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a b s t r a c t

Time-harmonic acoustic waves interact with a scatterer: this interaction is calculated

using linear, first-order theory. However, there are quadratic, second-order quantities that

are of interest. These include the scattering cross-section and the steady radiation force;

these quantities can be expressed as integrals of products of first-order quantities over

a sphere. These integrals are evaluated exactly. The results are infinite series of products

of the coefficients in the spherical multipole expansions of the incident and scattered

fields; they do not depend on the radius of the spherical integration surface. For a specific

scattering problem, the coefficients can be connected by an appropriate T -matrix. In most

previous work, the spherical surface is moved to infinity so that far-field quantities can

be introduced: it is shown that this process is not straightforward and it may introduce

spurious difficulties.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the context of time-harmonic acoustics, a given incident wave interacts with one or more scatterers surrounded by a

lossless inviscid compressible fluid. This process is usually characterised by introducing three ‘‘cross-sections’’ related by

σsc + σab = σex. (1)

The scattering cross-section σsc gives a measure of how much energy is radiated away by the scatterers whereas the

absorption cross-section σab gives how much energy is absorbed by the scatterers. Hence the extinction cross-section σex

describes how much energy has been extracted from the incident wave by the scattering process. (Precise definitions will

be given later.) When the scatterers are lossless (for example, sound-soft or sound-hard), σab = 0 and then σsc = σex.

Energy is a quadratic quantity: for linear waves of (small) amplitude A, energy is proportional to A2. Another quadratic

quantity is the acoustic radiation force: for linear time-harmonic waves, it is a steady second-order force, analogous to the

Stokes drift force in the context of surfacewaterwaves. The study of acoustic radiation forces has a long history,with detailed
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computations firstmade byKing [1] for scattering by a small sphere. These forces have attractedmore interest in recent times

because they can be used to levitate and manipulate small particles. For reviews, see [2,3].

The cross-sections and the radiation force can be expressed as certain integrals of first-order quantities over a sphere of

radius R, SR, enclosing the scatterer; and they are independent of R. The usual strategy is to suppose that R is large and then

far-field estimates can be used, but this is not always straightforward. Here, we adopt a brute-force approach and simply

evaluate the integrals over SR directly and exactly, having introduced standard expansions of the incident and scattered fields

using spherical wavefunctions, togetherwith appropriateWronskians. The final results are seen to be independent of R. They

are infinite series of products of coefficients from the spherical expansions. Some of these series can be expressed, exactly, in

terms of far-field quantities. Finally, we connect the coefficients in the wavefunction expansions using the T -matrix, leading

to a viable method for the computation of cross-sections and the radiation force.

The basic equations are introduced briefly in Section 2 and the R-independent integrals over SR are derived in Section 3.

These integrals are evaluated in Section 4 after introducing expansions in spherical wavefunctions; most of the details are

relegated to an Appendix.

Section 5 is concerned with the use of far-field quantities; various pitfalls and errors are described. It is well known that

σsc can be expressed exactly as an integral of the far-field pattern, and this formula is recovered. However doing the same

for other quadratic quantities is awkward, mainly because they involve the incident field. After some discussion of a paper

by Debye from 1909 (Section 5.3), T -matrix methods are described briefly in Section 6. The paper ends with a summary of

the results obtained, covering why they are useful and what they teach us about the computation of quadratic quantities in

acoustics.

2. Governing equations

The exact governing equations for a compressible inviscid fluid are

ρ̃

(

∂ ṽ

∂t
+ (ṽ · ∇) ṽ

)

= − grad p̃,
∂ρ̃

∂t
+ div (ρ̃ṽ) = 0, (2)

with p̃ = p̃(ρ̃), where p̃(r, t), ṽ(r, t) and ρ̃(r, t) are the pressure, velocity and density, respectively, at position r and time t .

Introduce a small parameter ε, and expand p̃, ρ̃ and ṽ [2, § III.F]:

p̃ = p0 + εp̃1 + ε2p̃2 + · · · , ρ̃ = ρ0 + ερ̃1 + ε2ρ̃2 + · · · , ṽ = εṽ1 + ε2ṽ2 + · · · .
The equation of state gives p̃ = p̃(ρ̃) = p̃(ρ0) + (ρ̃ − ρ0)p̃

′(ρ0) + 1
2
(ρ̃ − ρ0)

2p̃′′(ρ0) + · · ·. This gives p0 = p̃(ρ0), p̃1 = c2ρ̃1

and p̃2 = c2ρ̃2 + 1
2
ρ̃2
1 p̃

′′(ρ0) with c2 = p̃′(ρ0). We assume that p0, ρ0 and c2 are constants.

2.1. Linear theory

At first order, ε1, we obtain

ρ0

∂ ṽ1

∂t
+ grad p̃1 = 0,

∂ p̃1

∂t
+ ρ0c

2 div ṽ1 = 0. (3)

Eliminating ṽ1 gives the usual wave equation for p̃1; ρ̃1 satisfies the same equation.

Taking the scalar product of Eq. (3)1 with ṽ1, making use of Eq. (3)2, we obtain the acoustic energy equation,

∂E

∂t
+ div

(

p̃1 ṽ1

)

= 0 (4)

where E = 1
2
ρ0(ṽ1 · ṽ1) + 1

2
p̃21/(ρ0c

2) is the acoustic energy density [4, §1.9], [5, Eq. (64.5)].

Let D be a fixed bounded volume with boundary S . Integrating Eq. (4) over D gives

d

dt

∫

D

E dV −
∫

S

p̃1 ṽ1 · n dS = 0, (5)

wherewe have used the divergence theorem and n is the unit normal on S pointing intoD. This equation has the dimensions

of force × velocity, that is, power. It says that the rate of increase of energy in D is balanced by the acoustic power entering

through S .

Next, consider time-harmonic motions, and write

p̃1(r, t) = Re{p(r) e−iωt} = pR cosωt + pI sinωt, (6)

where pR = Re p and pI = Im p are real. Similarly, ṽ1 = Re{v e−iωt} and ρ̃1 = Re{ρ e−iωt}.
For quadratic quantities (such as energy) involving products of time-harmonic functions, it is usual to consider time

averages over one period. Thus, for any function f (r, t), we define

〈f 〉 (r) = 1

T

∫ T

0

f (r, t) dt, T = 2π

ω
.
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Simple calculations give 〈∂E/∂t〉 = 0 and
〈

p̃1ṽ1

〉

= 1
2
Re{p v}, where the overbar denotes complex conjugation. Hence the

time-averaged form of Eq. (4) is Re {div (p v)} = 0 and the time-averaged form of Eq. (5) is

Re

∫

S

p v · n dS = 0. (7)

For irrotational motion, we can introduce a velocity potential ũ1, with ṽ1 = grad ũ1 and p̃1 = −ρ0(∂ ũ1/∂t). Furthermore,
for time-harmonic motions, we write

ũ1(r, t) = (c/k) Re
{

u(r) e−iωt
}

= (c/k) (uR cosωt + uI sinωt)

where k = ω/c , uR = Re u and uI = Im u are real, (∇2 + k2)u = 0, and u is dimensionless.
Some calculation gives 〈E〉 = 〈K〉 + 〈V〉 where

〈K〉 = ρ0c
2

4k2
(grad u) · (grad u) and 〈V〉 = ρ0c

2

4
uu; (8)

evidently, 〈K〉 is the linear approximation to the average acoustic kinetic energy density and 〈V〉 is the analogous potential
energy density. Also, as Re (p v) = c3(ρ0/k) Im (u grad u), Eq. (7) becomes

Im

∫

S

u
∂u

∂n
dS = 0 (9)

where ∂u/∂n = n · grad u is the normal derivative of u on S . The formula Eq. (9) will be used in Section 3.1.

