0;, j=1,2,...,N. Then the scattered field can be written as

Zc’”h (kr)Y,' (),

n.m

uy(P) = P outside Sg (34)

or as

N
use (P ZZCW hy (ki)Y (),

j=1 nm

N
P outside U S;r.
=1
(35)
Using an appropriate addition theorem, write Eq. (35) as

use(P) =Y _{cyhu(kry) + ay ju(kry) Y, (7)) (36)

n.m

for P in the vicinity of S;', where the coefficients a;; can be
calculated [see Eq. (41) below]. Substituting in Eq. (33) and

integrating [using Eq. (A4) with A} = aj; and B} = 7],

2= (len? + Re{aycn}). 37)

nm

This formula is exact but the coefficients ¢;; and a;; have not
been specified; of course, they will depend on the nature of the

scatterers and on the geometrical configuration of the cluster.

B. Solving the scattering problem exactly

The N-body scattering problem can be solved in various
ways, as explained in Ref. 8. Here, T-matrix methods are
used because they separate out the behavior of individual
scatterers and enable detailed comparisons with previous
work, but the main conclusions do not depend on the use of
T-matrix methods. From Eq. (35),

J. Acoust. Soc. Am. 143 (2), February 2018

Usc = Z nj hy, k’j Ym ) Lt]exc’ (38)

n,m

j
where 1/

exc Z chl n k” Ym rl) (39)

/=1 nm

L#]

is the “exciting field” on S,

In the vicinity of S;, Eq. (38) reduces to Eq. (36) after using
the addition theorem (Theorem 3.27 in Ref. 8)

§ : mu
Sm/

v

h(kr)Y (Fr) v (k) Y5 (7)), (40)

where SV is another separation matrix and by = b; — b; is
the pos1t10n vector of O; with respect to O,. Hence, the coef-

ficients aj; in Eq. (36) are given by

n/ Z Z ule/l;" (41)

=1 v.u
I 4]

The derivation here assumes that O; is outside S;’ for
[=1,2,....,N, [ #].
Expand the incident field in the vicinity of S,

tine = O dln(kr) YIE) =Y ditjulke)) Y0 (F) - (42)

n.m n.m

where

m um
dn/ § :du vn

Vi

and b; is the position vector of O; with respect to O. This
gives the local coefficients d,; in terms of the global coeffi-
cients d)".

Thus the field exciting the jth scatterer has the form

Y Dyin(kr)Y; (7)) with Dy = dyi +ay. 43)
n.m

Self-consistency then gives
e =2 T D}, (44)

Iz

where 77 (j) denotes the entries in the T-matrix for the jth
scatterer. Substitution for Dy then gives a system of alge-

braic equations to solve for Cn i

C. Scattering cross section of the cluster, ¢

Combining Egs. (31), (32), (37), and (41) gives

N
z:sc = ZZ |Cn,| +Re{aﬂj nj )

j=1 nm

N
=D >l + 25, (45)

j=1 nm

P. A. Martin 999



where

m M um
—RCE :2 :E :E :Cn/ vl¥vn j[)
J=ll=1nm vu
L#]

— L qum
- § :E :E :§ :CIIJCVZSI/I?
/ l/=1nm vu
L#]

m i /lm
B D HYITE
/ l1=1nm vpu
[#]

= %ZZZZ et (St (b + STy ).

j=11=1nm vu
L#]

As bj; = —bj, Lemma 3.29 from Ref. 8 can be used to sim-
plify X, further, whence

N
Ze=) > lenl’ +ZZZZ¢Z', 58" (by).  (46)

j=1 nm j=11=1 nm v.u
L#]

[Despite appearances, the last term is real; to see this, use
Eq. (3.95) in Ref. 8.] Equation (46) is exact. It was derived
previously as Eq. (33) in Ref. 14; it is also similar to Eq.
(26) in Ref. 15, where a study of electromagnetic scattering
by N spheres is presented.

Equation (46) contains all the coefficients C - in the mul-
tipole expansion Eq. (35). However, it does not reveal how
an individual scatterer S; contributes to the properties of the
cluster.

D. Extinction cross section of the cluster, X

The extinction cross section 2., is deﬁned by Eq. (7).
Proceeding as with X gives Xex = Zj\': | XL, with

i N a”tinc a Ugc
Z"ex = 7kImL+ (MSC w — Uijpc or > ds
= —Re) crdr, (47)

n.m

which is very similar to Eq. (14). Here, Egs. (36) and (42)
have been used; the terms involving a;; cancel.

