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Approximate fundamental solutions (AFS) are designed to be similar to fundamental solutions but without singu-
larities. They have been used in the context of the Method of Fundamental Solutions and for problems of Stokes
flow (where they are known as regularized stokeslets). A short survey of available AFS is given together with
how they may be used to treat three-dimensional boundary-value problems for Laplace’s equations. Explicit cal-
culations are made for a sphere, with a focus on quantifying errors. It is concluded that the use of AFS can lead

to unexpectedly large errors: caution is advised when abandoning true fundamental solutions.

1. Introduction

A fundamental solution for an elliptic partial differential equation
(PDE) is a solution of the PDE with a singularity at one point. For
Laplace’s equation in three dimensions, the basic fundamental solution
is

Gy(P,Q) =Gy(r;s) = A/R with R=|r—s|. (1)

Here the points P and Q have position vectors r and s, respectively, with
respect to an origin O, and A is an arbitrary constant. Formally,

V3 Go(P, Q) = —4n A 5(r — 5), )

where §(r) is the three-dimensional delta function. (This motivates the
common choice A = —1/(4x).) Note that Gy(P,Q) ~ A/rasr=|r| > o
for fixed Q. Imposing this far-field condition renders G, unique.

We consider a model exterior boundary-value problem. It is to solve
Laplace’s equation, V2u = 0, in B, the three-dimensional region exterior
to a smooth closed bounded surface S. We impose a Dirichlet boundary
condition, u = f on S, where f is given. In addition, we require that
u(r) = O(r~") as r — oo. This problem is known to be uniquely solvable.

Classical potential theory reduces the boundary-value problem for
u to a boundary integral equation over S. This reduction can be done
in various ways; a brief review is given in Section 2. (See [1] for more
information.) The resulting integral equations have kernels with singu-
larities. Although these singularities can be handled without too much
difficulty, many authors have been interested in developing methods
without singularities. Two possibilities are as follows.

* Method of Fundamental Solutions (MFS). Here, Gy(P, Q) is used
but it is arranged that P# Q by placing singularities inside S (see
Section 3).
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« Method of Approximate Fundamental Solutions (MAFS). Here, G, (P,
Q) is replaced by G, (P, Q, containing a parameter 7, chosen so that
G,~Goasn—0 but G,(P, P) is finite when 5 > 0. Equivalently, the
delta function on the right-hand side of Eq. (2) is replaced by a
smooth ‘blob function’, ¢, (|r — s|), with ¢, (0) finite (see Section 4).

We are mainly concerned with the MAFS. Start with a standard in-
tegral representation for u, obtained by applying Green’s theorem to u
and Gy in B,

9Gy(P, q) du(q)
a—nquq—/SGo(P,q) on ds,, P€B,, ()

4r Au(P) = / u(q)
s
where the unit normal vector on S points into B,. The first term on the
right-hand side is a double-layer potential. This term is known for our
exterior Dirichlet problem because u(q) = f(q), ¢ €S. The second term
on the right is a single-layer potential. It is not known until we have
computed du/dn on S, and this can be done in various ways (Section 2).

There is an integral representation similar to Eq. (3) for Stokes flow,
with the analogues of u and du/on being fluid velocity and force (trac-
tion) on S. The relevant fundamental solution is known as a stokeslet
and then the corresponding MAFS is known as the method of regularized
stokeslets [2].

If we replace G, by G, in Eq. (3), we can expect good approxima-
tions to u(P) when P is not near S, provided we know u(q) and du/on
exactly. But this expectation may be thwarted if we try to compute these
quantities using a method that itself uses G,. Quoting from [3, p. 163]:

It was demonstrated in [4] that the regularization error is O(42) in
the far field and only O(#) in the near field, i.e. when the evaluation
point is close to the boundary. This is true when the forces on the
boundary are known to be exact. However, we have found that when

Received 5 March 2018; Received in revised form 20 June 2018; Accepted 12 November 2018

0955-7997/© 2018 Elsevier Ltd. All rights reserved.



