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2D Stokes flows often exhibit the Stokes paradox: logarithmic growth of the fluid velocity in the far field.
Analogous Brinkman flows are governed by the same equations apart from an additional term involving
a parameter «. Although these equations reduce to those for Stokes flow when a = 0, we show that the
Brinkman solutions do not approach the corresponding Stokes solutions as @« — 0; instead, logarithmic
divergence with « is found. We also show that Brinkman flows do not exhibit a Stokes-like paradox.
These results are given in detail for two specific problems, namely flow past a rigid circular cylinder and
flow past a thin rigid strip.
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1. Introduction

Creeping flow past objects has been investigated extensively. The governing equations of creeping flow
are obtained when the Navier—Stokes equations are non-dimensionalized and the inertial terms are
discarded so that only the linear-steady Stokes equations remain. These equations are an appropriate
model for flow of an incompressible viscous fluid when the Reynolds number is small; i.e. viscous
effects dominate inertial ones and there are no oscillatory mechanisms within the flow. In particular,
they have been used widely to model the swimming of small creatures; see, e.g. Lighthill (1975, Chapter
3) and Lauga & Powers (2009).

If oscillatory mechanisms exist within the flow, then the convective terms within the Navier—Stokes
equations may be discarded but the time derivative of the velocity remains; this results in the unsteady
Stokes equations. Oscillatory flows past objects have been explored previously; see, e.g., Tuck (1969),
Pozrikidis (1989) and Avudainayagam & Geetha (1998). One important application is atomic force
microscopy, a method whereby a tiny oscillating cantilever detects surface characteristics at very small
scales (Green & Sader, 2002; Clarke et al., 2005; Tung et al., 2008).

The unsteady Stokes equations can be reduced exactly to the Brinkman equations, which model
steady flow through porous media with high porosity (Brinkman, 1947; Childress, 1972; Durlofsky &
Brady, 1987; Auriault, 2009; Cortez et al., 2010). In non-dimensional forms, the difference between the
unsteady Stokes and Brinkman equations is one parameter; the unsteady Stokes parameter is imaginary
and characterizes frequency of oscillations whereas the real-valued Brinkman parameter inversely
relates to the permeability of the material through which fluid is flowing. In this study, we denote
the Brinkman parameter by o and define it in (4.2) below. The Brinkman equation has been used to
model various biological flows, e.g. flows through the endothelial surface layer (Damiano er al., 1996;
Leiderman et al., 2008), biofilms (Kapellos et al., 2007), blood clots (Leiderman & Fogelson, 2011,
2013) and flagellar motion in gels (Leiderman & Olson, 2016).
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TWO-DIMENSIONAL BRINKMAN AND STOKES FLOWS 913

The steady Stokes equations can be recovered exactly from the Brinkman equations by setting
o = 0. In addition, for 3D problems, solutions can be expanded in powers of @ so that Brinkman
solutions approach the corresponding Stokes solutions as &« — 0. Interestingly, this is not the case for 2D
problems. In this study, we are interested in what happens in 2D when « is small. For 2D problems, the
situation is more complicated because of the presence of logarithms. Logarithms are expected because
of the famous Stokes paradox: uniform Stokes flow past a 2D object induces a ‘perturbation’ to the flow
that grows as log r with r, where r is distance from the object. Logarithms arise in Brinkman flows too,
but there are additional terms involving log .

Similar situations arise in 2D acoustic scattering, where the governing equation is the Helmholtz
equation, (V2 + k2)u = 0, and the parameter k is small; for an overview, see Martin (2006), Section
8.2. We exploit this insight so as to investigate the small-o behaviour of Brinkman flows. The results
are also applicable to low-frequency, oscillatory Stokes flows.

An outline of the paper is as follows: Sections 2 and 3 are concerned with 2D Stokes flows. Much of
this material is known, but we need to collect these results so that we can compare with analogous 2D
Brinkman flows. In particular, we recall the solution for 2D Stokes flow past a circle (Section 2.1) and
past a thin flat strip (Section 3.2). We also give a method for reducing the problem of Stokes flow past a
thin curved strip to a system of integral equations (Section 3.1), and we suggest a numerical method for
solving these integral equations (Appendix A); as far as we know, this approach has not been used for
Stokes flow, and it will be the subject of future investigation. The study of Stokes flows in the presence
of thin objects has a long history going back to a paper by Taylor (1951); see also Lauga & Powers
(2009) and Montenegro-Johnson & Lauga (2014).