E. Single scattering

The entries in the separation matrix S”#(b) decay to

zero as kb — oo (Sec. 3.13.2 in Ref. 8). This corresponds to
widely spaced scatterers. In this limit, Eq. (41) gives a;; = 0

whence Eq. (43) gives Dj; = d,;. This uncouples the N-scat-

terer problem into N separate problems: There is no multiple
scattering 1n this limit. The coefficients c}; (= ¢}) are related
to dz’} (=d, ) by the jth T-matrix, taking into account that the
origin has been moved from O to O;. [Compare Egs. (27)
and (44) with D), =d,..] Therefore in the wide-spacing
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limit, Eq. (37) gives X, ~ ¢/.(0;), where ¢/.(0;) is the scat-
tering cross section for the jth scatterer (which is located at
0)) in the absence of all the other scatterers. Finally, for the
special case of an incident plane wave, it is known (Sec.
IIIE) that location is irrelevant, and so the scatterer can be
moved from O; to O, giving

with oéc = aéc (0). (48)

0
[2
M-
mq\

.

The additive property Eq. (48) is noted by Newton [Eq.
(4) in Ref. 11 and Eq. (1.90) in Ref. 16] and by van de Hulst
(Sec. 4.22 in Ref. 17). Their arguments lack details, but they
do assume that the scatterers are distributed randomly and
invoke the single-scattering approximation. For a derivation
along these lines, for electromagnetic waves, see Sec. 10 in
Ref. 18. The fact that randomness plays no part in the deriva-
tion of Eq. (48) is noted explicitly on p. 1516 of Ref. 19.
Randomness can be used to achieve additivity of other far-
field quantities,?® but it is not needed for Eq. (48).

F. Foldy’s method: Small scatterers

Foldy’s method®! is an approximate method for multiple
scattering problems. It starts by assuming that the total field
can be written as

-I-ZAGr— - (49)

( = umc

with G(r) = ho(kr) = e*"/(ikr). Thus, the scattered field is
represented by a point source at the center of each scatterer.
This is a good approximation for small sound-soft (Dirichlet
condition, lossless) scatterers. The coefficients are determined
by solving

N
gy An=ttine(b,) + Y _AiG(by), n=12,...N. (50)
j=1
i#n

The “scattering coefficient” g; is defined as follows. When
an incident field u;, is scattered by the jth obstacle in isola-
tion, the total field is

u(r) = ttin(r) + gjttine (b)) G(r — b;).

This identifies the far-field pattern and hence gives the
approximation

01.(0)) = 4 |g; |’ |uinc (b)) . (51)

For more details on Foldy’s method, including the choice of
gj» see Sec. 8.3 of Ref. 8. For applications, see Refs. 22-24,
and references therein.

From Eq. (49), the far-field pattern of the cluster is

P. A. Martin



N
i)=Y Ajexp(—ikb; - 7). (52)

J=1

Hence, from Egs. (17) and (52),
J |F(#)]* dQ = 4712 ZAA1 Jo(klby);  (53)

the integration is standard [Eq. (3.44) in Ref. 8].

Equation (53) agrees with Eq. (16) in Ref. 25. In that
paper, the authors try to maximize X . with respect to the
locations of the N scatterers.

For wide spacings, the system Eq. (50) reduces to g;lA”
= ttinc (), whence Eq. (51) becomes o/ (0;) = 4n|A;|* and
[using jo(x) = x~ " sin x] Eq. (53) reduces to

N N
5 .
e 4”2 A" =~ Z 7 (0;).
J=1 J=1

Thus the classical additive result Eq. (48) is recovered when
there are incident plane waves.

G. Mitri’s cross sections

Mitri has written several papers%f28 on what he calls

extrinsic and intrinsic cross sections. He is mainly concerned
with multiple scattering by two cylinders.

Mitri refers to X . as the extrinsic scattering cross sec-
tion; it is the scattering cross section for the cluster. He
obtains a formula for 2 . [Eq. (26) in Ref. 26] that is reminis-
cent of Eq. (46) (in two dimensions with N =2), but the deri-
vation is suspect because it is derived by going into the far
field leading to divergent series [such as Eq. (20) in Ref. 26].