2.2. Second-order theory

At second order, ε2, Eq. (2)1 gives

ρ0

∂ ṽ2

∂t
+ ρ̃1

∂ ṽ1

∂t
+ ρ0 (ṽ1 · ∇) ṽ1 = − grad p̃2. (10)

Multiply Eq. (3)2 by ṽ1 and then add the result to Eq. (10); this gives

ρ0

∂ṽ
(2)

i

∂t
+

∂
(

ρ̃1ṽ
(1)

i

)

∂t
+ ρ0

∂
(

ṽ
(1)

i ṽ
(1)

j

)

∂xj
= −∂ p̃2

∂xi
, i = 1, 2, 3. (11)

where r has components xi and we have denoted the components of ṽn by ṽ
(n)

i .

It is easy to see that p̃2 has the form p̃2(r, t) = p02(r) + pc2(r) cos 2ωt + ps2(r) sin 2ωt , with similar expressions for ρ̃2 and

ṽ2. We are interested in the steady component of p̃2, p
0
2 =

〈

p̃2
〉

. Extracting the steady component from Eq. (11), we obtain

−∂p02

∂xi
= ρ0

∂

∂xj

〈

ṽ
(1)

i ṽ
(1)

j

〉

(12)

= ρ0

2
Re

∂(vivj)

∂xj
= ρ0c

2

2k2
Re

∂

∂xj

(

∂u

∂xi

∂u

∂xj

)

(13)

= ρ0c
2

4k2

∂

∂xi

(

(grad u) · (grad u) − k2uu
)

. (14)

We can write Eq. (12) as (∂/∂xj)
〈

Πij

〉

= 0 where Πij = p̃2δij + ρ0ṽ
(1)

i ṽ
(1)

j [6]. The quantity Sij = −
〈

Πij

〉

is known as the

acoustic radiation stress tensor. From Eq. (13), we have

Sij = −p02δij −
ρ0c

2

2k2
Re

(

∂u

∂xi

∂u

∂xj

)

.

Integrating Eq. (14) gives (after discarding a constant of integration)

−p02 = ρ0c
2

4k2

(

(grad u) · (grad u) − k2uu
)

= 〈K〉 − 〈V〉 ,

see Eq. (8), and then

Sij = ρ0c
2

4k2

{

(

(grad u) · (grad u) − k2uu
)

δij −
∂u

∂xi

∂u

∂xj
− ∂u

∂xi

∂u

∂xj

}

. (15)

As (∂/∂xj)Sij = 0, an application of the divergence theorem in the region D gives
∫

S

Sijnj dS = 0. (16)

This formula will be used in Section 3.2.
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3. Scattering problems

Suppose that we have a scatterer Bwith boundary S. Surround the scatterer by a sphere of radius R, SR, implying that we

have chosen an origin O in B. We use spherical polar coordinates, r , θ and φ, so that SR is r = R.

For scattering problems, we write the total potential as

u = uinc + usc, (17)

where uinc(r) is the specified incident field, usc(r) is the unknown scattered field, and usc satisfies the Sommerfeld radiation

condition. Recall that the wavenumber k is real: the fluid is lossless.

3.1. Cross-sections

Let S = S ∪ SR with D being the region between S and SR. Then Eq. (9) gives

Im

∫

SR

u
∂u

∂r
dS − Im

∫

S

u
∂u

∂n
dS = 0, (18)

where the normal vector on S points out of B. Using Eq. (17), we have

u
∂u

∂r
= uinc

∂uinc

∂r
+ usc

∂uinc

∂r
+ uinc

∂usc

∂r
+ usc

∂usc

∂r
. (19)

Substituting in the first integral in Eq. (18), the first term from Eq. (19) gives

Im

∫

SR

uinc

∂uinc

∂r
dS = 1

2i

∫

SR

(

uinc

∂uinc

∂r
− uinc

∂ uinc

∂r

)

dS = 0,

by Green’s theorem, assuming that uinc is a regular solution of the Helmholtz equation everywhere inside SR. Substituting

the remaining terms from Eq. (19) in Eq. (18) gives

Im

∫

SR

usc

∂usc

∂r
dS + Im

∫

SR

(

usc

∂uinc

∂r
− uinc

∂ usc

∂r

)

dS − Im

∫

S

u
∂u

∂n
dS = 0, (20)

using Imw = −Imw for any complex quantity w.

The first term on the left-hand side of Eq. (20) involves the scattered field only; it is closely related to the scattering

cross-section. We define

σsc = k Im

∫

SR

usc

∂usc

∂r
dS, (21)

where the factor k has been inserted so that σsc is dimensionless. Physically, σsc is proportional to the radiated acoustic

power.

The third term on the left-hand side of Eq. (20) involves the total field on S; it is closely related to the absorption cross-

section. We define

σab = −k Im

∫

S

u
∂u

∂n
dS. (22)

Physically, σab represents the acoustic power absorbed by the scatterers (if they are lossy).

Combining Eqs. (1) and (20), we define the extinction cross-section by

σex = σsc + σab = −k Im

∫

SR

(

usc

∂uinc

∂r
− uinc

∂ usc

∂r

)

dS. (23)

Sometimes, the scattering cross-section is defined as being proportional to limR→∞ σsc; see, for example, [7, §2.A.4].

However, as we shall see below, σsc does not depend on R. This fact was known to Twersky [8, Eq. (6)] and de Hoop [9,

Eq. (4.7)], for example. Indeed, if we write Eq. (21) as

σsc = k

2i

∫

SR

(

usc

∂usc

∂r
− usc

∂usc

∂r

)

dS,

we see that we can move the integration surface onto the scatterer itself,

σsc = k Im

∫

S

usc

∂usc

∂n
dS. (24)

The derivation uses Green’s theorem, and so it requires that usc satisfies the Helmholtz equation everywhere between S and

SR, and that the wavenumber k is real (which it is, because the exterior medium is assumed to be lossless).
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3.2. Radiation force

The steady acoustic radiation force acting on the (fixed) scatterer S is F with (real) components

Fi =
∫

S

Sijnj dS,

where Sij is defined by Eq. (15). Moreover, using Eq. (16) with S = S ∪ SR, we can move the surface of integration from S to

the sphere SR enclosing S,

Fi =
∫

SR

Sij
xj

R
dS.

The fact that the integration surface can be moved is well known [10–12]. The underlying assumption is that the fluid is

lossless. For viscous fluids, the situation is more complicated [13].

Let Λ0 = (grad u) · (grad u) − k2uu. Then, from Eq. (15),

Fz = ρ0c
2

4k2

∫

SR

(

Λ0 cos θ − ∂u

∂z

∂u

∂r
− ∂u

∂z

∂u

∂r

)

dS,

Fx ± iFy = ρ0c
2

4k2

∫

SR

(

Λ0e
±iφ sin θ −

(

∂u

∂x
± i

∂u

∂y

)

∂u

∂r
−
(

∂u

∂x
± i

∂u

∂y

)

∂u

∂r

)

dS.