Sections 4 and 5 are concerned with 2D Brinkman flows. Section 4 parallels Section 2: the
governing equations for Brinkman flows are stated, together with their connection to oscillatory Stokes
flows, and associated fundamental solutions (Brinkmanlets) are introduced. Then we recall the exact
solution for 2D Brinkman flow past a circle (Section 4.4). This solution is compared with the exact
solution for 2D Stokes flow past a circle (Section 2.1). We show that if the parameter « is fixed and
non-zero, then there is no Stokes-like paradox; i.e there is no logarithmic growth with ». However, the
limit« — O for fixed r reveals complications; some of these had been noted previously by Smith (1997)
in the context of oscillatory Stokes flows. In particular, we show that the Stokes solution is not obtained
asa — 0.

We then consider the problem of 2D Brinkman flow past a thin flat strip (Section 5). This problem
is more difficult. Although it cannot be solved exactly, an asymptotic approximation for small « is
obtained. Again, it is shown that there is no large-r Stokes-like paradox but the Brinkman flow does not
approach the corresponding Stokes flow (Section 3.2) as @« — O.

To put these results for small « into perspective, let us recall some known facts about the Helmholtz
equation, (V2 4+ k¥*u = 0, which becomes Laplace’s equation, V2u0 = 0, when &k = 0. In 3D, the
simplest singular solutions of these equations are u = r~! cos kr and uy = r~!. Evidently, u — 1)
as k — 0 for fixed r > 0, and u = O(r_l) as r — oo for fixed k > 0, in agreement with u;. In
2D, the corresponding solutions are u = Y,(kr) and u, = logr, where Y|, is a Bessel function. As
Yy(x) ~ (2/m)logxasx = 0and Y(x) = O(x~1/2) as x — o0, we see that u diverges logarithmically
as k — O for fixed r whereas u decays as r — oo for fixed k. This peculiar behaviour with the
2D Helmbholtz and Laplace equations is exactly what we see when we compare 2D Stokes flows with
2D Brinkman flows. Thus 2D Brinkman flows are regularizing in the sense that they do not exhibit
logarithmic (Stokes-like) growth as r — oco. However, such flows do not reduce to the corresponding
Stokes flows as « — 0. Additional concluding remarks are in Section 6.
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914 P. A. MARTIN

2. Stokes flows

We consider slow flow of an incompressible viscous fluid in two dimensions (2D). In the absence of
body forces, the governing equations are (Pozrikidis, 1992, Section 1.1)

ou; 2 ap . . du;
i V2 =P 12, with —I—o, 2.1
Poor TR T ! VIR 2D

4 7

where u = (1, u,) is the velocity, p is the density, p is the pressure, u is the viscosity coefficient and
(as in the last equation) repeated subscripts are summed over 1 and 2. For steady flows, there is no
dependence on time and (2.1) reduces to

19 ou;
Vzui % _ 0, i=1,2 with —L=0. (2.2)
M 0x; ox

Taking the divergence of (2.2);, making use of (2.2),, shows that V2p = 0. The corresponding stresses
are given by

0x; 0x;

S S i ) 23)
] ]

The net force acting on an object with boundary curve C is F with components

Fl-:/al-jnj ds, 2.4)
C

where n is the unit normal vector on C pointing into the fluid.
A fundamental solution of (2.2) is (see, e.g. Pozrikidis, 1992, Section 2.6, or Hsiao & Wendland,
2008, Section 2.3)

0-’—1RRiRjP-’—2Rj T ¢ x) = S RRR 25
Gij(x’x)_sij OgZ_F’ j(x9x)__F’ lkj(x’x)_ﬁ iy k> ()

where R; = x; — x}, R> = R;R; and L is a length scale. These formulas mean that, for j = 1 and j = 2,
u; = UGg. and p = pUP; solve (2.2) for R # 0, where U is a velocity scale. The corresponding stresses

at x are oy, = ;LUTSV.. The solution Gg.(x;x’ ) is known as a (2D) ‘Stokeslet’.
For another singular solution, define

S R.R.
0 (e 2~0 Y J
Djesx') = V3G = =205 + 44—zt (2.6)

This is similar to Gg.; both have the form f(R)d;; + g(R)R;R;. The fields u; = UD?- and p = 0 solve
the Stokes equations (2.2). They define a so-called ‘potential dipole’ (Pozrikidis, 1992, p. 196). The
similarity between (2.5) and (2.6) means that the problem of uniform Stokes flow past a circular cylinder
can be solved readily.
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2.1 Uniform Stokes flow past a circular cylinder and the Stokes paradox

Consider a circular cylinder; its cross-section has radius a and is centred at the origin. There is a uniform
ambient flow with constant velocity U and constant pressure p®, and a no-slip boundary condition,
u + U = 0 on the cylinder, where u is the perturbation caused by the presence of the cylinder.

