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TEMPORALLY MANIPULATED PLASMONS ON GRAPHENE∗

JOSH WILSON† , FADIL SANTOSA† , AND P. A. MARTIN‡

Abstract. This paper studies the propagation of plasmons on graphene when the Drude weight
is varied in time. The phenomenon of plasmon propagation is modeled by considering the graphene
as a conductive sheet. Under the assumption that the field is oscillatory in the direction parallel to
the sheet, it can be shown that the coupled electromagnetic field can be reduced to a single time-
dependent equation describing the current density on the sheet. The current density depends on the
wave number ξ and is shown to satisfy an integro-differential equation in time. Well-posedness for
this equation is established. A numerical scheme to solve the current equations based on convolution
quadrature is developed. An approximate equation, based on large ξ with the physical interpretation
of a quasi-static approximation, is derived and its accuracy assessed. The phenomena of wave reversal
and parametric amplification are studied. Numerical calculations are conducted to address several
theoretical issues as well as to demonstrate the main ideas.

Key words. plasmons, graphene, wave propagation, Maxwell’s equations, time reversal, ampli-
fication
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1. Introduction. In this work, we study the phenomenon of plasmon propaga-
tion along a graphene sheet. Plasmons are electromagnetic waves which are concen-
trated near the interface between a dielectric, such as air, and a highly conductive
material. By “concentrated” we mean that the field decays exponentially away from
the interface and propagation is mainly confined along the interface. Classically, plas-
mons were studied at metal-dielectric interfaces. However, there are several drawbacks
to using metals for plasmonics. First, plasmons occur in the near infrared, which is
not suitable for all applications. Second, metals strongly damp electromagnetic waves,
leading to short plasmon lifetimes. Finally, carrier concentration in metals is not tun-
able, which means that plasmonic devices built from metals can only operate around
a specific wavelength of light.

Recently, two-dimensional materials have emerged as an alternative platform for
plasmonics that overcome the shortcomings of metals. Graphene in particular can
accommodate tunable and highly confined low-loss plasmons [9, 13, 22, 25, 16, 26, 3].
Furthermore, the plasmons occur in the highly sought after terahertz to mid-infrared
regime, with applications in optoelectronics [15, 21], optical modulators [20, 38, 39],
beamforming [7], and the detection and fingerprinting of biomolecules [34, 19]. En-
abling these applications is the ease in tuning of graphene plasmon resonances through
modulation of its electronic doping. Although this modulation can be achieved in real
time in a practical setup, its consequences on graphene plasmon dynamics are not as
well understood. On the other hand, temporal modulation of waves has been studied
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in many physical contexts, revealing interesting phenomena, including time-reversed
acoustic [14], elastic [11], electromagnetic [24], and water waves [2, 33, 8] and the
modulation of refractive index in optics [10, 35, 32].

In this work, we investigate the effects of modulating the electronic doping of
graphene in time on plasmon dynamics. This introduction is followed by a quick
review of the model for the graphene plasmons in section 2. In section 3 we show
that when the Drude weight is a constant, we can write an explicit solution to the
plasmon state. The constant Drude weight case is important as it represents the
background or initial state for the fields in the case of the time-varying Drude weight.
We next derive an integro-differential that describes the amplitude of the current on
the graphene in section 4. Knowing the current allows us to find the electromagnetic
field away from the graphene, and therefore we use the current as the dependent
variable for the system. In section 5 we provide an analysis of the resulting current
equation, establishing existence, uniqueness, and regularity for solutions, as well as
an a priori estimate on the energy of the system. A numerical scheme for solving the
integro-differential equation based on convolution quadrature is proposed in section 6.
A quasi-static approximation is introduced in section 7 and its accuracy assessed. It is
shown that in this regime, the dynamics of graphene plasmons resemble the dynamics
of a certain harmonic oscillator. We will use this model to study properties of plasmon
dynamics, such as temporal time-reversal and parametric amplification. Our findings
are illustrated with numerical experiments.

2. Model. We start with the TE-mode of electromagnetic wave propagation
wherein the magnetic field is H = (0, 0, Hz), the electric field is E = (Ex, Ey, 0), and
both are invariant in z. For convenience, we place the graphene sheet on the xz plane
(y = 0). Away from the sheet, the electromagnetic fields satisfy Maxwell’s equations,

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
,(2.1)

ǫ
∂Ex

∂t
=

∂Hz

∂y
,(2.2)

ǫ
∂Ey

∂t
= −∂Hz

∂x
.(2.3)

Following [36, 29], the presence of the graphene is modeled as a boundary condition.
Implicit in this model is the assumption that the graphene sheet can be homogenized
in both x and z directions in the wavelength regime under consideration. The current
density on the graphene, j(x, t), is related to the discontinuity in magnetic field across
the sheet at y = 0,

(2.4) JHzK = j(x, t).

The tangential electric field is continuous across the boundary,

(2.5) JExK = 0.

The model is completed by Drude’s law for the current density j(x, t),

(2.6)
∂j

∂t
= −1

τ
j +D(t)Ex(x, 0, t).

Here τ is the damping factor and D(t) is the time-dependent Drude weight.
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Combining (2.2) and (2.5) shows that J∂Hz/∂yK = 0. On the other hand, JEyK
and J∂Ex/∂yK are nonzero in general.

We will solve an initial value problem for (2.1)–(2.3) and (2.6) with boundary
conditions (2.4)–(2.5). For initial conditions, we use the fields and current density
associated with D(0) = D0. These fields are calculated next.

3. Constant Drude weight. When D is a constant, D0, we can assume that
all fields are time-harmonic and make an ansatz of the form

Hz(x, y, t) = sgn(y) eiξx−γ0|y|−s0t.(3.1)

Here ξ is real and fixed, and it represents the plasmon wave number. The parameters
γ0 and s0 are in general complex and are to be determined by the governing equations.
We can interpret Im s0 as the frequency of light and Re s0 as the damping in the
system. Hence we require Im s0 6= 0 and Re s0 ≥ 0 so that the plasmon propagates
and does not grow in time.