P.A. Martin

the boundary force must be computed first from velocity boundary
conditions, the error in the force turns out to be O(5) because it comes
from a near-field computation. This makes the error in all subsequent
computations that use the force (even in the far field) to be O(#).

Later, we shall confirm and quantify these observations using explicit
analytical calculations for a sphere.

The paper quoted above [3] goes on to develop improvements but
we claim that the basic approach is flawed: approximate fundamental
solutions have their place (in vortex methods [5], for example) but their
use negates a basic advantage of classical boundary integral methods
and the MFS, namely, the exact satisfaction of both the governing PDE
and the far-field condition.

2. Classical potential theory

There are two standard approaches, leading to a boundary integral
equation for a certain quantity. One starts with an assumed integral
representation for u (indirect method, Section 2.1) and the other starts
from Green’s theorem (direct method, Section 2.2). One strength of both
approaches is that the PDE and the far-field condition are satisfied ex-
actly, regardless of how well the relevant boundary quantity has been
computed; errors in this computation imply errors in the satisfaction of
the boundary condition.

2.1. Indirect method

Let us seek u in the form of a single-layer potential,

u(P) = /S 10(@) Go(P. q)ds,, P € B, @
where g denotes the integration point on S and y((q) is to be found.
This representation ensures that both V>u =0 and u = O(r~!) as r - o
are satisfied, for any continuous function uy. Applying the boundary
condition gives

/Sllo(Q) Go(p.q)ds, = f(p), pES, (5)
a Fredholm integral equation of the first kind for yq.

One advantage of indirect methods is that, if 4, can be found, then
we know that we have solved the boundary-value problem (which con-
sists of the PDE, the boundary condition and the far-field condition).
One disadvantage is that u, does not usually have a physical interpreta-
tion. Note also that the starting point, namely Eq. (4), can be changed;
for example, we could try writing u(P) as a double-layer potential.

The kernel in Eq. (5), Gy(p, @), has a weak singularity at p =gq.
The simplest way to handle this is to use a boundary element method.
Thus partition S into N elements, S = Ujf’= \S;- On S;, approximate g:
Ho(q) = /4;’, a constant, when q€Ss;. Finally, evaluate Eq. (5) at p=p;,
i=1,2,..., N, with p; €S;. The result is the linear system

N
Zuj?/ Go(pin@)ds, = (), i=12.....N.
=1 75

Fori#j, we can use a simple approximation for the integrals (consistent
with the simple piecewise-constant approximation for ), giving

N

X ], [Goton )+ [ Gotprards, = 1a). i ©)
i=1 S;

where |S;| is the surface area of the boundary element S;. The remain-
ing integral has a weakly singular integrand and so has to be treated

separately.
If we use the same approximations in Eq. (4), we obtain

N N
uPy=y Mj?/ Go(P,q)ds, = Zﬂ?‘sj‘GO(P,pj), Pe B, %)
=1 75 =1

24
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This formula gives an approximate representation of u(P) as a sum of
point sources located on the boundary S. Evidently, this sum cannot be
evaluated at P = p;; it is also prone to numerical errors when P is close
to S (although effective methods have been developed to resolve this
difficulty).

2.2. Direct method

An application of Green’s theorem to u and G, in B, gives the integral
representation for u(P), Eq. (3). Letting P — p € S, taking into account the
jump behaviour of the double-layer potential, and using the boundary
condition gives

/S (@) Go(p, ) ds, =g(p), pES, ®)

a Fredholm integral equation of the first kind for v = ou/dn. In Eq. (8),

aG(p,
g(p) = 2w A f(p) + / f(q)# ds,.
S ng
Using v, Eq. (3) becomes

1

u(P) = ey : v(q) Gy(P,q)ds, + Fy(P), P € B, )
where F, is computable from f,
1 9Gy(P. q)
Fy(P) = — 0 s, 1
o(P) dr A /sf(q) on, dsg 10)

Egs. (8) and (9) can be discretized as in Section 2.1.

One advantage of direct methods is that the unknown function (here,
it is v) has an immediate physical interpretation; indeed, it is often the
desired quantity. One disadvantage is that we do not know if u(P), de-
fined by Eq. (9), actually satisfies the boundary condition (even though
the boundary condition was used in order to derive Eq. (8)); showing
this usually needs a separate argument [1, Section 5.6.5].