To find u, we place a Stokeslet and a potential dipole at the origin, giving

u(x) = UGH(x; 0)f + UL*D{j(x; 0)g),  p(x) = nUP;(x; 0)f;, 2.7)

where f, = (flo, fzo) and g, = (g(l), gg) are constant vectors to be found. Take L = a in (2.5). On the
cylinder, R = a, x = ax (where X is a unit vector) and u + U = 0. These give

U/U =2g,+ {(fy — 48y - £} . (2.8)
We can satisfy (2.8) by taking fj = 4g, and 2Ug, = U. Then u and p are given by (2.7) as
u(x) =2Ulog (r/a) — U(a/r)* — 2% (Ufc) (1 =[a/r), px) = —4(u/r) (Ufc) . (2.9)

Computing the stresses from (2.3), we find that ;; = 4(u/a){U,-5cj + Ujfc,- +(8;— 2)?,-59)(U~)%)} onr=a,
so that the net force (see (2.4)) is F = 8x uU.

We conclude that (because of the presence of Gg. in (2.7)) the ‘perturbation’ u grows logarithmically
with distance from the cylinder: this exemplifies the ‘Stokes paradox’. For a good discussion, see
Childress (2009, Section 7.4). In detail, from (2.9), we obtain p(x) = O(r~") and

u(x) =2Ulog (r/a) — 2x (Uﬁ) +0(7%) asr= x| > oo.
We shall return to the problem of uniform flow past a circular cylinder at the end of Section 2.2.

2.2 Summary of theoretical results

In this section, we recall some known results for Stokes flow past an object with cross-sectional
boundary curve C. In particular, how should a well-posed boundary-value problem be formulated? We
shall clarify the far-field behaviour and recall that the magnitude of the logarithmic term is proportional
to the net force on C.

Let C, be a large circle that encloses C and let u be the velocity of a Stokes flow. An application
of the Lorentz reciprocal theorem (from 1896, translated as Lorentz, 1996) in the region between C and
C, yields (Pozrikidis, 1992, Equation (2.6.24))

u,(x') = %/cg?(x; x’)ds(x)+%/c 20(x; x') dsx), (2.10)

where x’ locates a point between C and C, SZZQ (x; x') = ,u_ltj(x) Gj(.)i(x; x')— uj(x)Tﬁd(x; x') ni(x) and
1; = oyn; is the traction with n pointing into the fluid on C and inwards (towards C) on C,.

The term on the left-hand side of (2.10) comes from excising a small disc centred at x’ followed by
letting this disc shrink to x’. The second term on the right-hand side of (2.10) does not depend on the
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916 P. A. MARTIN

radius of C, and it defines a valid velocity field everywhere inside C, (including inside C); denote it
by u{®(x").

Let u'(x) be the (total) velocity of a Stokes flow and let p'(x) be the corresponding pressure. Using
(2.10) for u' gives

ul(x) =u<?°(x’)+L/z‘.(x) Gox; ) ds(x) — i/u‘,(x)ﬂ(x- x)n, (x) ds(x); 2.11)
i i 4 Cj i\t 47TCJ Jki\* k ’ .

we can regard u°°(x) as being the ambient (or incident) flow in the absence of the object.
In the far field, (2.5) gives

u'(x) —u™x) = @rp) " {Flog (r/L) =% (- F)} + 00™") asr= x| - oo, (2.12)

where F = [,#'ds = [,tds is the net force on C and X = x/r. (The ambient flow does not contribute
to F because it solves the Stokes equations inside C.) For the pressure, (2.2) gives

plx) = pX@) =—Qrr) ' (&-F)+ 007 asr— oo, (2.13)

where p® is the pressure corresponding to u>°. We see that the logarithmic term in (2.12) vanishes when
the net force on C is zero.

Chang & Finn (1961, Theorem 1) have proved that if u' is required to grow sublinearly, |u'(x)| =
o(r) as r = o0, then u#® is a constant vector, whence p™ is a constant.

Suppose that

u'(x) =u@) +u), p')=p e +pk), (2.14)

where (™, p™) is a valid Stokes flow. Suppose that u(x) = uy(x) on C, with u(x) = Alogr 4+ O(1)
and p(x) = o(1) as r — oo, where A is a ‘given’ constant vector. (This is the Dirichlet or resistance
problem.) Then the Stokes problem has exactly one solution (u, p) (Hsiao & Kress, 1985, Corollary
1); from (2.12),A = (47 ,u,)_lF . For the boundary condition of prescribed traction on C (Neumann or
mobility problem), see Hsiao & Wendland (2008, Section 2.3.2). For information on the use of boundary
integral equations for various 2D Stokes-flow problems, see Pozrikidis (1992), Capuani et al. (2005),
Rachh & Greengard (2016) and references therein.

Let us return to the problem of uniform flow past a circular cylinder (Section 2.1). According to
the result of Hsiao & Kress (1985), we can specify the constant vector A in the far-field behaviour
(u ~ Alogras r - oo) whereas we did not do that when we arrived at the Solution (2.9) (in which
A = 2U). Indeed, if we add CU; to the formula for ; in (2.7) (where C is an arbitrary constant), the
no-slip boundary conditions gives f; = 4g, (as before), 2Ug, = (1 + C)U andu ~ 2(1 + C)Ulog r as
r— oo.