Remark 3.1. In contrast to the discussion here, in some applications one specifies
Im s0 and then determines ξ from the governing equations.

Substituting the ansatz (3.1) in (2.2), (2.3), and (2.4) gives us

Ex(x, y, t) =
γ0
ǫs0

eiξx−γ0|y|−s0t, Ey(x, y, t) =
iξ

ǫs0
sgn(y)eiξx−γ0|y|−s0t,(3.2)

j(x, t) = 2eiξx−s0t.(3.3)

Now from (2.1) we get the dispersion relation

γ2
0 = µǫs20 + ξ2,(3.4)

and from (2.6) we get the relation

j(x, t) = σ(s0)Ex(x, 0, t) with σ(s0) =
D0

1/τ − s0
.(3.5)

We can interpret σ(s0) as the conductivity of the graphene sheet; evidently, it is
frequency dependent. Substituting the expressions for j and Ex in (3.5) gives

γ0 =
2ǫs0
σ(s0)

.(3.6)

Upon inserting this relation in (3.4) we obtain

ξ2 =
s20
c2

(
4

σ2(s0)η2
− 1

)
(3.7)

where η =
√

µ/ǫ and c−2 = µǫ. Equation (3.7) is the dispersion relation for a plasmon
[1]. We can rewrite it as

s40 −
2

τ
s30 +

(
1

τ2
− η2D2

0

4

)
s20 −

ξ2D2
0

4ǫ2
= 0.(3.8)

This quartic equation has two real roots and one complex-conjugate pair of roots.
The real roots are of no interest because we want Im s0 6= 0 so as to have propagating
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(2.3), reduce to

µ
∂Hz

∂t
=

∂Ex

∂y
− iξEy, ǫ

∂Ex

∂t
=

∂Hz

∂y
, ǫ

∂Ey

∂t
= −iξHz.

Next we take a Laplace transform with respect to t and obtain

µ
{
sĤz −Hz(y, 0)

}
=

∂Êx

∂y
− iξÊy,(4.1)

ǫ
{
sÊx − Ex(y, 0)

}
=

∂Ĥz

∂y
,(4.2)

ǫ
{
sÊy − Ey(y, 0)

}
= −iξĤz.(4.3)

The transformed variables, decorated with hats, now depend on s and y.
We can obtain an equation for Ĥz from (4.1)–(4.3),

∂2Ĥz

∂y2
− γ2Ĥz = f(y, s),(4.4)

where the forcing term is given by

f(y, s) = −µǫsHz(y, 0)− ǫ
∂Ex

∂y
(y, 0) + iξǫEy(y, 0),(4.5)

and γ =
√

µǫs2 + ξ2. We choose the principal branch of the square root, meaning that
Re γ ≥ 0. We could solve (4.4) using a one-dimensional Green function G(y, y0, s) =
−e−γ|y−y0|/(2γ), but, as we are mainly interested in the behavior at y = 0, we can
proceed more directly. Multiply (4.4) by e−γy and integrate from y = 0 to ∞ to
obtain ∫ ∞

0

f(y, s) e−γy dy = −γĤz(0+, s)− ∂Ĥz

∂y
(0+, s).

Similarly, ∫ 0

−∞

f(y, s) eγy dy = −γĤz(0−, s) +
∂Ĥz

∂y
(0−, s).

Subtracting, using the Laplace transform version of (2.4) (after removing the eiξx

factor), we obtain

−γ̂(s)− 2
∂Ĥz

∂y
(0, s) =

∫ ∞

−∞

sgn(y) e−γ|y|f(y, s) dy,

using J∂Ĥz/∂yK = 0. Then from (4.2),

Êx(0, s) =
1

s
Ex(0, 0) +

1

ǫs

∂Ĥz

∂y
(0, s)(4.6)

=
1

s
Ex(0, 0)−

γ

ǫs
̂(s)− 1

2ǫs

∫ ∞

−∞

sgn(y) e−γ|y|f(y, s) dy.

We assume that D(t ≤ 0) = D0 and use (3.1)–(3.3) as initial conditions. To avoid
confusion, we denote the fields for t ≤ 0 by Hz0(y, t), Ex0(y, t), Ey0(y, t), and j0(t),
suppressing the (known) x-dependence. The forcing term (4.5) reduces to

f(y, s) = −sgn(y)µǫe−γ0|y|(s− s0).
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Therefore, the integral on the right-hand side of (4.6) becomes

µǫ(s0 − s)

∫ ∞

−∞

e−(γ+γ0)|y| dy =
2µǫ(s0 − s)

γ + γ0
=

2(γ0 − γ)

s+ s0

after multiplying the numerator and denominator by (γ−γ0) and using the definitions
of γ and γ0. So, from (4.6) we have the equation

Êx(0, s) = − γ

2ǫs
̂(s) +

1

s
Ex(0, 0) +

γ − γ0
ǫs(s+ s0)

.(4.7)

Next we will perform the inverse Laplace transform of this equation. Recall that
from (3.3), j0(t) = 2e−s0t which gives ̂0(s) = L{j0} = 2/(s+ s0). Then rewrite (4.7)
as

L{Ex(0, t)− Ex(0, 0)} = − γ

2ǫs
(̂(s)− ̂0(s))−

γ0
ǫs(s+ s0)

;

the last term is −(γ0/[ǫs0])L{1−e−s0t}, which we identify as L{Ex0(0, t)−Ex0(0, 0)}.
For the term involving γ/s, we observe that

γ

s
=

√
s2 + a2

cs
=

1

cs

(√
s2 + a2 − s

)
+

1

c
(4.8)

=
a

cs
L{t−1J1(at)}+

1

c
=

1

c
L{k1(t)}+

1

c
,

where a = cξ, c = 1/
√
µǫ, J1 is a Bessel function, we have used [17, eq. 6.623.3], and

(4.9) k1(t) =

∫ t

0

a

t′
J1(at

′) dt′.