3. Method of fundamental solutions

The methods outlined in Section 2 lead to boundary integral equa-
tions with weakly-singular kernels. It is well known how to handle these
singularities: effective efficient numerical methods have been devel-
oped [6].

Nevertheless some authors prefer to avoid computations involving
singularities. One way is to use the so-called method of fundamental so-
lutions (MFS). A continuous variant starts by modifying Eq. (4) to
u(P) = /s v,(q) Gy(P,q)ds,, P € B, (11)

14

where v, is to be found and S, is similar to S but contained inside S.
In more detail, suppose for simplicity that S is star-shaped with respect
to the origin O; this means that every point p €S has position vector
r = r(0, ¢)F, where # = (sin 0 cos ¢, sin 0 sin ¢, cos 6), 6 and ¢ are spherical
polar angles, and r(6, ¢) is a single-valued function of those angles. Then
pointson S, have position vector s = (1 — y)r(0, ¢)# for sufficiently small
y > 0. Imposing the boundary condition on S gives

/S v,@Gop, ) ds, = f(), pES. (12)

14
This is an integral equation for v,; the kernel is non-singular because
p and q lie on disjoint surfaces. We shall return to this method in
Section 6.1.
A discrete (and much more popular) form of the MFS is as follows.
Write
N
wP)= Y u,Gy(P,q)), P€EB,
j=1

13)
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where g; €S, . The coefficients y; are determined by applying the bound-
ary condition,
N

Y w,Go(pina)) = f(p), i=12,....N,

Jj=1

(14)

where p; €S. (The algebraic system may not be well conditioned, and
so one may choose to impose the boundary condition at M points on S
with M>N.)

For applications of the MFS to V2u = 0 in three dimensions, see [7].
For analogous problems of Stokes flow, see [8,9].

4. Approximate fundamental solutions

Suppose that G(p) is defined for p>0 as a smooth function with
C0)=B, ¢'(0)=0 and G(p) = A/p+o(p~!) as p— oo, where A and B
are arbitrary non-zero constants. Here A, B and p are dimensionless.

Define G, by

G,(r)=n""G(r/n), 15)
where the quantity # is a length. Thus G,(0) = B/n,
G,(r)=A/r+0(™") asr— oo for fixed 5 > 0, (16)

and G,(r) = A/r+o(1) as n— 0 for fixed r>0. These properties moti-
vated calling G, a regularized fundamental solution, regularized because
G,7(0) is finite. But G,, is not actually a fundamental solution because
VZG,, (r) # 0 for r> 0; approximate fundamental solution is a better termi-
nology, as we shall see.

As G, is spherically symmetric, we have

V3G, = GI'(r) + 2/NG,(r) = 17 [¢"(r/m) + @n /)G (/). an

where the condition ¢’'(0) = 0 ensures that VZG,7 is continuous at the
origin. If we integrate V2G, over a ball of radius r, B,, Green’s theorem
gives

J

where S, is the spherical boundary of B,. Hence, assuming that G; r) ~

G
VZG,,dV=/ —" ds,
S, or

r

—A/r? as r— oo (consistent with Eq. (16)),

lim
r-o |p

V3G, dV = —47A.

-

(18)

This result is necessary if we want to claim that Van (r) is approximately
a constant multiple of the three-dimensional Dirac delta function, 5(r).
In addition, we want V2G, to be localized, so that V2G,(r) -0 as n— 0
for r>0. Then we shall say that G, is an approximate fundamental solu-
tion.

There are papers on approximations to 5(r); see [10] and references
therein. However, we are interested in G, rather than VZG,?, and we
shall require that G, has the far-field behaviour given by Eq. (16) with
A #0.