3. Stokes flow past a thin object

In this section, we consider 2D Stokes flow past thin plates on which there is a no-slip boundary
condition. This gives another example of the Stokes paradox, one that we shall compare with a
corresponding 2D Brinkman flow in Section 5.
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TWO-DIMENSIONAL BRINKMAN AND STOKES FLOWS 917

3.1 Stokes flow past a curved plate

Let I" be an open smooth curve, parametrized as follows:
[ ={x= (.0 1 5 =xE). 5 =x5,), ~1 <& <1}, (3.1)

There is an ambient flow past I", with velocity u*>° (x) = (U, U,) and pressure p*° (x). There is a no-slip
boundary condition, #' = #® + u = 0 on I", where u is caused by the presence of I'.

: 0
We can represent # using Gl-j,

u;(x) = %/rGg(x;x’) hj(x’)ds(x’), i=12, (3.2)

where /| and h, are (dimensionless) functions to be found. This is a single-layer representation for u.
Such a representation is continuous as x — I whence the boundary condition gives

U
/ Gl x) (¥ dsx)) = —Uy(x), xel, i=1.2, (3.3)
LJru J

which is a pair of integral equations for /; and h,. Inserting the parametrization (3.1) will lead to integral
equations over the interval [—1, 1]; see Appendix A for details.
Far from I, (3.2) gives

1
u(x) ~ UHlogr asr— oo, where H = Z/ h(x")ds(x))
r

and h = (hy, h,). This is another example of the Stokes paradox.

3.2 Uniform Stokes flow past a flat strip

Let us specialize the approach in Section 3.1 to a thin flat plate. As we shall see, the resulting integral
equations can be solved exactly.

Thus, we consider a flat strip I” along the x-axis. For a strip of length 2a, we can take x;(§) = a§
and x, (&) = 0. Locate x” on I" using the parameter &’. For simplicity, we take a uniform ambient flow,
u® = U = U(cos ¥, sin ), which makes an angle ¢ with the positive x;-axis. Take L = a and write
hj(x’) = hj(é’). Usingds =ad&’,R; = a(§ —§')3;; and R = a|§ — &'|, the system (3.3) decouples into

1
/lhl(é’){loglé—é’l— l}dé":—cosw, -1<&<1, (3.4)

1
/lhz(é’)log € —&'|dE = —siny, —1<& <. (3.5)

A closed form solution of these integral equations will be given in Section 3.2.2, but first we will give
the solution of a more general problem.
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918 P. A. MARTIN

3.2.1 A classical integral equation. Let us solve a slightly more general integral equation,

1
/lf(é’) log|g —&'1dE" =q&), -1<&<1, (3.6)

where ¢ is given and f is to be found. To solve (3.6), we expand both f and g using Chebyshev
polynomials, 7, (x),

1 o o0
fG) = —== 2_aT,&), qa&) = 2 q,T,©8). (3.7

By definition, 7),(cos ©) = cos nt}, and we have orthogonality,

dE’ 0, n#m,
/ T,ENT, () —— =17, n=m=0, (3.8)
- gﬂ /2, n=m#0.

However, the main reason for using T, is the expansion

o 2
log|g = &'l = —log2 = 3> ~T,(6) T, (3.9)

n=1

Substituting these expansions in (3.6), and making use of orthogonality gives
—mcylog2 =¢qy, —(/n)c,=gq, n=12,.... (3.10)

These formulas give the exact solution of (3.6). In most of our applications, the function on the right-
hand side, g(£), will be constant, and so we shall only be interested then in the coefficient c,,.

3.2.2 Application to integral equations (3.4) and (3.5). Equation (3.5) is solved immediately: as
T,(¢) =1, we obtain

—-1/2
hy(§) = c(()z) ( 52) with 7 ) log2 =siny. (3.11)
For (3.4), define H; = f_ll hq (&) d& and write (3.4) as
1
/ hi()1og|é —&'|dE =H, —cosyr, —1<é& <.
-1
Solving this equation gives

ny)
1(5)—6{)”( 52) with — ¢’ log2 = H, — cos . (3.12)

6102 1800190 9| UO J8Sn SaUll\ JO [00YdS 0pelojo) AQ L0/1/SS/Z 1L 6/S/v808N1sqe-a|0Iue/ewewl/woo dnoolwepese//:sdiy wol) papeojumod



TWO-DIMENSIONAL BRINKMAN AND STOKES FLOWS 919

Integrating the first of these gives

g [ 48 (M
= C = TC,
O Lime T
Substituting this in the second of (3.12) then yields
mel) (14+1og2) = cos ¥, (3.13)

and this gives h;(§). Now that i, and &, have been found, u is given by (3.2).