Hence using the convolution theorem, we can invert (4.7) to obtain

Ex(0, t)− Ex0(0, t) = −(η/2) [(j − j0) + k1 ∗ (j − j0)] ,(4.10)

noting that η =
√

µ/ǫ and Ex0(0, 0) = Ex(0, 0). Finally, eliminating Ex(0, t) between
(2.6) and (4.10) gives an integro-differential equation for j(t),

dj

dt
+

1

τ
j +

ηD
2

(j + k1 ∗ j) =
ηD
2

(j0 + k1 ∗ j0) +D(t)Ex0(0, t).(4.11)

Next we derive several useful variants of (4.11). Define

J (t) = j(t)− j0(t) = j(t)− 2 e−s0t,

which satisfies J (0) = 0. Take (2.6) for both j and j0, and subtract to get

(4.12)
dJ
dt

+
1

τ
J = D(t)Ex(0, t)−D0Ex0(0, t).

Eliminating Ex(0, t) using (4.10) gives

(4.13)
dJ
dt

= −1

τ
J − ηD

2
(J + k1 ∗ J ) + (D(t)−D0)Ex0(0, t).
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Equation (4.12) can be converted into a Volterra integral equation of the second
kind. To do this, regard (4.12) as a linear first-order equation for J ; solving it gives

J (t) =

∫ t

0

e−(t−t′)/τ {D(t′)Ex(0, t
′)−D0Ex0(0, t

′)} dt′(4.14)

= k2 ∗ (DEx −D0Ex0),

where we set k2(t) = e−t/τ . Now substitute for Ex(0, t
′) from (4.10) to obtain

(4.15) J + (η/2)[k2 ∗ (DJ ) + k2 ∗ {D(k1 ∗ J )}] = k2 ∗ [(D −D0)Ex0] .

Defining a new kernel k by

(4.16) k(t, s) = k2(t− s)D(s) +

∫ t

s

k2(t− r)D(r)k1(r − s) dr,

and an operator K by

(4.17) (Ku)(t) =
η

2

∫ t

0

k(t, s)u(s) ds,

we can rewrite (4.15) concisely as

(4.18) J +KJ = k2 ∗ [(D −D0)Ex0] .

Finally, for a later numerical method it will be convenient to work directly with
(4.10) and (4.14), which give us the system of integral equations

Ex(0, t) = −(η/2)(J + k1 ∗ J ) + Ex0(0, t),(4.19)

J (t) = k2 ∗ (DEx −D0Ex0) = k2 ∗ (DEx) + 2 e−t/τ − j0(t).(4.20)

5. Analysis of the current density equation. In this section we investigate
some properties of (4.13) and (4.18). In particular, we will consider existence and
uniqueness of solutions as well as derive a priori estimates for J when D is of a
certain form. Throughout we will assume that D > 0. Also, when investigating the
properties of the solution of (4.18) we will consider the equation

u+Ku = f,(5.1)

where we take f to be real. Note that while our particular f is complex, we can
simply take real and imaginary parts to reduce to the real case because k is real.

5.1. Well-posedness. When D is continuous, (5.1) is guaranteed to have a
unique continuous solution on [0,∞) [6, Thm. 2.1.1], [5, Thm. 1.2.3]. When D is not
as smooth (we are especially interested in discontinuous D), we need to understand
some properties of the kernels k1, k2, and k.

Lemma 5.1. We have k1(t) > 0 and k2(t) > 0 for t > 0. Furthermore, k(t, s) > 0
for t, s > 0.

Proof. The claim is clear for k2(t) = e−t/τ . For k1, we use the Poisson integral
for J1(x)/x [31, eq. 10.9.4] to get

k1(t) =

∫ at

0

a

x
J1(x) dx =

2a

π

∫ 1

0

√
1− s2

sin (ats)

s
ds =

4a

π

∫ 1

0

s√
1− s2

Si (ats) ds,

where Si is the sine integral [31, eq. 6.2.9]. The result follows because Si(x) > 0 when
x > 0 [31, eq. 6.10.4]. The claim for k follows from (4.16) and the positivity of k1, k2,
and D.
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Now we investigate properties of the operator K from (4.17).

Lemma 5.2. Fix T > 0 and let u ∈ L2(0, T ). The operator K : L2(0, T ) →
L2(0, T ) is compact. Moreover, Ku is continuous on [0, T ].

Proof. For compactness, note that K is a Hilbert–Schmidt operator [5, Thm.
8.1.3 (b)]. For continuity, note that the kernel k is the sum of k2(t − s)D(s), which
may be discontinuous, and a continuous part, (4.16). For the first part, we consider

(5.2) e−t/τ

∫ t

0

es/τD(s)u(s) ds;

this is continuous because the indefinite integral of an L2 function is continuous.

Theorem 5.3. Let T > 0. Equation (5.1) has a unique solution u ∈ L2(0, T ) for
each f ∈ L2(0, T ).

Proof. Suppose there is a u ∈ L2(0, T ) that solves u+Ku = 0. Then

u(t) = −(Ku)(t),

and we know from Lemma 5.2 that u is continuous. If we suppose for contradiction
that u 6= 0, then, replacing u with −u if necessary, there is an interval [0, t0] on which
u ≥ 0 and u(t0) > 0. Since

(Ku)(t0) =
η

2

∫ t0

0

k(t0, s)u(s) > 0,

we must have that u(t0) < 0, a contradiction. Therefore, the kernel of I+K is trivial.
Since K is compact, by the Fredholm alternative [12, Appendix D, Thm. 5] we know
that the range of I +K is all of L2(0, T ), which completes the proof.