In terms of spherical polar coordinates, we have

∂u

∂z
= cos θ

∂u

∂r
− sin θ

r

∂u

∂θ
, grad u = ∂u

∂r
r̂ + 1

r

∂u

∂θ
θ̂ + 1

r sin θ

∂u

∂φ
φ̂,

∂u

∂x
± i

∂u

∂y
= e±iφ

(

sin θ
∂u

∂r
+ cos θ

r

∂u

∂θ
± i

r sin θ

∂u

∂φ

)

.

Hence

Fz = ρ0c
2

4k2

∫

SR

Λz dS and Fx ± iFy = ρ0c
2

4k2

∫

SR

Λ±e
±iφ dS (25)

with

Λz =
(

−∂u

∂r

∂u

∂r
+ 1

r2

∂u

∂θ

∂u

∂θ
+ 1

r2 sin2 θ

∂u

∂φ

∂u

∂φ
− k2uu

)

cos θ

+ sin θ

r

(

∂u

∂θ

∂u

∂r
+ ∂u

∂θ

∂u

∂r

)

, (26)

Λ± =
(

−∂u

∂r

∂u

∂r
+ 1

r2

∂u

∂θ

∂u

∂θ
+ 1

r2 sin2 θ

∂u

∂φ

∂u

∂φ
− k2uu

)

sin θ

− cos θ

r

(

∂u

∂θ

∂u

∂r
+ ∂u

∂θ

∂u

∂r

)

∓ i

r sin θ

(

∂u

∂φ

∂u

∂r
+ ∂u

∂φ

∂u

∂r

)

. (27)

Formulas of this kind can be found in [6,14,15]. In most of these papers, it is assumed that SR is a large sphere and then

asymptotic estimates based on the assumption that kR ≫ 1 are used. This is awkward because certain quantities involving

uinc diverge as kR → ∞. For further discussion, see Section 5.1.

4. Use of spherical wavefunctions

In the vicinity of the sphere SR, we can expand uinc and usc as follows,

uinc(r) =
∑

n,m

Dm
n jn (kr) Ỹ

m
n (r̂), (28)

usc(r) =
∑

n,m

Cm
n hn(kr) Ỹ

m
n (r̂), (29)

where (using the notation from [16])

∑

n,m

≡
∞
∑

n=0

n
∑

m=−n

,
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jn is a spherical Bessel function, hn ≡ h
(1)
n is a spherical Hankel function, Ỹm

n is a spherical harmonic, r̂ = r/r , and Dm
n and Cm

n

are coefficients. We use unnormalised spherical harmonics

Ỹm
n (r̂) = Pm

n (cos θ ) eimφ,

where the associated Legendre functions Pm
n satisfy the orthogonality relation

∫ 1

−1

Pm
n (t) Pm

ν (t) dt = hm
n δnν with hm

n = 2

2n + 1

(n + m)!
(n − m)! . (30)

It is more convenient to use Ỹm
n instead of the normalised functions Ym

n (with Ym
n = Am

n Ỹ
m
n and Am

n =
(

2πhm
n

)−1/2
) because,

when calculating F, we shall encounter contiguous spherical harmonics, Ỹm±1
n+1 .

On SR, we have dS = R2 dΩ(r̂), where Ω is the unit sphere. The spherical harmonics are orthogonal,
∫

Ω

Ỹm
n Ỹ

µ
ν dΩ = 2πhm

n δnν δmµ. (31)

4.1. Cross-sections

Starting with Eq. (21), direct calculation (put Dm
n = 0 in Eq. (A.4)) gives

σsc = 2π
∑

n,m

hm
n

∣

∣Cm
n

∣

∣

2
. (32)

Similarly, starting with Eq. (23) (put Dm
n = Em

n = 0 and Fm
n = Dm

n in Eq. (A.3)),

σex = −2π Im
∑

n,m

i hm
n Cm

n Dm
n = −2πRe

∑

n,m

hm
n Cm

n Dm
n . (33)

4.2. Radiation force: Fz

The axial component of F, Fz , is given by Eqs. (25) and (26). Expand the total potential as

u =
∑

n,m

wm
n (kr) Ỹ

m
n (θ, φ) with wm

n (kr) = Dm
n jn(kr) + Cm

n hn(kr). (34)

Then, inspection of Eq. (26) suggests that the simplest term in Λz gives the contribution

I1 ≡
∫

SR

k2u u cos θ dS = 2π (kR)2
∑

n,m

∞
∑

ν=0

wm
n wm

ν

∫ π

0

Pm
n (cos θ ) Pm

ν (cos θ ) cos θ sin θ dθ

= 2π (kR)2
∞
∑

ν=1

w0
0 w0

ν

∫ 1

−1

t Pν(t) dt + 2π (kR)2
∞
∑

n=1

n
∑

m=−n

∞
∑

ν=0

wm
n wm

ν

∫ 1

−1

tPm
n (t) Pm

ν (t) dt

where wm
n ≡ wm

n (kR) and we have separated off the contribution from n = 0. The first integral is 2
3
δν,1. The second integral

can be evaluated using [16, Eq. (A.13)]

(2ν + 1)tPm
ν (t) = (ν − m + 1)Pm

ν+1(t) + (ν + m)Pm
ν−1(t)

and the orthogonality relation, Eq. (30):
∫ 1

−1

tPm
n (t) Pm

ν (t) dt = hm
n

2ν + 1

{

(n − m)δν,n−1 + (n + m + 1)δν,n+1

}

. (35)

Note that the term containing δν,n−1 is absent when |m| = n because Pm
ν ≡ 0 when |m| > ν. Hence

I1 = 4π

3
(kR)2w0

0w
0
1 + (kR)2

∞
∑

n=1

n−1
∑

m=−(n−1)

4π (n + m)! wm
n wm

n−1

(2n − 1)(2n + 1)(n − 1 − m)!

+ (kR)2
∞
∑

n=1

n
∑

m=−n

4π (n + m + 1)! wm
n wm

n+1

(2n + 3)(2n + 1)(n − m)!

= 4π (kR)2
∑

n,m

Z
m
n

{

wm
n wm

n+1 + wm
n+1w

m
n

}

, (36)
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where

Z
m
n = (n + m + 1)!

(2n + 3)(2n + 1)(n − m)! .

Similarly,

I2 ≡
∫

SR

∂u

∂r

∂u

∂r
cos θ dS = 4π (kR)2

∑

n,m

Z
m
n

{

wm
n

′
wm ′

n+1 + wm
n

′wm ′
n+1

}

. (37)

The remaining terms in Eq. (26) make the following contributions.

I3 ≡
∫

SR

1

r2

(

∂u

∂θ

∂u

∂θ
+ 1

sin2 θ

∂u

∂φ

∂u

∂φ

)

cos θ dS (38)

= 4π
∑

n,m

n(n + 2)Zm
n

{

wm
n wm

n+1 + wm
n wm

n+1

}

, (39)

I4 ≡
∫

SR

sin θ

r

(

∂u

∂θ

∂u

∂r
+ ∂u

∂r

∂u

∂θ

)

dS (40)

= 4π (kR)
∑

n,m

Z
m
n

{

n

(

wm
n wm ′

n+1 + wm ′
n+1w

m
n

)

− (n + 2)

(

wm
n+1w

m ′
n + wm ′

n wm
n+1

)}

. (41)

These integrals are evaluated in the Appendix.