Rather than try to give general results, we consider a few examples.
Perhaps the simplest is G(p) = A(p? + 1)~'/2 leading to

3AR? A
26 — _ __ =
V3G, = EE and G, (r) e (19)
To improve the decay of VZG,] as n— 0, consider
A(p* +¢)

==L 20
G(p) 2+ )i (20)
where c is a constant. Then, using Eq. (17),
V2G,(r) = 347 {(2c — 3y + 2 = 3oy} + 7). @1)
Setting 2¢ — 3 = 0 gives the most rapid decay as n — 0, leading to

4 2 2

V26 = 15An and G, (r) = AQr +31°) 22)

T T2 )12 202 + 22

25
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These formulas can be found in [11, Egs. (6) and (15)]; see also
[4, Eq. (9)] and [12, Eq. (4.1)]. We refer to the G defined by Eq. (20) as
the regularized fundamental solution, since that terminology is commonly
used. We shall use this ¢ in Section 6.3 and a modified form of ¢ in
Section 6.4.

For another example, introduced by Beale [13, Eq. (2.19)], consider
6o = A{perf(p) + e}, @3)
where erf is the error function and c is a constant. Some calculation
gives

V26, (0 = 228 20 (3e+ 2= |2 b7,
n Vr

The special case with ¢ =0 was used in [14, Eq. (3.7)]. Although not
our concern here, it can be advantageous to choose ¢ by imposing
f0°° r4VzG,1(r) dr = 0. (Such moment conditions arise when analysing the
approximation properties of approximate delta functions [4,10,12].) Im-

posing this moment condition yields ¢ = 1/ \/;
+ e/ }
n/x

@4

2 _ 24
V3G, =—2=

/=

(2r2—5712)efr2/"2 and G,,(r):_A{ erf(r/n)
r

The formula above for VZG,7 can be found in [15] and in [12, Eq. (4.2)].
Beale [13, Eq. (2.19)] uses Eq. (23) with ¢ = 2/\/;; he imposes the mo-
ment condition /; {pG(p) — A} dp = 0.

Further examples can be constructed using

_ P,
Glp) = { A/p,

where P is a polynomial, leading to compactly supported formulas for
Van. This is the main focus in [10]; see also [12, Eq. (4.3)]. The coef-
ficients in P may be chosen so that G, is differentiable at r = 5. As an
example, we have

0<p<l,

25
o> 1, (25)

15 4 =502 _ 2 <r<
V3G, = { AN =), 0<r<u, 26)
0, rxm,
L An=534 Z 10202 4 <r<
G, = {SAV[ @Brt = 10ry* +154%), 0<r<ny, @
Alr, r>mn.

The simplest example of the form in Eq. (25) has P = A, where the
singularity is ‘cut off’. The resulting cut-off approximate fundamental so-
lution is harmonic for r>0 but has a slope discontinuity at r = 5. We
shall return to this example in Section 6.2.

Another example (which can be written in the form of Eq. (25)) was
suggested by Liu [16]:

G(r) = o / Go(r. $)dV(s), (28)
|Byl JB,

where B, is a ball of radius # with volume | B, | = %mﬁ. Some calculation
shows that G, is given by Eqgs. (15) and (25) with P(p) = %A(3 )
Intuitively, this construction is attractive (smear fundamental solutions
over a small ball) but VZG,, is discontinuous across r = 1.

5. Use of approximate fundamental solutions
5.1. Direct method
Let G,(P,0Q) = G,(R) with R = |r — s|, the distance between P and

Q. Then an application of Green’s theorem to u(Q) and G,(P, Q) in B,
gives
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- / w(Q) VG, (P,0)dV,
B

ou(q)
-G, (P.q) - }dsq, P € B,.

9G,(P.q)

AT

This formula is [11, Eq. (9)]. It should be compared with Eq. (3).
The left-hand side of Eq. (29) can be written as

(29

~uP) [ Vy6,P. 01V - [ 10) - uPIvhG,P.0) a7,
In this formula, the first integral is equal to

aG, (P,
—47:A—/Mds
s

on,
where we have used Eq. (18) and B; is the bounded domain enclosed
by S. Thus, with u = f and v = du/on on S, Eq. (29) becomes

—4rA - /B VLGP0V, = -

u(P)+ E,(P) = = — g v(g) G,(P.q)ds, + F,(P), P€B, (30)
where
_uP) [ 9G,P.9) 1 )
ram =50 [ SR - / )~ UPIVG,(P. Q).
(€2))
Fop - 1 0G,(P,q) d 1
,7( )—m/gf(q)T Sq- (32)

Eq. (30) should be compared with Eq. (9). Both are exact. Unlike
Eq. (9), the behaviour of Eq. (30) as P — p €S is benign: there is no jump
behaviour because G, is not singular, so that we can simply replace P
by p if we want to evaluate Eq. (30) on S.