5.2. Regularity. From (4.16) we can see that the smoothness of the kernel k
is limited by the smoothness of the Drude weight D. As a result, we expect the
regularity of a solution of (5.1) to be limited by the smoothness of D and f . The next
theorem shows that we still have some degree of regularity when D ∈ L2, for example.

Theorem 5.4. Fix T > 0. If f is continuous on [0, T ], then the solution of (5.1)
is continuous.

Proof. This follows from u=−Ku+f and the continuity of Ku in Lemma 5.2.

When D and f have more regularity, we may expect that u has more regularity.
Standard theory [5, Thm. 2.1.1] gives that u ∈ Cm[0, T ] when both f and D are in
the same space. Then, for our particular k(t, s), it is easy to see that Ku can be
differentiated once more; the relevant piece is (5.2). Hence u ∈ Cm+1 if D ∈ Cm and
f ∈ Cm+1.

Of more interest to us is the situation where D is piecewise Cm on [0, T ].

Theorem 5.5. Fix T > 0 and suppose that D is piecewise Cn on [0, T ]. Then

Ku is continuous and piecewise Cn+1 on [0, T ]. Moreover, if f is also continuous and

piecewise Cn+1 on [0, T ], then so is the solution of (5.1).

Proof. The continuity of Ku follows from Lemma 5.2. Then suppose that D(t) is
Cn except at points t = ap, p = 0, 1, 2, . . ., with 0 = a0 < a1 < · · · < aM−1 < aM = T ,
so that D ∈ Cn[ap, ap+1], p = 0, 1, 2, . . . ,M − 1. Then, given t ∈ [am, am+1], we have

(Ku)(t) =
η

2

m∑

p=1

∫ ap

ap−1

k(t, s)u(s) ds+
η

2

∫ t

am

k(t, s)u(s) ds.
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The first m integrals have constant integration limits; the pth integral defines a func-
tion in Cn+1[ap−1, ap] because we can differentiate under the integral sign. The re-
maining integral is in Cn+1[am, am+1] by an argument similar to that used in the
proof of Lemma 5.2: use standard theory plus one more derivative due to the special
structure of k(t, s).

For the claim on u, use u = −Ku+ f together with properties of Ku and f .

5.3. A priori estimates. We start by multiplying (4.13) by J , the complex
conjugate of J = j − j0. Take the complex conjugate of (4.13) and multiply it by J .
Adding the resulting expressions gives

d

dt
|J |2 = −2

τ
|J |2 − ηD

{
|J |2 +Re

(
J [k1 ∗ J ]

)}
+ 2Re

(
J f

)
,

where f(t) = (D(t)−D0)Ex0(0, t). Integrate this expression from 0 to t, making use
of the notation

〈u, v〉L2(0,t) =

∫ t

0

u(s)v(s) ds, Bt[u, v] = 〈u+ k1 ∗ u, v〉L2(0,t) ,

and ‖u‖2 = 〈u, u〉. We obtain

(5.3)
1

2
|J |2 + η

2
Re {Bt[J , DJ ]} = Re 〈f,J 〉L2(0,t) −

1

τ
‖J ‖2L2(0,t) .

Assuming that D is differentiable, we see that an integration by parts gives

Bt[J , DJ ] = D(t)Bt[J ,J ]−
∫ t

0

D′(s)Bs[J ,J ] ds.

Combining this with (5.3) gives the energy identity

E(t) = η

2

∫ t

0

D′(s)Re {Bs[J ,J ]} ds+Re 〈f,J 〉L2(0,t) −
1

τ
‖J ‖2L2(0,t) ,(5.4)

where the energy E is defined as

E(t) = 1

2
|J (t)|2 + 1

2
ηD(t)Re {Bt[J ,J ]} .

At this point it is not clear that E is truly an energy, since we do not know if
Re{Bt[J ,J ]} ≥ 0. To prove that this is indeed the case, we begin with some necessary
results on the kernel k1. First, we separate k1 into

(5.5) k1(t) = a+ k◦1(t) where k◦1(t) = −
∫ ∞

t

a

t′
J1(at

′) dt′,

using
∫∞

0
x−1J1(ax) dx = 1 [17, eq. 6.561.17].

The functions k1(t) and k◦1(t) have been defined for t ≥ 0, but we can extend
them to all t by defining them as 0 for t < 0. Having done this, we can define and
compute the Fourier transform of k◦1 as follows:

K◦
1 (ω) =

∫ ∞

−∞

k◦1(t) e
−iωt dt =

∫ ∞

0

a

iωx
J1(ax)

(
e−iωx − 1

)
dx(5.6)

=
ia

ω
− ia

ω

∫ ∞

0

J1(ax) cos (ωx)
dx

x
− a

ω

∫ ∞

0

J1(ax) sin (ωx)
dx

x
.
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The remaining integrals are standard. In particular, using [17, eq. 6.693.1],

(5.7) Re{K◦
1 (ω)} =

{
−1, 0 ≤ ω ≤ a,

−(a2/ω)
(
ω +

√
ω2 − a2

)−1
, ω ≥ a;

for ω < 0, note that Re{K◦
1 (ω)} is an even function of ω. The result (5.7) will be

used later (Lemma 5.7).
In analogy to the relation between k1 and k◦1 , we can also define the bilinear form

B◦
t [u, v] = 〈u+ k◦1 ∗ u, v〉L2(0,t) .(5.8)

Note that Bt and B◦
t are related by

Bt[u, v] = a

〈∫ t

0

u(t′)dt′, v

〉

L2(0,t)

+B◦
t [u, v].(5.9)

We are now ready to investigate some properties of Bt and B◦
t .

Lemma 5.6. Let u, v ∈ L2(0, t) and extend them to R by 0. Then

(5.10) B◦
t [u, v] =

1

2π

∫ ∞

−∞

{1 +K◦
1 (ω)}U(ω)V (ω) dω,

where U and V are the Fourier transforms of u and v, respectively, and K◦
1 is defined

by (5.6).