Next, consider Mitri’s intrinsic scattering cross sections,
which are denoted here by ), j=1,2,...,N. They are
deﬁned as follows. Returning to Eq. (35), write us(P)
- / 1 sc( ) with

W (P) = chi ha(kr) Y (7).

n.m

P outside Sf.

Then [see Eq. (15) in Ref. 27, and compare with Eq. (5)]

ol =k lim ImJ oL e g (54)
S (91

R—oo

(As noted in Sec. II D, the limiting operation is redundant.)
A straightforward calculation gives [see Eq. (13)]

GM - Z |an ’ (55)

nm

in agreement with Egs. (22) and (25) in Ref. 27. Thus, from
Eq. (45), Xy = ZN L oM+ 2. Mitri writes (p. 5 of Ref. 27):

The intrinsic scattering cross section [OJM] provides
quantitative information on the scattering properties of
the probed object [S;] exclusively (but in the presence of
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the [other objects] without multiple interference effects),

as shown in equation (55), where the dependence of ‘7{\/1
is only on the scattering coefficient ¢, keeping in mind

11 >

that those coefficients are a function of [all N] objects.

Certainly, o{v[ can be computed (see Sec. 5 in Ref. 27),
but there is no justification to the claim that ¢}, provides use-
ful information that is intrinsic to the jth scatterer: The word
“intrinsic” is a misnomer when applied to o};. (Note that all
“multiple interference effects” are included in the calcula-
tion of C,’Z )

It is of interest to compare ¢}, with 3/_. As i/, satisfies
the Helmholtz equation everywhere between S; and Sk, the
integration surface in Eq. (54) can be moved,

oy = kImJ e 8(;’]“ ds. (56)
Sj

Now recall the formula Eq. (31) in which

; __ Ouy

S n

and u, is the N-body scattered field. [Note that S; cannot be
replaced by S in Eq. (57) because uy. does not satisfy the
Helmbholtz equation everywhere outside S}, in particular, not
inside S; with /£ ].] Equation (31) gives the exact decompo-
sition X = Z >
information intr1n51c to S; [because of the presence of u in
Eq. (57)]. In more detail, using Egs. (33) and (35),

] N M W
%%I;ZLWJw

'c» but it cannot be claimed that Zf gives

There are N” integrals. The one with £=m =] gives J’M.
Those with neither £ nor m equal to j are zero (because u, is
a regular solution of the Helmholtz equation inside SJTL when

n#j). The remaining 2N — 2 integrals can be expressed

using the exciting field /., Eq. (39),
— o, . Oule
oy — Xl = kIij <L/ " texe a:) ds. (58)

This quantity may be interpreted as extinction by the jth scat-
terer, with /. being the incident field; see Eq. (7). However,
this interpretation is not straightforward because both u/_ and
i, come from solving the full N-body scattering problem.
Perhaps the best one can say about o) is that it gives one
piece of X/ ; see Eqgs. (37) and (55).

SC’

V. DISCUSSION

One cannot think about multiple scattering without
thinking about Victor Twersky (1923-1998). Near the end of
his life, he used the Foldy model Eq. (49) to investigate scat-
tering by arrays of N identical small scatterers, equally
spaced around a circle; the far-field pattern F and the scatter-
ing cross section X, are given by Eqgs. (52) and (53),
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respectively, in terms of the strengths A, j=1,2,....N.?*?

Twersky (p. 25 in Ref. 22) pointed out that no 1nd1v1dual Ajis
observable, and that numerical results for an individual A;
“lead to incorrect notions of the behavior of the observable
multiple scattering amplitude [F] for the array” (Appendix B
in Ref. 22). _

Reiterating, just because a quantity (such as A; or a}) is
computable does not mean that meaningful information can
be extracted about the physical problem from that quantity.
Further analysis is required.
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APPENDIX: SOME INTEGRALS

Suppose that, in the vicinity of a sphere r =R,

Ur) =Y _{ALju(kr) + BJ'hy (k) }Y 7' (7), (A1)

nm

= {Clju(kr)

n.m

+ D" by (kr) Y™ (7). (A2)

Then (Lemma 6.5 in Ref. 8)

— S (aBDy + Ay + FCY). (a3

n.m

The proof makes use of the orthogonality of Y}, Eq. (12),

and Wronskians for spherical Bessel and Hankel functions
(Egs. 10.50.1 in Ref. 13). The special case U =V gives

kImJ %ijds Z(B"’ —I—Re{A’”B’"}). (A4)

nm
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