From Eqs. (25) and (26), we have

Fz = ρ0c
2

4k2
(−I1 − I2 + I3 + I4) = −πρ0c

2

k2

∑

n,m

Z
m
n

(

Q
m
n + Qm

n

)

(42)

where

Q
m
n = s2

(

wm
n wm

n+1 + wm ′
n wm ′

n+1

)

− n(n + 2)wm
n wm

n+1 − snwm
n wm ′

n+1 + s(n + 2)wm ′
n wm

n+1, (43)

wm
n ≡ wm

n (s) and s = kR. In fact, as we know that Fz does not depend on R, Qm
n cannot depend on s; this provides a check on

subsequent calculations.

Recall that wm
n is given by Eq. (34). Letting zn denote jn or hn, we have

(n + 2) zn+1(s) = s{zn(s) − z ′
n+1(s)}, nzn(s) = s{z ′

n(s) + zn+1(s)}

whence

(n + 2)wm
n+1 = s{Dm

n+1 jn + Cm
n+1 hn − wm ′

n+1}, nwm
n = s{wm ′

n + Dm
n jn+1 + Cm

n hn+1}. (44)

Using these in Eq. (43),

s−2
Q

m
n = wm

n wm
n+1 + wm ′

n wm ′
n+1 −

(

wm ′
n + Dm

n jn+1 + Cm
n hn+1

)

(

Dm
n+1 jn + Cm

n+1 hn − wm ′
n+1

)

−
(

wm ′
n + Dm

n jn+1 + Cm
n hn+1

)

wm ′
n+1 + wm ′

n

(

Dm
n+1 jn + Cm

n+1hn − wm ′
n+1

)

= wm
n wm

n+1 −
(

Dm
n jn+1 + Cm

n hn+1

)

(

Dm
n+1 jn + Cm

n+1hn

)

=
(

Dm
n jn + Cm

n hn

)

(

Dm
n+1 jn+1 + Cm

n+1hn+1

)

−
(

Dm
n jn+1 + Cm

n hn+1

)

(

Dm
n+1 jn + Cm

n+1 hn

)

= Dm
n Cm

n+1

(

jn hn+1 − jn+1hn

)

+ Cm
n Dm

n+1 (hnjn+1 − hn+1jn) + Cm
n Cm

n+1

(

hnhn+1 − hn+1hn

)

= is−2
(

Dm
n C

m
n+1 + CnD

m
n+1 + 2Cm

n Cm
n+1

)

,

using [17, 10.50.3]. As expected, Qm
n does not depend on s. In addition, the terms involving products of spherical Bessel

functions cancel: there are no radiation forces without scattering.

Substitution in Eq. (42) gives

Fz = 2πρ0c
2

k2

∑

n,m

Z
m
n Im

(

Dm
n Cm

n+1 + CnD
m
n+1 + 2Cm

n Cm
n+1

)

. (45)
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4.3. Radiation force: Fx and Fy

Consider Fx ± iFy, defined by Eqs. (25), (27) and (34). As Fx and Fy are real, we choose to calculate Fx − iFy without loss of

generality. The following results are found; see the Appendix for details. First,

I5 ≡
∫

SR

k2uu e−iφ sin θ dS = 4π (kR)2
∑

n,m

{

X
m
n wm+1

n+1 wm
n − Y

m
n wm

n wm−1
n+1

}

, (46)

I6 ≡
∫

SR

∂u

∂r

∂u

∂r
e−iφ sin θ dS = 4π (kR)2

∑

n,m

{

X
m
n wm+1 ′

n+1 wm ′
n − Y

m
n wm ′

n wm−1 ′
n+1

}

, (47)

where

X
m
n = (n + m + 2)!

(2n + 3)(2n + 1)(n − m)! and Y
m
n = (n + m)!

(2n + 3)(2n + 1)(n − m)! .

Two further pieces are as follows:

I7 ≡
∫

SR

1

r2

(

∂u

∂θ

∂u

∂θ
+ 1

sin2 θ

∂u

∂φ

∂u

∂φ

)

e−iφ sin θ dS (48)

= 4π
∑

n,m

n(n + 2)

{

X
m
n wm+1

n+1 wm
n − Y

m
n wm

n wm−1
n+1

}

, (49)

I8 ≡
∫

SR

{

− cos θ

r

(

∂u

∂θ

∂u

∂r
+ ∂u

∂θ

∂u

∂r

)

+ i

r sin θ

(

∂u

∂φ

∂u

∂r
+ ∂u

∂φ

∂u

∂r

)}

e−iφ dS (50)

= 4πkR
∑

n,m

X
m
n

{

nwm+1 ′
n+1 wm

n − (n + 2)wm+1
n+1 wm ′

n

}

− 4πkR
∑

n,m

Y
m
n

{

nwm
n wm−1 ′

n+1 − (n + 2)wm ′
n wm−1

n+1

}

. (51)

From Eqs. (25) and (27), we have

Fx − iFy = ρ0c
2

4k2
(−I5 − I6 + I7 + I8) = −πρ0c

2

k2

∑

n,m

{

X
m
n ξm

n − Y
m
n ηm

n

}

(52)

where

ξm
n = s2

(

wm+1
n+1 wm

n + wm+1 ′
n+1 wm ′

n

)

− n(n + 2)wm+1
n+1 wm

n − s
(

nwm+1 ′
n+1 wm

n − (n + 2)wm+1
n+1 wm ′

n

)

,

ηm
n = s2

(

wm
n wm−1

n+1 + wm ′
n wm−1 ′

n+1

)

− n(n + 2)wm
n wm−1

n+1 + s
(

(n + 2)wm ′
n wm−1

n+1 − nwm
n wm−1 ′

n+1

)

.

Making use of Eqs. (34) and (44),

s−2ξm
n = wm+1

n+1 wm
n + wm+1 ′

n+1 wm ′
n − {Dm+1

n+1 jn + Cm+1
n+1 hn − wm+1 ′

n+1 }{wm ′
n + Dm

n jn+1 + Cm
n hn+1}

− wm+1 ′
n+1 {wm′

n + Dm
n jn+1 + Cm

n hn+1} + wm ′
n {Dm+1

n+1 jn + Cm+1
n+1 hn − wm+1 ′

n+1 }
= wm+1

n+1 wm
n − (Dm+1

n+1 jn + Cm+1
n+1 hn) (Dm

n jn+1 + Cm
n hn+1)

= Cm+1
n+1 Dm

n (jnhn+1 − jn+1hn) + Cm
n Dm+1

n+1 (jn+1hn − jnhn+1)

+ Cm
n Cm+1

n+1 (hn+1hn − hn+1hn)

= −is−2
{

Cm+1
n+1 Dm

n + Cm
n Dm+1

n+1 + 2Cm
n Cm+1

n+1

}

. (53)

Similarly

ηm
n = i

{

Cm−1
n+1 Dm

n + Cm
n Dm−1

n+1 + 2Cm
n Cm−1

n+1

}

. (54)

Substitution in Eq. (52) then gives Fx and Fy:

Fx − iFy = i
πρ0c

2

k2

∑

n,m

X
m
n

{

Cm+1
n+1 Dm

n + Cm
n Dm+1

n+1 + 2Cm
n Cm+1

n+1

}

+ i
πρ0c

2

k2

∑

n,m

Y
m
n

{

Cm−1
n+1 Dm

n + Cm
n Dm−1

n+1 + 2Cm
n Cm−1

n+1

}

. (55)
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4.4. Radiation force: summary and discussion

Our expressions for the components of the radiation force F are exact, they are applicable to scatterers of any shape, and

for arbitrary incident fields (provided uinc is a regular wavefunction between S and SR). Similar formulas can be found in

[18, Eqs. (11)–(13)], [15, p. 28] and [19, p. 666]. Unfortunately, the derivations in these papers contain errors; we return to

these in Section 5.2.