The term F,, Eq. (32), s expected and computable; see F;, defined by
Eq. (10). The term E,, Eq. (31), is more troublesome. It may be called
the regularization error. From Eq. (30), we obtain
fp)+E,(p)=- (q) G,(p, @) ds, + F,(p),

pES. (33)

1
4z A Js
This would be an integral equation for v if we knew E, (p): we do not,
because it involves u(Q) for all Q €B,. The usual practice is to discard
E,; see [4, Section III], [17] and [11, Section 2.1], where Eq. (22) is
used. Some analyses of this approximation have been made [4,12] but
these are not conclusive when P is on or near S; modifications have been
proposed to handle these situations [11,12].

Suppose now that we have discarded E, and then solved Eq. (33) (nu-
merically), obtaining an approximation for v(q). How should we then
calculate u(P)? The answer is clear: we should abandon Eq. (30) and
substitute our approximation for v into the standard integral represen-
tation Eq. (9) because that representation always generates a solution of
V2u = 0 regardless of the quality of the approximation to the true v(q).

Beale [13] uses G, in a different way. He starts with a standard direct
boundary integral equation, derived using G,. He then replaces G, by
G, discretizes the integral equation (with a grid spacing h) and chooses
n in terms of h. This leads to a provably convergent algorithm.

5.2. Indirect method

By analogy with the classical method sketched in Section 2.1, we
could try writing
M(P)=/M,,(4)G,,(P7t1)dsq, PeB.. (34)

s
for some function Hys cf. Eq. (4). This formula incorporates the cor-
rect far-field behaviour for u but it does not ensure that V?u =0 ev-
erywhere in B,. If P is sufficiently far from S, G, ~ G and then V2u=~0
at such points P. This is true exactly if VZG,, is compactly supported
(see Eq. (26), for example). Nevertheless, V?u = 0 is not satisfied by
Eq. (34) when P is close to S; this may be unfortunate because we have

26
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to impose the boundary condition on S. We shall study this point in
Sections 6.2 and 6.3.
If we do apply the boundary condition to Eq. (34), we obtain
@G, (p.q)ds, = f(p), pPES. (35
s
Proceeding as in Section 2.1, we break S into N boundary elements and

then approximate y,(q) by the constant /4{; on the jth element. The result
is

(36)

N
2 ulsi|Gpipp = s i=1.2. N
Jj=1

This is simpler than Eq. (6) because G, (p;, p;) is finite. The numerical
scheme described here and some variants have been used in [4,11,17].

Going further, we may propose a fully discrete version of the method
(as was done with the method of fundamental solutions at the end of
Section 3), writing

N
uP) =Y ¢,G,(P.p)),
j=1

PeB, (37)

where the coefficients e; are found by imposing the boundary condition,

N

Y ¢,G,(pip) = fp), i=12,..,N.
j=1

(38)

Numerical experiments based on this approach have been re-
ported [16,18].

6. Explicit calculations when S is a sphere

When S is a sphere, explicit analytical calculations can be made, thus
permitting clearer assessments of the various methods described above.
We consider the simplest possible problem, a sphere of radius a with
boundary condition 4 = 1 on r = a. The exact solution is u = a/r.