4. Brinkman flows

The Brinkman equations were originally intended to model slow flow of an incompressible viscous fluid
through a porous medium (Brinkman, 1947) but they have been used in other contexts (see Leiderman
& Olson, 2016, for references). The relevant equations are as for Stokes flow but with an additional
frictional resistance term due to the porous medium. For steady 2D flow in the absence of body forces,
the governing equations are

19 ou;
~%P o, =12, with —=o, (4.1)

Vzui — KPu; —
M ox; ox

1

where k> = KEI and the constant K, is the Darcy permeability of the porous medium. Evidently, (4.1)
reduces to the Stokes equations (2.2) when k = 0. We also have V?p = 0. Using a length scale L, we
can define a (real and positive) dimensionless permeability factor

a=kL=L/J/Kp. 4.2)

Formally, the Brinkman equations (4.1) are also obtained if solutions of the ‘unsteady’ Stokes
equations (2.1) are sought that are proportional to e (Pozrikidis, 1992, p. 17). In this context, s could
be a Laplace-transform variable and k = (ps/ w)Y/2. For oscillatory Stokes flows, we can take s = —iw,
where w is the frequency. Then k = (—ipw/u1)'/? so that the corresponding value of « is complex for
such flows.

In this section, we set up the basic equations for 2D Brinkman flows, culminating in an analysis of
flow past a circular cylinder. Flow past a thin strip is discussed in Section 5.

4.1 Ambient Brinkman flows

For Stokes flow, we considered examples with a uniform ambient flow, meaning that the velocity is
a constant vector U and the pressure is a constant p>°. For comparable Brinkman flows, we can take
a constant velocity U but, from (4.1), the pressure is p>(x) = — uk?U - x plus an arbitrary constant.
Thus, this ambient flow has a large pressure at infinity. As an alternative, we could suppose that p™
is a constant but then (4.1) gives u>°(x) = Uexp (k - x) where U and k are constant vectors satisfying
k] = k and U - k = 0. This solution is not attractive because of the exponential growth in certain
directions, and so we choose to compare with the first ambient flow: constant velocity and pressure
growing linearly with » = |x|.
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920 P. A. MARTIN

4.2 Fundamental solution

A fundamental solution of the Brinkman equations (4.1) is

Giw:x') = 8 AGR) + —5' BUR).  Pixix’) = =~

where

A(x) = —Ko(x) — Ky (x) + 2x72,  B(x) = 2K, (x) — 4x 2

(4.3)

(4.4)

and K, (x) is a modified Bessel function. These formulas are well known; see Yano er al. (1991),
Avudainayagam & Geetha (1993), Kohr er al. (2008) and references therein. For convenience, we have

provided a derivation in Appendix B. Note that P; is the same as with Stokes flow; see (2.5).

The corresponding stresses oy, at x are uUT; where

R. 2
Tyj = 2875 11+ BUR) + = (8URZ + (Sng,-) {kRK,(kR) + B(R)}

- I%RiRjRZ {kRK | (kR) + 2B(kR)} .
For small x, we have
Ky(x) = —log(x/2) =y +0(1) and K,(x) =2x%— 4 +o(l) asx— 0,
where y =~ 0.5772 is Euler’s constant. Hence,
A(x) =logx —log2 +y + % 4+o0(l) and B(x)=-1+o0(1) asx— 0.
As we require A(kR) in (4.3), we see that Gij- 5 Gg. as kL — 0; in detail,

Gy — Gy ~ E(kL)8; askL — 0,with E(KL) =log (kL/2) +y + 1.

(4.5)

(4.6)

%))

(4.8)

A similar difficulty occurs when solving 2D acoustic scattering problems, governed by the Helmholtz
equation. On the other hand, comparing (2.5) and (4.5), and using xK; (x) ~ 1 as x = 0, we find that

Ty; — Tiy; as kL — 0.

4.3 A potential dipole

For uniform Brinkman flow past a circular cylinder (Section 4.4), we shall need a potential dipole,

defined by D;; = V2G;;. From (B.3) and (B.4),

P R.-R. kP’ 2P
) — Yy

= —k* (Ko (kR) + K, (kR))8;; + 2k*R;R;R > K, (kR).

0 - 0
We note that D;— Dij (defined by (2.6)) as kL — 0, even though Gij 5 Gij as kL — 0.