5. Use of far-field approximations

Let us introduce the far-field pattern, f (r̂), defined by

usc(r) ∼ (ikr)−1 eikr f (r̂) as r → ∞. (56)

When usc is expanded as Eq. (29), we obtain

f (r̂) =
∑

n,m

(−i)n Cm
n Ỹm

n (r̂). (57)

Formally, this formula is obtained by inserting the asymptotic approximation [17, 10.52.4],

hn(w) ∼ (−i)n(iw)−1eiw as w → ∞, (58)

into Eq. (29). However, although Eq. (57) is correct, we wrote ‘‘formally’’ because the approximation Eq. (58) is not uniform

in n: it holds for fixed n. This difficulty was noted explicitly byMüller [20, p. 241]. For full justification, we follow Colton and

Kress [21, Theorem 2.16]. First, as usc satisfies the Sommerfeld radiation condition, f (r̂) is well defined [21, Theorem 2.6] and

it has an expansion f (r̂) =
∑

n,m Fm
n Ỹm

n (r̂) for certain coefficients Fm
n . We want to show that Fm

n = (−i)nCm
n . Using Eq. (31),

we obtain

2πhm
n F

m
n =

∫

Ω

f (r̂) Ỹm
n (r̂) dΩ =

∫

Ω

lim
r→∞

{

ikr e−ikrusc(r)
}

Ỹm
n (r̂) dΩ

= lim
r→∞

{

ikr e−ikr

∫

Ω

usc(r) Ỹm
n (r̂) dΩ

}

= lim
r→∞

{

ikr e−ikr (2π )hm
n C

m
n hn(kr)

}

= 2πhm
n C

m
n lim

r→∞

{

ikr e−ikrhn(kr)
}

= 2πhm
n (−i)nCm

n ,

giving the desired result.

From Eqs. (57) and (32), we obtain a well-known formula for the scattering cross-section,
∫

Ω

∣

∣f (r̂)
∣

∣

2
dΩ = 2π

∑

n,m

hm
n

∣

∣Cm
n

∣

∣

2 = σsc. (59)

The formula Eq. (33) for the extinction cross-section, σex, involves the incident field through the coefficients Dm
n ; we return

to this complication in Section 5.1.

Next consider Fz , given by Eq. (45). One piece of this formula involves products of the coefficients Cm
n ; this piece can be

expressed in terms of f . Specifically, following the calculation of I1, see Eq. (36), we find
∫

Ω

∣

∣f (r̂)
∣

∣

2
cos θ dΩ = 4π

∑

n,m

Z
m
n

{

iCm
n Cm

n+1 + iCm
n Cm

n+1

}

= −8π
∑

n,m

Z
m
n Im

(

Cm
n Cm

n+1

)

.

Indeed, formally, this result can be obtained by using Eq. (36) with u = usc, together with Eqs. (56) and (58).

Similarly, following the calculation of I5, see Eq. (46),
∫

Ω

∣

∣f (r̂)
∣

∣

2
e−iφ sin θ dΩ = −4π i

∑

n,m

{

X
m
n Cm

n Cm+1
n+1 + Y

m
n Cm

n Cm−1
n+1

}

,

and it is exactly this quantity that appears in the formula for Fx − iFy, Eq. (55).

5.1. Direct calculations avoiding wavefunction expansions

The formula Eq. (59) giving the scattering cross-section in terms of the far-field pattern suggests a direct evaluation, using

the definitions Eqs. (21) and (56). The error in Eq. (56) is O((kr)−2) as kr → ∞ so that, assuming kR ≫ 1, Eq. (21) gives

σsc = k Im

∫

Ω

(

e−ikR

−ikR
f (r̂) + O((kR)−2)

)(

eikR

R
f (r̂) + O((kR)−2)

)

R2 dΩ(r̂);
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taking the limit R → ∞ gives Eq. (59), as expected. Similar calculations can bemade for terms involving products of usc with

itself in the formulas for the radiation force; these formulas come by substituting u = usc + uinc in Λz and Λ±, defined by

Eqs. (26) and (27), respectively. Clearly, simple calculations succeed because usc decays as R
−1 on SR whereas dS = R2 dΩ:

the powers of R balance.

The situation is less clear when cross terms are considered, involving products of uinc and usc. The simplest example of

this occurs with the extinction cross-section, defined by Eq. (23), which we write as

σex = lim
R→∞

kR2 Im

∫

Ω

(

usc

∂uinc

∂r
− uinc

∂usc

∂r

)

dΩ. (60)

If we insert the far-field approximation for usc, Eq. (56), we obtain, tentatively,

σex = lim
R→∞

kR Im

∫

Ω

(

1

ik

∂uinc

∂r
− uinc

)

eikRf (r̂) dΩ(r̂). (61)

At first sight, we may worry about the existence of the limit in Eq. (61) for an arbitrary regular incident wave (although we

know that σex itself does not depend on R so that the limit in Eq. (60) certainly exists), and we may worry that we should

include the next term in Eq. (56), the term that decays as (kr)−2 (which can be calculated in terms of certain derivatives of

f , see [22, Corollary 3.8], for example).

It turns out that these anxieties do not cause further difficulties: the limit in Eq. (61) does exist, and the limit can be

computed for quite general incident waves; and the omitted term from Eq. (56) leads to a zero contribution in the limit.

Similar results can be proved for the computation of the radiation force. For more details, see [23].

5.2. Further remarks

The simplifications following from the introduction of the far-field approximation of the scattered field have encouraged

some authors to introduce analogous approximations for the incident field. To examine this possibility, suppose that uinc is a

regular solution of the Helmholtz equation everywhere: we do not permit (singular) sources outside S because these would

prevent moving the integration surface from S to SR. Three examples are of interest:

1. For an incident plane wave, uinc(r) = exp (ik · r) where k is a constant vector with |k| = k. Of course, plane waves do

not decay as r → ∞: indeed, |uinc| = 1 everywhere.

2. For an axisymmetric Bessel beam,

uinc(r) = exp (ikr cos θ cosβ)J0(kr sin θ sinβ),

where β is a real parameter and J0 is a Bessel function. We see that uinc decays as (kr)
−1/2 in all directions r̂ = r/r

except along the axis (θ = 0, π ).

3. The incident field could be generated using a plane-wave representation (Herglotz wavefunction, angular spectral

representation),

uinc(r) =
∫

Ω

q(ŝ) eikr·ŝ dΩ(ŝ), (62)

where q is a chosen density function, defined on the unit sphere Ω .

When uinc is defined by Eq. (62), its far-field behaviour depends crucially on the properties of q. If q is smooth and bounded,

then

uinc(r) ∼ 2πq(r̂)
eikr

ikr
− 2πq(−r̂)

e−ikr

ikr
, as r → ∞, for all directions r̂ . (63)

This result is sometimes known as the Jones lemma [24], [25, Appendix XII]. However, if q is not smooth and bounded, then

uinc need not behave as in Eq. (63). For more examples and a detailed study, see [26].