6.1. Continuous version of the MFS

The MFS was described in Section 3, where the continuous variant is
based on the integral representation Eq. (11), a distribution of sources
over the surface S,, which we take as a concentric sphere of radius b < a.
The spherical symmetry of the problem implies that the source density
v, is a constant. In order to integrate over S,, use spherical polar coor-
dinates so that the point P is on the z-axis at z = r. Then the integration
with respect to the azimuthal angle gives a factor of 2z. Hence, making
use of Eq. (1), Eq. (11) reduces to

e 2 .
u(r) = ZHVVA/ %, r>a.
0 Vr2+b2—2brcosd
The integration is elementary:
C

b3

2 4+ b2 —2b 9

u(r) = 2zv, AV [%] =
" 0

where the constant C = 4x v,Abz. Application of the boundary condition
gives C = a.

It is not surprising that the exact solution is recovered. First, the
integral representation Eq. (11) generates exact solutions of Laplace’s
equation, with no singularities outside the sphere r = b. Second, the ex-
act solution of the boundary-value problem, u = a/r can be continued
analytically inside the boundary, r = a: no singularities are encountered
between r = a and r = b. There is a singularity at r = 0, but it is inside
r=b.
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6.2. MAFS with a cut-off G

Consider the cut-off approximate fundamental solution, defined by

A,
Gp) = {A/p,

0<p<l,

p>1 (39)

Proceeding as in Section 6.1, starting from Eqs. (34) and (15), we arrive
at

M K
u(r) = 2za> — / Q(n’l Vr2+a%—2arcos?d ) sin9d9, r>a,
n Jo

where y, is a constant. Evaluation depends on the value of r/a: whenr/a
is sufficiently large, the cut-off is not needed (so that p>1 in Eq. (39))
whereas the cut-off is needed when r/a is close to 1. Specifically, there
are two regions, an outer region in which r > a + 5, and an inner region
inwhicha<r<a+n.

In the outer region, p>1, so that

Ansin8dd9

, r>a+n, (40)

I
u(r) = 2za® = -¢
n r

r2 +a? —2arcos 9

where C = 47:/4,1,402 is a constant. The fact that u(r) is proportional to
1/r when r > a + 7 is expected; this is the only non-constant spherically
symmetric solution of Laplace’s equation.

In the inner region, a < r < a +#, we can define an angle 9, corre-
sponding to

p=n"'/r2+a - 2arcos 9, = 1,

and then
Hy [T sin 9 d9 Hy [P

uy =2zt [T Ansinddd ot / Asin9d9
M I8 A\/r2 + a2 —2arcos nJo

= £ nrta-m+r--a®), a<r<a+n. @n
4arn

This formula contains a piece proportional to r, namely —Cr/(4an), so

that V2u#0 in the inner region. Nevertheless, applying the boundary

condition, u = 1 at r = a, determines C,

C=4d’/(4a-n =a(l —e/4)™! with &=n/a

(assuming that € # 4). This can be substituted in Eq. (40) to give u in the
outer region. As the exact solution is u,, = a/r, the relative error is
u—u -1
_C"=<1—§) —1=0() ase—0.
Uex 4

This error is uniform in r, assuming that r > a(l + ¢).

In the inner region, we can put r = a(l + §) where 0 <6 <e. Then
Eq. (41) gives

U= lUey

=09 (

cX

-8
4e

)—1~£(2£—5) ase — 0.
4e

Of course, there is no error at the boundary (6 = 0) but otherwise the rel-
ative error is seen to be O(g). We note that u(r) and u’(r) are continuous
across r = a+ 1.

6.3. MAFS with the regularized G

Consider the regularized ¢ defined by Eq. (20) as

AP+
IRV

A
P+ D72

A(c—1)

Glp) TR

42

3.
3
Using Egs. (34) and (15), together with p = 5!
obtain

c [" 1
=z +
u(r) 2 /0 <(R2 — 2arcos9)!/2

where c is a constant (often taken as ¢ = =; see text below Eq. (21)).

r2 + a2 — 2arcos 9, we

n*c—1)
(R2 —2arcos 9)3/2

) sind dd,

27
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where R? =2 + a® + #* and C =4zu,Ad® (as before). Evaluating the
integral,

ur) = = [(R* + 2ar)'/? — (R? - 2ar)!/?
2ar
— (e = D{(R? +2ar) /2 = (R2 = 2ar)7/2}]. “3)

The quantity in square brackets can be expanded in powers of a/r; we
find that
2 2
u = € (1 +5 Q=35+ 0((a/r)4)> as r — oo, (“4)
r r

thus verifying that the error can be minimized by taking 2c — 3 = 0.
Applying the boundary condition, u(a) = 1, to Eq. (43) gives

= £[V4+£2—M+E(C—2)]
Nrwwe

2a 4+ ¢?