4.9)
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TWO-DIMENSIONAL BRINKMAN AND STOKES FLOWS 921

4.4 Uniform Brinkman flow past a circular cylinder

For uniform Brinkman flow past a circular cylinder, we can proceed as in Section 2.1 and write (see also
Leiderman & Olson, 2016, Section III.A.1)

u;j(x) = UG;(x; 0)f; + Uale-j(x; 0)g;, px) = nUP;(x;0)f;, (4.10)

where f = (f;.f,) and g = (g, 8,) are constant vectors to be found so that u + U = 0 on the circle.
Applying this boundary condition gives

U/U = {Ky(@) + Ky (@) — 2072} f + o {Ky(@) + Ky(@)) g
— 2{K, () — 20 2)(f - %) & — 22%K, (ka) (g - ®) %,

where o« = ka. We can remove the last two terms by choosing
2 _ 2
aKy(o) g = {207 — Ky(a)} f.

Then, the remaining terms give

’K 2072 - K
Uf = O‘—2(O‘)U and Ug = 207" — Ky(@) 4.11)
2Ky () 2Ky (a)
Substitution in (4.10) gives the velocity everywhere outside the cylinder:
0 = YTk — k0 — K| + 25w b ken - S| @
ux) = —1— — — : - = . .
X Ko(a) r2 2 o 2 r 0 r Ko(a) X 2 r r2 2 o
The pressure perturbation is found to be
A 2 ~
X- a“Ky(a) U-x
=2uU0 — = —p—=—— 4.13
p nu— Ko@) r (4.13)

The problem can also be solved by introducing a stream function; see Pop & Cheng (1992) and
Smith (1997). We also mention H. A. Stone’s appendix to Smith’s paper.

If we fix o and let » = |x| = oo, noting that K|, (x) decays exponentially as x — oo, we find that u
is (algebraically) small at infinity and thus there is no analogue of the Stokes paradox. In detail,

a2K2 (@)
r2K0 ()

u(x) ~ {U-2U-%)%} asr— oo (4.14)

Instead of fixing « and letting » — oo, suppose we fix r/a and let « — 0. We have

1 1
Uf~———U and Ug~ —
log o 4loga
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(The relation f ~ 4g accords with f; = 4g as found for uniform Stokes flow past a circle; see below

(2.8).) As kr = a(r/a) is also small, we obtain Gij(x;()) ~ 8,-/- log @ and azD,-j(x;O) = O(1). It follows
that u(x) ~ —U as o — 0, for all finite values of r = |x|. In detail, using (4.6) in (4.12),

(4.15)

1 +1la- 2 U - & 2
u(x)"’—U[1+ o/ 102g(a /1] )l +xiog:) (1—‘;—2)

as « — 0 for fixed r/a. Evidently, this limiting flow is not the same as the Stokes flow found
in Section 2.1; see (2.9). Indeed, this explicit calculation provides a counterexample to a result of
MacCamy (1966, Theorem 5).

Smith (1997) made a detailed study of the small-o solution when r/a is fixed (in the context of
oscillatory Stokes flow) and showed that it should be regarded as an inner solution to be matched to an
appropriate outer solution.

The results for flow past a cylinder were obtained by exploiting the availability of an exact solution
so that various asymptotic limits could be explored readily. Such is not the case for the problem of
Brinkman flow past a strip, which we present in Section 5. First, we briefly review what is known about
Brinkman flows past objects of other shapes.

4.5 Summary of theoretical results

For the Brinkman equations, we can proceed exactly as in Section 2.2, arriving at the integral
representation (2.11) but with Gg and Ti(j)-k replaced by G;; and Ty, respectively. However, the far-field
behaviour is very different: we obtain u'(x) = u*(x) + O(r~2) as r — 00, which should be compared
with (2.12). Thus the presence of C causes a small perturbation to the velocity field far away from C. For
the pressure, we obtain p'(x) = p>®(x) + O(r_l), which has the same form as for Stokes flow, (2.13).
Note that, in these estimates, (#®°, p™°) is assumed to be a valid solution of the Brinkman equations.

If we define u and p by (2.14), and require that u(x) = O(r~2) and p(x) = O(r~1) as r — oo, then
the standard boundary-value problems (velocity or traction prescribed on C) have exactly one solution
Varnhorn (2004). Note that the far-field conditions on # and p are satisfied by the representations (4.10)
used to solve the Brinkman flow problem in Section 4.4.

5. Uniform Brinkman flow past a flat strip

For Brinkman flow past a thin object, we can proceed as in Section 3 but with G;; instead of Gg. in the
single-layer representation (3.2) and in the integral equations (3.3). Thus, we write

u;(x) = %AGU(x;x’) hj(x/)ds(x’), i=1,2, (5.1

and then putting x on I” gives an integral equation for k = (h, h,). Far from I", (4.3) and (5.1) give
ulx) = O(r_z) as r — oo.