Proof. We have

B◦
t [u, v] = 〈u, v〉L2(0,t) +

∫ t

0

∫ s

0

k◦1(s− r)u(r) dr v(s) ds

= 〈u, v〉L2(R) +

∫ t

0

∫ ∞

−∞

k◦1(s− r)u(r) dr v(s) ds

= 〈u, v〉L2(R) +

∫ ∞

−∞

(k◦1 ∗̃u)(s) v(s) ds,

using k◦1(s − r) = 0 for r > s, u(r) = 0 for r < 0, v(s) = 0 for s > t and for s < 0,
and ∗̃ denotes standard Fourier convolution,

(f ∗̃ g)(x) =
∫ ∞

−∞

f(x− t)g(t) dt =
1

2π

∫ ∞

−∞

F (ω)G(ω) eiωx dω,

where F (ω) and G(ω) are the Fourier transforms of f and g, respectively. Using the
Fourier convolution theorem and the Plancherel formula,

〈F,G〉L2(R) = 2π 〈f, g〉L2(R) ,

we obtain the result (5.10).

Lemma 5.7. Let u ∈ L2(0, t). Then Re{Bt[u, u]} ≥ 0 and Re{B◦
t [u, u]} ≥ 0.

Proof. We can reduce to the real case by noting that

Re{Bt[u, u]} = Bt[ Re(u),Re(u)] +Bt[ Im(u), Im(u)],

D
ow

nl
oa

de
d 

05
/1

3/
21

 to
 1

38
.6

7.
22

.2
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

GRAPHENE PLASMONS 1061

and similarly for B◦
t . Then, assuming now that u is real, the first term on the right-

hand side of (5.9) is

(5.11) a

∫ t

0

u(t′)

∫ t′

0

u(r)dr dt′ =
a

2

(∫ t

0

u(t′)dt′
)2

≥ 0.

Therefore, we can focus our attention on B◦
t [u, u].

If we put u = v in (5.10), we obtain

B◦
t [u, u] =

1

2π

∫ ∞

−∞

{1 +K◦
1 (ω)} |U(ω)|2 dω =

1

2π

∫ ∞

−∞

{1 + Re[K◦
1 (ω)]} |U(ω)|2 dω

because the left-hand side is real. Then, making use of (5.7) we obtain

(5.12) B◦
t [u, u] =

1

2π

∫

|ω|>a

√
1− (a/ω)2 |U(ω)|2 dω ≥ 0.

Lemma 5.8. Let u ∈ L2(0, t). Then

Re{B◦
t [u, u]} ≤ ‖u‖2L2(0,t) and Re{Bt[u, u]} ≤ (1 + a/2) ‖u‖2L2(0,t) .

Proof. For complex u, ‖u‖2 = ‖Re(u)‖2 + ‖Im(u)‖2, and so we can reduce to the
real case. Then, assuming now that u is real, (5.12) gives

B◦
t [u, u] ≤

1

2π

∫

|ω|>a

|U(ω)|2 dω ≤ 1

2π

∫ ∞

−∞

|U(ω)|2 dω = ‖u‖L2(0,t) .

Combining (5.9) and (5.11) gives

Bt[u, u] =
a

2

(∫ t

0

u(t′)dt′
)2

+B◦
t [u, u].

Applying Jensen’s inequality gives us

a

2

(∫ t

0

u(t′) dt′
)2

≤ a

2

∫ t

0

[u(t′)]2 dt′ =
a

2
‖u‖2L2(0,t) ,

and the result follows.

We are now prepared to return to the question of estimating the energy E .
Theorem 5.9. Suppose that D is continuously differentiable and nonincreasing

for t ≥ 0. Then we have the estimates

E(t) ≤ τ ‖f‖2L2(0,t) ,(5.13)

‖J ‖L2(0,t) ≤ τ ‖f‖L2(0,t) ,(5.14)

where f(t) = (D(t)−D0)Ex0(0, t).

Proof. Recall the energy identity (5.4). As D′ ≤ 0 and Re{Bs[J ,J ]} ≥ 0,

E(t) ≤ Re 〈f,J 〉L2(0,t) − τ−1 ‖J ‖2L2(0,t)

≤ ‖f‖L2(0,t) ‖J ‖L2(0,t) − τ−1 ‖J ‖2L2(0,t)

=
(
‖f‖L2(0,t) − τ−1 ‖J ‖2L2(0,t)

)
‖J ‖L2(0,t) .

We know the left-hand side is nonnegative, so we obtain the estimate (5.14). Substi-
tuting this back into the right-hand side then gives the estimate (5.13).
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Remark 5.10. The energy estimate takes a different form in the case of no damp-
ing, i.e., τ → ∞. Even when there is no damping, the system is not conservative since
varying D(t) can inject energy into the system. This fact is made evident in section 7.

6. A numerical method based on convolution quadrature. In this section
we discuss a method for discretizing the system (4.19)–(4.20) directly. The key idea
[27] is that we can replace the convolutions by discrete operators, which allow us to
devise a time-marching scheme. In convolution quadrature the continuous convolution
is approximated by

(f ∗ g)(Nh) ≈
N∑

n=0

ωN−n g(nh) +

p−2∑

n=0

wN,n g(nh),

where the convolution weights ωn and correction weights wN,n depend on f . When
the correction terms are chosen carefully, the error from replacing the continuous
convolution with the discrete convolution is of order O(hp).

The convolution weights ωn are defined by the expansion

f̂(δ(ζ)/h) =

∞∑

n=0

ωn(h) ζ
n,

where f̂(s) = L{f} is the Laplace transform of f, and δ(ζ) is the generating formula
for the pth-order backward difference formula (BDF),

δ(ζ) =

p∑

n=1

1

n
(1− ζ)n.

