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1. Introduction

Time-harmonic antiplane motions of a homogeneous
anisotropic elastic solid are governed by the following partial
differential equation,

2 2 2
65527‘2’+2c45% +C44%T"2V+pw2w=o, (1)
where w(x,y) is the out-of-plane displacement, Css, C45 and Cy4 are
stiffnesses, p is the density and w is the frequency. (More details
are given in Section 2.) We are interested in solving Eq. (1) in a
half-space y > —h (h>0) with a traction-free boundary condition
at y = —h and a scatterer of some kind (such as a circular cavity)
within the half-space. For simplicity, assume that the origin is in-
side the scatterer.

The simplest situation is isotropy, for which Cy4 =Css and
C45 =0. Then Eq. (1) reduces to the Helmholtz equation, (V2 +
k?)w = 0 with k? = pw?/Css. Standard separated solutions include
Hu(kr)ei"® where r and @ are plane polar coordinates (x = rcosé,
y=rsinf), n is an integer and Hj EH,SI) is a Hankel function.
These solutions are singular at r=0. The boundary condition,
dw/dy =0 at y = —h, can be incorporated by adding an image
term,

W(x,y) = Hn (kr) e + H, (kf) e~inf 2)

where x = Fcos@ and y + 2h = sind. The extra term is singular at
the image point (x,y) = (0, —2h), which is the mirror image of the
origin in the “mirror” at y = —h.

A slightly more complicated situation is orthotropy, for which
C44 #Cs5 and C45 = 0. In this case, we can reduce Eq. (1) to the
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Helmholtz equation by scaling x, y or both. For example, putting
X' = x/o with & = \/Cs5/Caq gives 02w/0x'% + 32w/ 0y + (ak)?w =
0 with k as before. This scaling does not move the flat boundary at
y = —h but it does deform the shape of the scatterer. Alternatively,
put ¥y = oy giving 02w/ax% + 02w/9y2 + kw = 0. Stretching y is
closer to what is usually done in the context of anisotropic elastic-
ity (see Eq. (6) below) but it moves the flat boundary to y' = —«h.
Once the stretching has been done, we can reuse known solutions
for the Helmholtz equation. In particular, for a solution singular at
the origin, we can incorporate the boundary condition at y = —h
by adding an appropriate solution that is singular at the mirror-
image point. (The relevant solutions can be recovered from formu-
las given below by putting C45 = 0 therein.)

For the general anisotropic case, governed by Eq. (1) with
Cy45# 0, we could transform Eq. (1) into the Helmholtz equation us-
ing an appropriate scaling and rotation of coordinates, the rotation
being needed so as to eliminate the second term in Eq. (1), the one
with the mixed derivative. The implication is that solutions involv-
ing Hankel (or Bessel) functions of certain arguments will appear.
This approach is convenient for full-space problems but less so for
half-space problems because the required transformation will also
move the boundary of the half-space.

Instead, we first construct the full-space solutions (as has been
done by others) and express them in terms of the original indepen-
dent variables, x and y. We then introduce corresponding solutions
singular at an appropriate image point. The location of this point
was found by Ting [1, Section 3.5]: it is not the mirror-image point
unless C45 = 0. Ting was concerned with static problems, but intro-
ducing dynamics does not change the location of the image point,
just the kind of solutions that are to be singular at that point. Once
this observation has been made, the rest is mere calculation. In
Section 3.1, we construct a fundamental solution for Eq. (1) that
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is shown to satisfy the traction-free boundary condition at y = —h.
This solution, given by Eq. (23), could be used to derive boundary
integral equations for scattering problems posed in a half-space.
Then, in Section 3.2, we construct multipole solutions, analogous
to Eq. (2); these are given by Eq. (27). Their use in the context of
scattering problems is discussed in Section 4.

2. Governing equations

We start with background material taken mainly from Chap-
ter 3 of Ting’s book [1]. The displacement vector is u=
(uq1,uy,u3) with respect to Cartesian coordinates Ox;Xpx3. For
special anisotropic materials, antiplane deformations are possible.
These have the form u; =u; =0 with u3=u independent of xs.
The equation of motion is

2y 2 2 2
Cssg > +2Cs5 88;; +C443y2 p?)tZ 3)

where Css5, C45 and Cy4 are the relevant stiffnesses, p is the mass
density, x=x; and y=x,. Eq. (3) is [2, Eq. (2.1)], [3, Eq. (2)] and
[4, Eq. (6)]; the static version is [1, Eq. (3.3-5)]. The non-trivial
stresses are (see [1, Eq. (3.3-3)])

Ju

ou au au
031 =Css 5 +C45@, =G +Cum 3y’ (4)

The stiffnesses satisfy
Csa>0, Cs5>0 and CuCss — C > 0. (5)

When Cy5 = 0, the solid is said to be orthotropic. This case is sim-
pler because Eq. (3) can be converted into the wave equation by
rescaling x and y. In the more general case, with C45#0, such a
conversion can be achieved, but a rotation is also required; see
Eq. (13) below.