We conclude that Eq. (63) is not always true (despite claims to the contrary [27, p. 154]). When Eq. (63) is true, it shows

that uinc behaves in the far field as the sum of an outgoing spherical wave and an incoming spherical wave.

A plausible strategy for effecting the split in Eq. (63) proceeds by substituting 2jn = hn +hn = h
(1)
n +h

(2)
n in the expansion

Eq. (28),

uinc(r) =
∑

n,m

Dm
n

(

h(1)
n (kr) + h(2)

n (kr)
)

Ỹm
n (r̂)

=
∑

n,m

Dm
n h

(1)
n (kr)Ỹm

n (r̂) +
∑

n,m

Dm
n h

(2)
n (kr)Ỹm

n (r̂).

Although this seems to break uinc into the sum of an outgoing spherical wave (first sum) and an incoming spherical wave

(second sum), the second equality may be false: splitting the sum into two may result in two divergent series. To see this
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clearly, consider an incident plane wave,

uinc = eikz =
∞
∑

n=0

(2n + 1) injn(kr)Pn(cos θ ). (64)

For fixed kr , the terms in the series decay rapidly because (2n + 1)jn(kr) ∼ (kr)n/(2n − 1)!! as n → ∞ [17, 10.52.1]; the

Legendre polynomials Pn satisfy Pn(1) = 1, Pn(−1) = (−1)n and Pn(cos θ ) = O(n−1/2) as n → ∞ for θ bounded away from 0

and π . On the other hand, both h
(1)
n and h

(2)
n grow rapidly with n [17, 10.52.2].

The error described above is often compounded by assuming further that kr ≫ 1, so that h
(1)
n (kr) and h

(2)
n (kr) are replaced

by their large-kr approximations (see Eq. (58)) or, equivalently, jn(kr) is replaced by (kr)−1 sin (kr − 1
2
nπ ) [17, 10.52.3]; see,

for example, [18, Eq. (4)], [15, p. 34], [19, p. 666] and (for an analogous two-dimensional problem) [28, Eq. (20)]. Using this

approximation for jn in Eq. (64) leads to

uinc = eikr cos θ ≃ 1

kr

∞
∑

n=0

(2n + 1) in sin

(

kr − nπ

2

)

Pn(cos θ ); (65)

apart from the fact that the series is divergent, the factor (kr)−1 leads to the erroneous conclusion that uinc → 0 as r → ∞
(as stated in [15, Appendix C], for example).

5.3. Debye (1909)

It is of interest to examine Debye’s famous 1909 paper [29] inwhich he calculated the electromagnetic radiation force due

to a planewave interactingwith a sphere. His calculations are reminiscent of those in Section 4.2; compare [29, Eq. (57)] with

Eq. (42). Then,whereaswe usedWronskians to simply further, going fromEq. (42) to Eq. (45), Debye uses the large-argument

asymptotic approximations for jn(kr) and hn(kr), giving [29, Eq. (58)], which still depends on kr . Perhaps fortunately, this is

not the end of the calculation because he has to combine [29, Eq. (58)] with [29, Eq. (58′)]; the sum of these two equations

does not depend on kr .

6. Use of the T -matrix

At this stage we have said very little about the scatterer S: its shape, size and constitution have not played an explicit

role. However, in order to use the exact formulas presented above, we have to be able to compute the coefficients Cm
n in the

expansion Eq. (29) given the coefficients Dm
n in the expansion Eq. (28). As the (first-order) scattering problem is linear, the

relation between these coefficients is linear. It can be encoded in Waterman’s T -matrix,

Cm
n =

∑

ν,µ

T̃mµ
nν Dµ

ν ; (66)

recall that we are using unnormalised spherical harmonics, which explains the notation T̃
mµ
nν for the entries in the T -matrix.

Much is known about the T -matrix, including how to compute it efficiently for many kinds of scatterers. In particular, for

homogeneous spherical scatterers, T is diagonal, so that we can write Cm
n = Rm

n D
m
n , where Rm

n depends on the details of the

sphere (size, boundary condition, internal composition); see, for example, [15, Eq. (5)]. For more information and references,

see [16, Chapter 7].

When Eq. (66) is substituted in Eqs. (32) and (33), we obtain

σsc = 2π
∑

n,m

∑

ν,µ

hm
n D

m
n D

µ
ν

∑

ν′,µ′
T̃

µ′m
ν′n T̃

µ′µ
ν′ν , (67)

σex = −π
∑

n,m

∑

ν,µ

Dm
n D

µ
ν

(

hm
n T̃

mµ
nν + hµ

ν T̃
µm
νn

)

. (68)

For lossless scatterers, the identity σsc = σex combined with the arbitrary nature of the incident field leads to a relation that

must be satisfied by the T -matrix; see [16, Theorem 7.4], where the restriction to lossless scatterers was overlooked.

The far-field pattern can be expressed in terms of the T -matrix: substitute Eq. (66) in Eq. (57).

Clearly, T -matrix methods can be used to compute radiation forces by substituting Eq. (66) in Eq. (45), for example.

However, although these methods have been used for computing electromagnetic radiation forces [30], we are aware of

only one recent study in which T -matrix methods have been used to compute acoustic radiation forces on non-spherical

scatterers [31].
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7. Summary and conclusions

It is known that cross-sections and radiation forces can be expressed as integrals over a sphere of radius R, SR, and that
the values of these integrals do not depend on R. It is natural then to let R → ∞ so that the integrals can be related to
far-field quantities such as the far-field pattern, Eq. (56). This familiar strategy works straightforwardly for the scattering
cross-section σsc (see Eqs. (21) and (59)), but this is an exceptional case: if the integrand involves the incident wave uinc,
extracting the limiting behaviour as R → ∞ is difficult, in general; these difficulties are sketched in Section 5, with more
details available elsewhere [23,26].

An alternative strategy is to evaluate the integrals over SR directly, keeping R finite. One expands the incident field
using regular spherical wavefunctions (Eq. (28) with coefficients Dm

n ) and the scattered field using outgoing spherical
wavefunctions (Eq. (29)with coefficients Cm

n ), and then integrateswith respect to the angular variables. This finite-R strategy
is simple, in principle. The calculations are outlined in Section 4: inevitably, they are complicated but the final results are
explicit and exact; they are also seen to be independent of R, which provides a check on the calculations themselves. The
resulting formulas for the cross-sections (Eqs. (32) and (33)) and the components of the radiation force (Eqs. (45) and (55))
are useful because they do not assume a specific incident field (we just need the coefficients Dm

n ) and they do not assume
anything about the constitution of the scatterer (such as its shape, boundary conditions or internal properties); one has to
be able to find all the Cm

n given all the Dm
n , a task that could be done using a T -matrix method (Section 6) or by any other

convenient numerical method.
From a mathematical point of view, the main merit of the finite-R strategy adopted here is that it is rigorous: within the

derivations, there are no divergent integrals and no divergent series. Given a desire to compute sensible physical quantities
such as cross-sections and radiation forces, our goalwas to do that using convergent processes: this goalwas achieved herein.