The correction weights wN,n are defined by the system

p−2∑

n=0

(nh)q wN,n(h) =

∫ t

0

f(t′)(t− t′)q dt′ −
N∑

n=0

ωn(h)(t− nh)q,

where q = 0, 1, . . . , p− 2 and t = Nh.
In what follows, we apply the above scheme with f = kℓ (ℓ = 1, 2), and we denote

the corresponding weights by ω
(ℓ)
n and w

(ℓ)
N,n.

6.1. Discretization of the governing equations. Assume that D has p con-
tinuous derivatives. Writing Ex,N ∼ Ex(0, Nh) and JN ∼ J (Nh), we discretize
(4.19) and (4.20) and apply the convolution quadrature formula to get

Ex,N +
η

2
(1 + ω

(1)
0 )JN = −η

2

(
N−1∑

n=0

ω
(1)
N−nJn +

p−2∑

n=0

w
(1)
N,nJn

)
+ Ex0(0, Nh),(6.1)

−ω
(2)
0 D(Nh)Ex,N + JN =

N−1∑

n=0

ω
(2)
N−nD(nh)Ex,n +

p−2∑

n=0

w
(2)
N,nD(nh)Ex,n

+ 2e−Nh/τ − j0(Nh).(6.2)

Note that for 1 ≤ N ≤ p− 2 we get a dense system for Ex,N and JN which must be
solved by inverting a (p−2)× (p−2) matrix, but for N > p−2 we get a fully explicit
numerical method.
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6.2. The second-order case. In general, computing the convolution quadra-

ture weights ω
(ℓ)
n and the correction weights w

(ℓ)
N,n is quite involved; see [28] for an

idea of how to do this in general. In the case where p = 2, however, we can derive
fairly explicit formulas for the quadrature weights, which allows for a fast and simple
scheme. First, note that when p = 2 there is only a single correction weight, so the
scheme is fully explicit for every time step.

The formula for ω
(2)
n is explicit and is given by

(6.3) ω(2)
n =

h√
1− 2h/τ

(
1

rn+1
−

− 1

rn+1
+

)
, n = 0, 1, 2, . . . ,

where r± = 2±
√
1− 2h/τ . We derive this and subsequent formulas in Appendix A,

where it is also shown that ω
(2)
n is proportional to a Chebyshev polynomial Un, (A.4).

For ω
(1)
n , we have the following recursion. Define

b0 = 1 +
4a2h2

9
, bn = a2h2

(
n+

n+ 4

3n+2

)
,

a0 =
√
b0, an =

1

2a0

(
bn −

n−1∑

k=1

an−kak

)
.

Then ω
(2)
0 = a0 − 1 and ω

(2)
n = an for n > 0.

For p = 2 the correction weights w
(ℓ)
N,n reduce to a single equation for w

(ℓ)
N,0,

(6.4) w
(ℓ)
N,0(h) =

∫ Nh

0

kℓ(t
′) dt′ −

N∑

n=0

ω(ℓ)
n (h),

which simplifies further, as shown in Appendix A.
We note that for large t there is a simpler method to compute the weights. For

ω
(ℓ)
n we can use [27, eq. (4.2)], which tells us that

ω(ℓ)
n (h) → hkℓ(nh) as nh → ∞.

For the w
(ℓ)
N,n we use [27, Cor. 4.2] to replace w

(ℓ)
N,n with ω

(ℓ)
N−ncn, where the cn depend

only on p. For the particular case where p = 2, there is only c0 = −1/2.

Remark 6.1. When computing k1, we have found it convenient to use the identity
x−1J1(x) = J0(x)− J ′

1(x), which gives

k1(t) = a

∫ at

0

J0(t
′) dt′ − aJ1(at).

In Figure 2 we show a convergence study for convolutional quadrature with p = 2
in the case where D0 is constant. The dots show the computed data points, while
the lines show the line of best fit. From the line of best fit we see that the order of
convergence for both Ex and J is 2, as expected.

Further verification of the convolution quadrature scheme for nonconstant D(t)
was done by comparing the computed solution with a simple collocation method
based on discretizing (4.18) using the trapezoid rule, which converges according to
the general theory in [4]. The two methods yielded results which agree to three digits
in several examples.
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As Ex0(0, t) = γ0(ǫs0)
−1e−s0t and j0(t) = 2e−s0t, the right-hand side of (7.1)

evaluates to

D(t)Ex0(0, 0)

{
ξ

γ0
+

(
1− ξ

γ0

)
e−s0t

}
.

From (3.10), γ0 = ξ +O(1) as ξ → ∞, so we can approximate the quantity inside { }
by 1. Hence, discarding the O(ξ−1/2) terms gives us the approximate equation

(7.2)
dja
dt

+
1

τ
ja(t) +

Dξ

2ǫ

∫ t

0

ja(s) ds = D(t)Ex0(0, 0), with ja(0) = 2,

where we have replaced j with ja to distinguish from the solution of the exact equation.
To conclude this section, note that if we let

u(t) =

∫ t

0

ja(s) ds−
2ǫ

ξ
Ex0(0, 0),

then we can rewrite (7.2) as the second-order ordinary differential equation

(7.3)
d2u

dt2
+

1

τ

du

dt
+

Dξ

2ǫ
u = 0,

with u(0) = −(2ǫ/ξ)Ex0(0, 0) and u′(0) = 2.
Figure 3 shows plots of the solution determined by the approximate equation

(7.2) versus the exact solution obtained from the convolution quadrature methods of
section 6. The upper plot shows a small ξ, and the lower plot shows a large ξ (see
figure caption for exact parameter values). The order of convergence in the L2 and
L∞ norms as ξ → ∞ is shown in Figure 4. In both cases the order of convergence is
1/2 as expected since the derivation neglected terms of order ξ−1/2.