As in Section 3.2, we consider a uniform flow past a flat strip I', lying along the x;-axis. We
parametrize as before, with x;(§) = a§ and x,(§) = 0 for —1 < § < 1. We take L = a and write
hj(x’) = hj(g’). Using ds = ad§’, R; = a(§ —&)8;;, R = al§ —&’| and (4.3), the system (3.3) decouples
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into the following integral equations:
1
/lhl(é’) [Atkals = &')) + B(kalg — §'D}dE" = —cosy, —1<é& <1, (5.2)

1
/lhz(é’)A(kalé —&')dE = —siny, —1<£&<1, (5.3)

with A and B given by (4.4). These integral equations should be compared with (3.4) and (3.5).
For normal incidence (¢ = %n), only h, is of interest. From (4.4), the kernel of (5.3) is given by

A@) = 2K (x) +2x72 =2 (Kl (x) — x_l)/ = 2 (Ky(x) — logx)";

this shows that (5.3) is the same as an integral equation derived and solved numerically by Tuck (1969);
see his Equations (5.6) and (5.7). For later work along the same lines, see Van Eysden & Sader (2006)
and references therein.

Suppose now that ka = « is small. From (4.7), B ~ —1 and

A(kals — £')) ~ log|& — £'| + E(ka) with E(ka) = log (ka/2) +y + 1.

Then, as in Section 3.2.2, we are faced with solving
1
/ fEH {logls —€'|+ A}dg' =8B, -1<&<1,
-1
where A and B are given constants. With F' = f_l 1f (&) d&, we have

1
/lf(S’)IOgIE—S’Idé’ZB—FA, -1<&< 1

Thus,
N\ —1/2 )
f(g):p(1—g) with —7Dlog2 = B— FA.
But integrating gives F' = 7D whence the constant D is determined:
7D(log2 — A) = —B. (5.4)
This method can be found in a paper by (Noble, 1962, Section 3), where it is used for acoustic scattering

by a thin flat strip.
Returning to (5.2) and (5.3), we can write

-1/2
h(€) =D, (1—52) L =12 (5.5)
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to leading order in «. The method described above gives
nDi(log2—E+1)=cosy and nD,(log2— E) =siny.

Thus D; £ cg) as ka — 0, where cg) are the corresponding coefficients for Stokes flow past a strip,
given (exactly) by (3.11) and (3.13). The far field is

2nU

O e

(aij - 2)%,.59.) D, asr— oo, (5.6)

Alternatively, as in Section 4.4, let us fix /a but let « — 0. Using E ~ log o, we have
Dy ~ —(logoz)_1 cosy and =D, ~ —(logoz)_l sin .
Then, from (5.1), (5.5) and Gij(x;x’) ~ 3ij log e,

loga d& N
NS

This result means that the leading-order limiting Brinkman flow exactly cancels the ambient flow
everywhere in the vicinity of the strip, not just on the strip itself. The same result was also obtained
in Section 4.4 for Brinkman flow past a cylinder. Corrections, of order (log@)~!, can be derived.

U asax — 0.

1

6. Discussion and conclusions

As in several 2D problems involving a small parameter (frequency o in oscillatory motions or
permeability factor o in Brinkman flows), the limit as the parameter tends to zero may not give the
solution of the problem with the parameter equal to zero: examples are the Helmholtz equation which
becomes Laplace’s equation at zero frequency, and the Brinkman equations which become the steady
Stokes equations when o = 0. We have shown this to be the case for Brinkman flows (and for oscillatory
Stokes flows). We did this by examining two specific problems, flow past a cylinder and flow past a thin
straight strip. It is expected that a similar result can be proved for arbitrary geometries, using layer
potentials and boundary integral equations (Hsiao & Wendland, 2008); our expectation is based on
properties of the associated fundamental solutions, namely G;; /> Gg. asa — 0.

In a recent paper, Ahmadi ez al. (2017, p. 76) replace the Brinkmanlet Gy by

G, — E(kL) 5, = G,

so that, from (4.8) (where E is defined), él-j - Gg as « = kL — 0. Then, from (4.1), Pj should

be replaced by P+ sz(oz)Rj = ﬁj. Ahmadi er al. (2017, p. 76) state that the effect of using f;ij ‘is to
produce a constant flow that can be subtracted’. The first part of this statement is correct (see Section 4.1,
noting the linear growth of ﬁj) but the second part is not: the flow to be subtracted becomes infinitely
large as @« — 0 (for fixed r). Indeed, the problems of Stokes flow and Brinkman flow past an object are
well posed (with appropriate far-field conditions, see Sections 2.2 and 4.5), and one does not approach
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the other as « — 0; this phenomenon cannot be eliminated by changing the fundamental solution. See
also the discussion in the last paragraph of Section 1.