Appendix. Some integrals

Suppose that

U(r) =
∑

n,m

wm
n (kr)Ỹ

m
n (r̂), wm

n (kr) = Dm
n jn(kr) + Cm

n hn(kr), (A.1)

V (r) =
∑

n,m

vm
n (kr)Ỹ

m
n (r̂), vm

n (kr) = Fm
n jn(kr) + Em

n hn(kr), (A.2)

in the vicinity of a sphere r = R. Then [16, Lemma 6.5]

∫

r=R

(

U
∂V

∂r
− V

∂U

∂r

)

dS = 2π i

k

∑

n,m

hm
n

(

2Cm
n Em

n + Cm
n Fm

n + Dm
n E

m
n

)

. (A.3)

The proof makes use of the orthogonality of Ỹm
n , Eq. (31), and theWronskian for spherical Bessel functions [17, 10.50.1]. The

special case U = V gives

k Im

∫

r=R

U
∂U

∂r
dS = 2π

∑

n,m

hm
n

(

∣

∣Cm
n

∣

∣

2 + Re
{

Dm
n C

m
n

}

)

. (A.4)

Next, consider I3, defined by Eq. (38). Substituting Eq. (34),

I3 = 2π
∑

n,m

∞
∑

ν=0

wm
n wm

ν

∫ π

0

Pm
n

′
(cos θ )Pm

ν
′
(cos θ ) cos θ sin3 θ dθ

+ 2π
∑

n,m

∞
∑

ν=0

wm
n wm

ν

∫ π

0

m2Pm
n (cos θ )Pm

ν (cos θ ) cot θ dθ. (A.5)

Note that the terms with n = m = 0 are absent. The second integral in Eq. (A.5) is

m2

∫ 1

−1

t

1 − t2
Pm
n (t)Pm

ν (t) dt (A.6)

whereas the first integral in Eq. (A.5) is
∫ 1

−1

t(1 − t2)Pm
n

′
(t)Pm

ν
′
(t) dt =

∫ 1

−1

{(1 − t2)Pm
n

′
(t)}

{

(

tPm
ν (t)

)′ − Pm
ν (t)

}

dt

=
∫ 1

−1

{(1 − t2)Pm
n

′
(t)}

(

tPm
ν (t)

)′
dt −

∫ 1

−1

(1 − t2)Pm
n

′
(t)Pm

ν (t) dt (A.7)

= −
∫ 1

−1

{(1 − t2)Pm
n

′
(t)}′ tPm

ν (t) dt
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− (n + 1)(n + m)

2n + 1

∫ 1

−1

Pm
n−1(t)P

m
ν (t) dt + n(n − m + 1)

2n + 1

∫ 1

−1

Pm
n+1(t)P

m
ν (t) dt

= n(n + 1)

∫ 1

−1

tPm
n (t)Pm

ν (t) dt − m2

∫ 1

−1

t

1 − t2
Pm
n (t)Pm

ν (t) dt (A.8)

− 2(n + 1)(n + m)!
(2n + 1)(2n − 1)(n − 1 − m)! δν,n−1 + 2n(n + 1 + m)!

(2n + 1)(2n + 3)(n − m)! δν,n+1,

where we have used the differential equation satisfied by Pm
n (t),

{(1 − t2)v′(t)}′ + {n(n + 1) − m2/(1 − t2)}v(t) = 0, (A.9)

and the formula [16, Eq. (A.14)]

(2n + 1)(1 − t2)Pm
n

′
(t) = (n + 1)(n + m)Pm

n−1(t) − n(n − m + 1)Pm
n+1(t). (A.10)

The second integral in Eq. (A.8) cancels with the second integral in Eq. (A.5), which is Eq. (A.6). Then, using Eq. (35), the sum

of the two integrals in Eq. (A.5) is

2n(n + 2)(n + m + 1)!
(2n + 1)(2n + 3)(n − m)! δν,n+1 + 2(n − 1)(n + 1)(n + m)!

(2n + 1)(2n − 1)(n − 1 − m)! δν,n−1.

Hence Eq. (A.5) reduces to Eq. (39).

From Eq. (40), we obtain

I4 = −2π (kR)
∑

n,m

∞
∑

ν=0

(

wm
n wm

ν
′ + wm

ν
′
wm

n

)

∫ π

0

Pm
n

′
(cos θ )Pm

ν (cos θ ) sin3 θ dθ.

The integral is

∫ 1

−1

(1 − t2)Pm
n

′
(t)Pm

ν (t) dt = 2(n + 1)(n + m)!
(2n + 1)(2n − 1)(n − 1 − m)! δν,n−1 − 2n(n + 1 + m)!

(2n + 1)(2n + 3)(n − m)! δν,n+1;

the same integral appeared in Eq. (A.7). Hence

I4 = −4π (kR)

∞
∑

n=1

n
∑

m=−n

(

wm
n wm ′

n−1 + wm ′
n−1w

m
n

) (n + 1)(n + m)!
(2n + 1)(2n − 1)(n − 1 − m)!

+ 4π (kR)
∑

n,m

(

wm
n wm ′

n+1 + wm ′
n+1w

m
n

) n(n + 1 + m)!
(2n + 1)(2n + 3)(n − m)! ,

and this reduces to Eq. (41).

From the definition Eq. (46)

I5 = (kR)2
∑

n,m

∑

ν,µ

wm
n w

µ
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

Pm
n (cos θ )Pµ

ν (cos θ ) sin2 θ dθ

= 2π (kR)2
∞
∑

ν=1

w0
0w

−1
ν

∫ 1

−1

√

1 − t2 P−1
ν (t) dt

+ 2π (kR)2
∞
∑

n=1

n
∑

m=−n

∞
∑

ν=0

wm
n wm−1

ν

∫ 1

−1

√

1 − t2 Pm
n (t)Pm−1

ν (t) dt

after separating off the contribution from n = 0. The integrals can be evaluated using Eq. (30) and (2ν+1)
√
1 − t2 Pm−1

ν (t) =
Pm

ν+1(t) − Pm
ν−1(t) [16, Eq. (A.20)]. Thus

∫ 1

−1

√

1 − t2 P−1
ν (t) dt = 1

2ν + 1

∫ 1

−1

(Pν+1(t) − Pν−1(t)) dt = −2

3
δν,1,

∫ 1

−1

√

1 − t2 Pm
n (t)Pm−1

ν (t) dt = 1

2ν + 1

∫ 1

−1

(

Pm
ν+1(t) − Pm

ν−1(t)
)

Pm
n (t) dt = hm

n

2ν + 1

{

δn,ν+1 − δn,ν−1

}

. (A.11)
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Hence

I5 = −4π

3
(kR)2w0

0 w−1
1 + (kR)2

∞
∑

n=1

n
∑

m=−n

wm
n wm−1

n−1

4π (n + m)!
(2n − 1)(2n + 1)(n − m)!

− (kR)2
∞
∑

n=1

n
∑

m=−n

wm
n wm−1

n+1

4π (n + m)!
(2n + 3)(2n + 1)(n − m)! .

The first term and the second sum can be combined. In the first sum, replace n by n + 1 and m by m + 1. Hence we obtain

Eq. (46). Similar arguments apply to I6, see Eq. (47).