Remark 7.1. In an earlier work [37] we posited that when D(t) jumps from D0 to
D1 at t = t0, ξ is conserved and only ω(ξ) varies across time t0. Using this hypoth-
esis, we devised a propagator matrix framework for modeling plasmon evolution in
graphene when the Drude weight D(t) is time dependent. The approximation above
gives formal justification for the theory. In Appendix B, we provide further justifica-
tion by considering the approximation in the specific case of piecewise constant D(t).

7.2. Wave reversal. Motivated by the work of Bacot et al. [2], in which wave
reversal was demonstrated for shallow water waves, we ask if it is possible to reverse
a right-going plasmon by instantaneously changing the Drude weight of the graphene.
That is, we consider

D(t) =

{
D0, t < 0,

D1, t ≥ 0.

In analogy to Maxwell’s equations with time-dependent material parameters [30], we
expect that the sudden jump in the Drude weight will cause part of the plasmon to
be reflected.

Since D is constant for t ≥ 0, we can differentiate (7.2) to get

(7.4)
d2ja
dt2

+
1

τ

dja
dt

+
D1ξ

2ǫ
ja = 0.

We retain the initial condition ja(0) = 2, and we also have

dja
dt

(0) = −1

τ
ja(0) +D1Ex0(0, 0) = −2

τ
+

D1γ0
ǫs0

.
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To find the coefficients T and R we use the initial conditions and obtain

(7.6) T =
C − 2/τ + 2sa

sa − sa
, R =

C − 2/τ + 2sa
sa − sa

with C =
D1γ0
ǫs0

.

Expanding these expressions to order O(ξ−1/2) gives the following estimates.

Theorem 7.2. We have

j+a (0)

ja(0)
=

1

2

(
1 +

√
D1

D0

)
+O(ξ−1/2),

j−a (0)

ja(0)
=

1

2

(
1−

√
D1

D0

)
+O(ξ−1/2).

Proof. We use (3.6) to get

D1γ0
ǫs0

=
2D1

D0

(
1

τ
− s0

)
=

2D1

D0

(
1

2τ
− i

√
D0ξ

2ǫ

)
+O(ξ−1/2).

Next, note from (7.5) that

sa − s̄a = −2i

√
D1ξ

2ǫ
+O(ξ−1/2).

Hence, the leading-order terms give

T = 1 +
√
D1/D0 +O(ξ−1/2).

Recalling that ja(0) = 2 gives us the result. The derivation for R is similar.

The result of Theorem 7.2 tells us that a plasmon propagating to the right when
t < 0 and D(t) = D0 splits into two components when t > 0 and D(t) = D1. The
first component is rightward, and the amplitude has been scaled to j+a (0)/ja(0). The
second component is leftward, and the amplitude is j−a (0)/ja(0). We can interpret
the first component as the transmitted wave and the second as the reflected wave.
The reflection is large if D1/D0 is small.

Finally, we note that an alternative derivation of the results of Theorem 7.2
without using (7.2) is possible, as shown in Appendix B.

7.3. Parametric amplification. In [37] we briefly studied how plasmons can
be amplified by periodic excitation. We provide a more detailed treatment of this
phenomenon next. Our treatment is inspired by [23, sect. 27]. Assume that D is of
the form

D(t) = D0 +∆D0 sin(ωpt),

where we assume ∆D0/D0 ≪ 1. In this case it is most convenient to work with (7.3).
Introducing a change of variables u = Ue−t/(2τ) in (7.3) gives an equation for U(t),

U ′′ +

(Dξ

2ǫ
− 1

4τ2

)
U = 0.(7.7)

Substituting our expression for D allows us to write (7.7) as

U ′′ + ω2
0 [1 + h sin(ωpt)]U = 0,
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where we have set

(7.8) ω2
0 =

ξD0

2ǫ
− 1

4τ2
=

2ξD0τ
2 − ǫ

4ǫτ2
, h =

ξ∆D0

2ǫω2
0

=
∆D0

D0 − ǫ/(2ξτ2)
.

Note that since ξ ≫ 1 and ∆D0/D0 ≪ 1, we have h ≪ 1. We also take ωp = 2ω0 + δ,
where we assume δ = O(h). Since the coefficients of our solution are periodic, Bloch’s
theorem tells us that the solution will be of the form ert multiplied by a periodic
function. First, we observe that the amplification should grow with h and that there
should be no amplification when h = 0, so we assume that r = O(h). We expect that
the periodic function will be a perturbation of the solution when h = 0, in which case
a basis for the solution space is {e−iωpt/2, eiωpt/2}. Since

2i sin(ωpt) e
±i(2n+1)ωpt/2 = ±e±i(2n+3)ωpt/2 ∓ e±i(2n−1)ωpt/2,

we look for a solution in the form

U(t) = ert
∞∑

n=0

hn
(
Tne

−i(2n+1)ωpt/2 +Rne
i(2n+1)ωpt/2

)
.

Substituting this into (7.7) and collecting the e−iωpt/2 and eiωpt/2 terms, we get

(−2irω0 + ω0δ)T0 = − h

2i
R0 +O(h2),

(2irω0 + ω0δ)R0 =
h

2i
T0 +O(h2).

Keeping only O(h) terms, we get the compatibility condition

det

[
(−2ir + δ)ω0 −ih/2

ih/2 (2ir + δ)ω0

]
= 0,

so that

r2 =
1

4

(
h2ω2

0

4
− δ2

)
.

In order for amplification to occur we require r > 1/(2τ), so this happens when

δ2 <
h2ω2

0

4
− 1

τ2
=

1

4

(
∆D0

D0

)2 D0ξ

2ǫ
· 1

1− ǫ/(2ξD0τ2)
− 1

τ2
,

after use of (7.8). Now {1 + ǫ/(2ξD0τ
2)}−1 = 1+O(ξ−1), so neglecting higher-order

terms gives

δ2 <
1

4

(
∆D0

D0

)2 D0ξ

2ǫ
− 1

τ2
.(7.9)

In particular, for amplification to be possible we require that the quantity on the
right-hand side be positive, which gives us the condition

1

τ
<

1

2

∆D0

D0

√
D0ξ

2ǫ
.
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An alternative formula, obtained by using [31, eq. 18.12.10], is

(A.4) ω(2)
n = 2hλ−n−2 Un(2/λ), n = 0, 1, 2, . . . ,

where λ2 = 3 + 2h/τ, and Un is a Chebyshev polynomial of the second kind.