In conclusion, it is notable that the Brinkman model gives a regularization of the flow problem in the
sense that it does not exhibit a Stokes-like paradox. It is also used within the ‘Brinkman penalization’
framework, an established technique to regularize certain numerical methods for investigating fluid—
solid interactions (Verma et al., 2017).
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Appendix A. Stokes flow past a curved strip
For this problem, the governing system of integral equations is (3.3). Put

12
v©) =L (MOP +%©P) T and hE) = hxE) v

so that hj(x) ds() = th(é) d&. Also, define

0 N / 0 / . 0 n o
G;(x,x") = §;;log|§ — &'| + K;;(5,§) with Kij(é,S)—(Silegm—F
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so that Kfj) is not singular at § = &’ (x = x’). The system (3.3) becomes

1
[ m@onte ~ 108+ [ (K@ emE + Kie)] 4 = - viwen. A

1 1 1
/ () log | — €€’ + / AR @ omE) + e fay = ae) (a2

for —1 < § < 1. Proceeding as in Section 3.2.1, we expand /; as

1 i
h(E) = ———= > VT, (), (A3)
J /1 — gz g
whence (3.8) and (3.9) give

1 0 T .
[ 1€togle — €18 =—x ) 1og2 = > T 7,000

n=l1

This gives an analytical treatment of the logarithmic part of the kernel. Then, one could develop an
‘expansion—collocation method’: truncate the expansions (A.3) at n = N, say, and then evaluate the
integral equations (A.1) and (A.2) at N + 1 points in the interval —1 < & < 1. Such methods have been
used and analyzed in other contexts; see (Martin, 2006, Section 6.7.1) for some references.

Appendix B. Verifying the Brinkmanlet solution (4.3)

Look for solutions in the form

RiR; R,
G; = 8,;A(R) + —B(kR), P; = IéP(kR). (B.1)
Some calculation gives
BGU 9A 5 R s R; 2RRRZ B RR 9B
ax, U@+(“3R2+ s R* ) TR R2 ox,’
VG, = 8,V + - BBy 2 RBY 0 KRB
B dx; R2 ox; dx, \ R4
R; R, RRR\ 3B R ,
+ 6,€R2 +5,5R2 2 R4 o, + 7 VB

In particular,

8Gij 9A Rj RR 9B

=— 4+ 2 — kR(A' + B+ B B.2
ox; dx; R? R2 ox; R2{ @+ )+} (B-2)
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We have

0 RjB _ 0 (RB _s B n R,'Rj kB’ 2B

i \R2) oy \rR*) 'R R \R R)’

0 (RRR\ _ SuRiR, + 8RR, +2RR;  RRRR, _

ax, \ R* ) R* RO 7

0 (RRRBY RRR, 3B RR

- = = —=kB,

dx, R4 R* 3x, R

R; R; RRR,\ 3B RiR; RR;R(R,

((SIZRZ +8£R2 2 R4 )a—xez (2 R3 ZT)kB =0

Hence,
VG, = (V%A ZB 5 Rify v 2B 3

Also,

oP; P kP’ 2P
s .|_ i
ax; VR2 R2 ‘R R?

Insert u; = UGy andp = nUP; in (4.1),. For these equations to be satisfied, we require

VZA—k2A+2—B—£—0 and VZB—sz—4—B—k—P,—I—g—O (B.4)
R2 R? RZ R R2 7 '

As V2A(KR) = k*A”(kR) + (k/R)A’ (kR), multiplying (B.4) by R* gives

K2A” (x) + xA' (x) — X*A(x) = P(x) — 2B(x), (B.5)

2B (x) + xB' (x) — (x> + 4)B(x) = xP'(x) — 2P(x). (B.6)
These are to be solved, together with the continuity equation, which (using (B.2)) reduces to
x{A'x) +B'®} +Bx) =0. (B.7)
Let us start with (B.6). Assume that P(x) = 2P, a constant. Then
B(x) = 2BK,(x) + 4Pyx 2, (B.8)
where B is an arbitrary constant. Equation (B.5) becomes
24" (x) 4 xA' (x) — PA(x) = 2Py(1 — 4x™2) — 48K, (%),

whence
A(x) = AKy(x) — BK,(x) — 2Pyx"2, (B.9)

where A is another arbitrary constant. Substituting for A and B in (B.7), making use of K(’) (x) =—K;(x)
and xK7 (x) = —xK; (x) — 2K, (x), we obtain (A + B)xK, (x) = 0. This gives B = —A.
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Next, let us investigate the behaviour of A(x) and B(x) as x — 0. Use of (4.6) gives
A(x) ~ —Alogx +2(A — Py)x~> and B(x) ~ —4(A — Py)x > asx — 0.

To eliminate the strong singularities at x = 0, we take A — P, = 0. Finally, we take A = —1 so that
A(x) ~logx asx — 0, in agreement with the Stokes solution, (2.5). Thus, B = 1, P = —1,

A(x) = —=Ky(x) — Ky (x) + 2x72,  B(x) = 2K, (x) — 4x72, (B.10)
together with P = —2 in (B.1). These formulas agree with Kohr e7 al. (2008, Equation (2.13)).
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