From the definition Eq. (48),

I7 =
∑

n,m

∑

ν,µ

wm
n w

µ
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

Pm ′
n (cos θ )Pµ ′

ν (cos θ ) sin4 θ dθ

+
∑

n,m

∑

ν,µ

wm
n w

µ
ν mµ

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

Pm
n (cos θ )Pµ

ν (cos θ ) dθ.

The contributions from n = m = 0 and from ν = µ = 0 are absent. Hence

I7 = 2π

∞
∑

n=1

n
∑

m=−n

∞
∑

ν=1

wm
n wm−1

ν

∫ π

0

Pm ′
n (cos θ )Pm−1 ′

ν (cos θ ) sin4 θ dθ

+ 2π

∞
∑

n=1

n
∑

m=−n

∞
∑

ν=1

wm
n wm−1

ν

∫ π

0

m(m − 1)Pm
n (cos θ )Pm−1

ν (cos θ ) dθ.

The second integral is

I2 ≡ m(m − 1)

∫ 1

−1

Pm
n (t)Pm−1

ν (t)
dt√
1 − t2

(A.12)

whereas the first integral is

I1 ≡
∫ 1

−1

(1 − t2)3/2Pm ′
n (t)Pm−1 ′

ν (t) dt =
∫ 1

−1

{

(1 − t2)Pm ′
n (t)

}

√

1 − t2 Pm−1 ′
ν (t) dt

=
∫ 1

−1

{

(1 − t2)Pm ′
n (t)

}

(
√

1 − t2 Pm−1
ν (t)

)′
dt +

∫ 1

−1

t
√

1 − t2 Pm ′
n (t)Pm−1

ν (t) dt

= −
∫ 1

−1

{

(1 − t2)Pm ′
n (t)

}′√
1 − t2 Pm−1

ν (t) dt +
∫ 1

−1

t(1 − t2)Pm ′
n (t)Pm−1

ν (t)
dt√
1 − t2

,

using
√
1 − t2Pm−1 ′

ν (t) =
(√

1 − t2Pm−1
ν (t)

)′
+ t(1 − t2)−1/2Pm−1

ν (t). Now use the differential equation Eq. (A.9) and [16,

Eq. (A.12)]

t(1 − t2)Pm ′
n (t) = −(n − m + 1)(n + m)t

√

1 − t2 Pm−1
n (t) + m(t2 − 1)Pm

n (t) + mPm
n (t). (A.13)

Thus

I1 =
∫ 1

−1

{

n(n + 1) − m2

1 − t2

}

Pm
n (t)

√

1 − t2 Pm−1
ν (t) dt

−
∫ 1

−1

{

(n − m + 1)(n + m)t Pm−1
n (t) + m

√

1 − t2 Pm
n (t) − m√

1 − t2
Pm
n (t)

}

Pm−1
ν (t) dt

= {n(n + 1) − m}
∫ 1

−1

√

1 − t2 Pm
n (t)Pm−1

ν (t) dt

− (n + m)(n − m + 1)

∫ 1

−1

tPm−1
n (t)Pm−1

ν (t) dt − m(m − 1)

∫ 1

−1

Pm
n (t)Pm−1

ν (t)
dt√
1 − t2

.

The last term cancels with Eq. (A.12). The first integral can be evaluated using Eq. (A.11) and the second integral can be

evaluated using Eq. (35). Hence
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I ≡ I1 + I2 = {n(n + 1) − m} hm
n

2ν + 1

{

δn,ν+1 − δn,ν−1

}

− hm
n

2ν + 1

{

(ν − m + 2)δn,ν+1 + (ν + m − 1)δn,ν−1

}

= hm
n

2ν + 1

{

(n2 − 1)δν,n−1 − n(n + 2)δν,n+1

}

and

I7 =
∞
∑

n=1

n
∑

m=−n

wm
n wm−1

n−1

4π (n2 − 1) (n + m)!
(2n − 1)(2n + 1)(n − m)! −

∞
∑

n=1

n
∑

m=−n

wm
n wm−1

n+1

4πn(n + 2) (n + m)!
(2n + 3)(2n + 1)(n − m)! .

In the first sum, replace n by n + 1 andm bym + 1. Hence we obtain Eq. (49).

Finally, consider I8, defined by Eq. (50). We have

I8 = kR
∑

n,m

∑

ν,µ

wm
n w

µ ′
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

Pm ′
n (cos θ )Pµ

ν (cos θ ) cos θ sin2 θ dθ

+ kR
∑

n,m

∑

ν,µ

wm ′
n w

µ
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

Pm
n (cos θ )Pµ ′

ν (cos θ ) cos θ sin2 θ dθ

− kR
∑

n,m

∑

ν,µ

wm
n w

µ ′
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

mPm
n (cos θ )Pµ

ν (cos θ ) dθ

+ kR
∑

n,m

∑

ν,µ

wm ′
n w

µ
ν

∫ π

−π

ei(m−µ−1)φ dφ

∫ π

0

µ Pm
n (cos θ )Pµ

ν (cos θ ) dθ. (A.14)

The first and third lines combine as

2πkR

∞
∑

n=1

n
∑

m=−n

∞
∑

ν=0

wm
n wm−1 ′

ν J1

where

J1 =
∫ 1

−1

{

t(1 − t2)Pm
n

′
(t) − mPm

n (t)
}

Pm−1
ν (t)

dt√
1 − t2

= −(n + m)(n − m + 1)

∫ 1

−1

tPm−1
n (t)Pm−1

ν (t) dt − m

∫ 1

−1

√

1 − t2 Pm
n (t)Pm−1

ν (t) dt

= − hm
n

2ν + 1

{

(n + 1)δν,n−1 + nδν,n+1

}

,

using Eqs. (A.13), (35) and (A.11). Similarly, the second and fourth lines in Eq. (A.14) combine as

2πkR
∑

n,m

∞
∑

ν=1

wm ′
n wm−1

ν J2

where

J2 =
∫ 1

−1

{

t(1 − t2)Pm−1 ′
ν (t) + (m − 1)Pm−1

ν (t)
}

Pm
n (t)

dt√
1 − t2

=
∫ 1

−1

tPm
n (t)Pm

ν (t) dt + (m − 1)

∫ 1

−1

√

1 − t2 Pm
n (t)Pm−1

ν (t) dt

= hm
n

2ν + 1

{

(n − 1)δν,n−1 + (n + 2)δν,n+1

}

,

using [16, Eq. (A.11)]

t(1 − t2)Pµ ′
ν (t) + µPµ

ν (t) = t
√

1 − t2 Pµ+1
ν (t) + µ(1 − t2)Pµ

ν (t),

with µ = m − 1 together with Eqs. (35) and (A.11). Thus
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I8 = −kR

∞
∑

n=1

n
∑

m=−n

wm
n wm−1 ′

n−1

4π (n + 1)(n + m)!
(2n − 1)(2n + 1)(n − m)!

− kR

∞
∑

n=1

n
∑

m=−n

wm
n wm−1 ′

n+1

4πn(n + m)!
(2n + 3)(2n + 1)(n − m)!

+ kR

∞
∑

n=2

n
∑

m=−n

wm ′
n wm−1

n−1

4π (n − 1)(n + m)!
(2n − 1)(2n + 1)(n − m)!

+ kR
∑

n,m

wm ′
n wm−1

n+1

4π (n + 2)(n + m)!
(2n + 3)(2n + 1)(n − m)! .

As before, replace n by n + 1 andm bym + 1 in the first and third sums, giving Eq. (51).
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