Turning to the ω
(1)
n , we first note that δ(ζ) = 1

2 (ζ − 3)(ζ − 1), which gives us

K1(s) =

√
1 +

4a2h2

(ζ − 3)2(ζ − 1)2
− 1.

We use partial fractions to decompose

4

(ζ − 3)2(ζ − 1)2
=

1

ζ − 1
+

1

(ζ − 1)2
− 1

ζ − 3
+

1

(ζ − 3)2
=

∞∑

n=0

(
n+

n+ 4

3n+2

)
ζn.

Now computing ω
(1)
n reduces to computing the square root of a formal power series

with known coefficients. In general, if we have a series

b(ζ) =

∞∑

n=0

bnζ
n

and wish to find a series

a(ζ) =

∞∑

n=0

anζ
n

so that a2 = b, then this can be done with the recurrence relation

a0 =
√
b0, an =

1

2a0

(
bn −

n−1∑

k=1

an−kak

)
, n = 1, 2, . . . .

There are also more efficient algorithms which use the fast Fourier transform; see, for
example, [18].

For p = 2, the correction weights w
(ℓ)
N,0 are determined by (6.4) in terms of

Wℓ(t) =

∫ t

0

kℓ(t
′) dt′ with t = Nh.

For ℓ = 2, W2(Nh) = τ(1− e−Nh/τ ). For ℓ = 1, let f(t) = W1(t)− tk1(t), whence

f ′(t) = −tk′1(t) = −aJ1(at) = (d/dt)J0(at).

Integrating, using f(0) = 0, we obtain

W1(t) = J0(at)− 1 + tk1(t).

Appendix B. Approximate solution for piecewise constant D. When
D(t) = D1 for t ≥ 0, Laplace-transforming the Drude model (2.6) gives

(s+ 1/τ)L{j} = D1Êx(0, s) + j(0).
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Now using (4.7) to substitute for Êx(0, s) gives us the equation

Q(s)L{j} = D1Ex(0, 0) + sj(0) +
D1

ǫ

γ − γ0
s+ s0

with Q(s) = s2 +
s

τ
+

D1γ

2ǫ
.

Inverting the Laplace transform gives

j(t) =
1

2πi

∫ c+i∞

c−i∞

(
D1Ex(0, 0) + sj(0) +

D1

ǫ

γ − γ0
s+ s0

)
est ds

Q(s)
.(B.1)

Here the constant c is chosen so that the contour is to the right of all the singularities
of the integrand. To understand the singularities, note that if s is real, then

Q(s) > s2 +
s

τ
+

D1ξ

2ǫ
> 0

when ξ ≫ 1, so the solutions of

Q(s) = s2 +
s

τ
+

D1γ

2ǫ
= 0(B.2)

are complex. Multiplying (B.2) by s(s+ 1/τ)−D1γ/(2ǫ) gives us

p(s) := s4 +
2

τ
s3 +

(
1

τ2
− D2

1η
2

4

)
s2 − D2

1ξ
2

4ǫ2
= 0.

Note that after the change of variables s → −s this is the same as the dispersion
relation (3.8), so the two roots of (B.2) are s = −s1 and s = −s1, where

s1 = i

√
ξD1

2ǫ
+

1

2τ
+O(ξ−1/2).

Now we can evaluate (B.1) using the residue theorem. Rearranging gives us

j(t) =
1

2πi

∫ c+i∞

c−i∞

s(s+ 1/τ)−D1ξ/(2ǫ)

p(s)

(
D1Ex(0, 0) + sj(0) +

D1

ǫ

γ − γ0
s+ s0

)
est ds.

Observe that the residues of

1

2πi

∫ c+i∞

c−i∞

s(s+ 1/τ)−D1ξ/(2ǫ)

p(s)
· D1

ǫ

γ − γ0
s+ s0

est ds

are O(ξ−1) at the singularities −s1, −s1, and −s0. Therefore, we have that

j(t) = T e−s1 +Re−s1 +O(ξ−1),

where T and R are given as follows:

T = lim
s→−s1

(s+ s1)
s(s+ 1/τ)−D1γ/(2ǫ)

p(s)
[D1Ex(0, 0) + sj(0)],

R = lim
s→−s1

(s+ s1)
s(s+ 1/τ)−D1γ/(2ǫ)

p(s)
[D1Ex(0, 0) + sj(0)].
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Multiplying and dividing by the appropriate root of p(s) gives us

T = lim
s→−s1

D1Ex(0, 0) + sj(0)

s+ s1
=

D1γ0/(ǫs0)− 2s1
s1 − s1

,

R = lim
s→−s1

D1Ex(0, 0) + sj(0)

s+ s1
=

D1γ0/(ǫs0)− 2s1
s1 − s1

.

Finally, we note that −s1 = s1 − 2/τ and −s1 = s1 − 2/τ , so we have

T =
D1γ0/(ǫs0)− 2/τ + 2s1

s1 − s1
, R =

D1γ0/(ǫs0)− 2/τ + 2s1
s1 − s1

.

These are simply (7.6) with s1 instead of sa, but since by (7.5) we know s1 and sa
agree up to O(ξ−1/2), we again recover the result

(B.3) j(t) =
(
1 +

√
D1/D0

)
e−s1t +

(
1−

√
D1/D0

)
e−s1t +O(ξ−1/2).

We can view (B.3) as a special case of Theorem 7.2 when D(t) is piecewise constant.
We note that we obtained (B.3) without using the approximate equation (7.2).
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