._.
|

2
Cl1+8Cc-2-E@c=3)+0EY) ase—o. 45)
a 2 8
When this result is combined with Eq. (44), we see that the relative
error is O(¢e), even in the far field, and even with the special choice
c= % Indeed, it appears that the choice ¢ =2 gives a smaller relative

error at a cost of an erroneous contribution of O((a/r)?) to the far field.
In the near field, put r = a(1 + 6). Then, with 6 = O(e), Eq. (43) gives

C 8 1 2_ 2
ury~ —( 14+ -+ ————((c=2)e“" =6 .
r< 2 2\/62+52( )>

When combined with Eq. (45), we again see first-order relative error:

{5<\/52 ) —5) —6(c—2)<\/£2+52 —g)}.

(46)

U— Uy 1
~

u 2Ve? + 82

ex

6.4. MAFS with another regularized G

Let us introduce another free parameter ¢’ into the regularized G of

Section 6.3, and define
C3(p) = Gp) + ¢’ A(p* + 1)/ 7

where G is defined by Eq. (42). Proceeding as in Section 6.3, we add a

term

C /’r n* ¢’ sin9dd _ Crnte!
2 Jo (R2=2arcos9)5/?
to the right-hand side of Eq. (43). This has no effect on the far-field
estimate in Eq. (44) but it changes Eq. (45) into

5 {(R? = 2ar)™3/* — (R* + 2ar)73/?}
ar

C

2
1= —<1 +§(36+c'—6)— %(20—3)+O(£4)> ase — 0.
Thus the choices ¢ =¢’ = % give C/a =1+ O(¢*) as ¢ >0 and then
Eq. (44) gives (u — uy)/uy = O((a/r)*) asr — co. In the near field, a term
é(C/r)c’£4(£2 +62)73/2 is added to the right-hand side of Eq. (46): the
near-field relative error remains as first order, for any choices of ¢ and
¢’ in Gs.

7. Comparisons, comments and conclusions

Let us write Eq. (37) as

N
ur)y =Y e,G,(Ir=r;).

j=1
This is one starting point for the use of radial basis functions (RBFs) to
solve boundary-value problems [19]. However, in those methods, the
nodes atr; lie on S and in B, and then V2u = 0 is imposed at points r in
B.. Here, all the nodes are on the boundary, and the boundary condition
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is imposed at those nodes; the task of satisfying V?u = 0 is delegated to
the choice of G,,. This connection with RBF methods was noted by Géspér
[18, p. 373].

It is interesting to compare the discrete forms of the MFS and the
MATFS for the simplest problem, a sphere of radius a. For the MFS, with
collocation points p; at r; and source points g; at s;, we have

Sj

2 2 2
[r; — sl Ir;1= + Is;17 = 2r; - 5;

a +(1=p)Pa* = 2a° (1 = p)#; - F;
(I =pa* {201 =7 - #)+7* /(1 =)}

The entries in the system matrix Eq. (14) are proportional to |r; — s;|7!.

J
For the MAFS, we require G,,(R), where

R =|r,—r;* =2a(1 -} - })).

As before, write n = £a, with ¢ positive and dimensionless. Then, using
the simplest approximate fundamental solution, Eq. (19),

A A
VR 4 a\/2(1 —F B +E

G,(p;,p;) =

We see that, for this special case, the MFS and the MAFS lead to exactly
the same linear system when n = ya/+4/1 — y. We note that the MAFS can
be refined by using other choices for G, (Section 4) but the MFS always
generates an exact solution of the governing PDE.

We conclude that gains in simplicity stemming from the use of ap-
proximate fundamental solutions can be outweighed by doubts concern-
ing lack of accuracy and lack of rigour.
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