2.1. Complex variables

Change the (real) independent variables from x and y to
z=x+py and Z=x+py, (6)

where p is a complex constant and the overbar denotes complex
conjugation; p will be chosen later. (Our z and p are denoted by x
and y, respectively, in [3,4].) Using the chain rule,

0%u _ d%u 0°u  d%u
a2~ 92 TCazaz t ﬁ’
%u 502 U o _,0%u
0y2 =Poat 21pl 8282+p 22’
82 82 _|_( + ) '@
axoy Paz "' azaz tPaz
The equation of motion, Eq. (3), becomes
0%u ’u - 0%u 0%u
Asa Byt Am =P )
where

A= Cs5 + 2pCss + p*Caa, B=Css5+ (p+ P)Cas + | pl*Caa.
Choose p so that A=0 (and A = 0),
Css +2pCas + p*Cag = 0. (8)

(This is [1, Eq. (3.3-9)].) Then, using A+A =0, we find that B=
2C44(Im p)2. But solving Eq. (8) gives

\/C44C55 - (.35 >0 (9)

Eq. (3.3-10)]), whence B=2u?/Css and

p= (i — Cy5)/Caq With p =
(see Eq. (5) and [1,
Eq. (7) becomes

4,ud2 0%u 0%u
C44 0z0Z ;0 ot2’

(10)

This equation can be found in [5, Eq. (2-8)] and [6, Eq. (12)]. The
time-harmonic version (with a time-dependence of e~i®t) is [2,
Eq. (3.2)], [3, Eq. (6)], [4, Eq. (9)], [5, Eq. (2-11)], [6, Eq. (15)] and
[7, Eq. (3)].

2.2. Polar coordinates

Define real quantities R and ® by
Z=x+py=Re® (11)
whence R? = zZ and e%© = z/z. Using Eq. (9),

{Rx.y)) = (Caax® — 2C45Xy + Cs5y?) /Cas. (12)
so that R(x, y) = constant defines an ellipse in the xy-plane. Thus R
and O are polar coordinates in the z-plane but not in the xy-plane!
It is worth noting that the origin can be moved: we can replace
zby zg = (x —Xxg) + p(y — ¥g). so that R =0 would then correspond
to (x.y) = (Xo0.Yo)-
The chain rule gives

Pu_ou 10w 1 0
0z0z 0OR2  ROR R20O2
Using this formula in Eq. (10) gives
82u+18u+ 1 0%u 1 9d%u (13)
dR2 " ROR ' R20©2 ~ 2 ar2’

where ¢ = /. /pCsq. We recognise Eq. (13) as the two-dimensional
wave equation for u(R, @, t).
A simple time-harmonic solution of Eq. (13) is

u(x.y.t) = Re{Ho(kR) e~ '}, (14)

where H, = H,(,l) is a Hankel function and k = w/c; there is a loga-
rithmic singularity at R = 0. The solution Eq. (14) and others with
Hy replaced by H;ei"® have been used in several papers by Liu
Diankui and co-authors, including [2,5,6], and they are used in
[3,4,7]. We can also replace H, by the Bessel function Jj.

Evidently, Eq. (14) could be used as a fundamental solution for
problems posed in a full-space, leading to boundary integral equa-
tions for scattering problems.

However, we are mainly interested here in half-space problems,
with a traction-free boundary at y = —h, where o3, = 0. That is the
focus of the next section.

3. Half-space problems and images
3.1. A fundamental solution (Green’s function)

Let ug = Hy(kR). The corresponding traction o3, is given by Eq.
(4) as

E)uo 3110

JdR JdR
Cg5—— Ix +Cap—— 8 = kHO (I{R) <C45 9% + Cp4~— 8 )

denote this quantity by 032 (x,y). From Eq. (12),
OR  Cax — Cysy OR  Cssy —Cysx

39X~ RCu and 9y RCu (15)
whence (as Hj = —H;)

2
o (x.y) = —kH; (kR) %. (16)
In particular,

2
0% (x, —h) = H (kRy) Il;h C’:’: with R, = R(x, —h). (17)

We want to cancel the traction Eq. (17) by introducing an image
singularity. In [3,4,7], it is claimed that this can be done by plac-
ing a singularity at the mirror-image point, which is at (x,y) =
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(0, —2h): this is incorrect, in general, as can be checked easily. (The
authors of [3,4,7] do not justify their claim; this is another exam-
ple of “misuse of the method of images” [8].)

The correct location for the image singularity is given by Ting
[1, Section 3.5, especially Fig. 3.3]: it is at

(*x.y) = (R.9) = (2p'h, -2h) (18)

with p" =Rep = (p+ p)/2 = —C45/Cas. Quoting Ting [1, p. 78], “the
image singularity is located outside the half-space [y > —h]. Its lo-
cation is not the mirror image of [the origin] where the real sin-
gularity is located unless p’ = 0. Notice that the imaginary part
of p plays no role in Eq. (18).” We say that Eq. (18) defines the
Ting point. It becomes the mirror-image point when the solid is or-
thotropic (C45 = 0).
Define 2, R and © by

2=(x—R) +p(y-Jy) =Re® (19)
so that
D 2 _ 52 / 2 2 /2
{Rx.y)}” =22=x"+2p'xy + |pI*(y + 2h)> — 4hp'*(y + h)
= {C44X2 — 2C45xy + Cs5(y + 2h)?
—4h(y + h)Cfs/C44}/C44- (20)

Comparing with Eq. (12), we observe that ﬁ(x, —h) =R(x, —h): it is
this property that enables the image calculation to succeed. Thus
let g = Hy (kR) and

. o aR R
O3y x,y) = C45 8 + Cag—— 8 0 _ kHO(kR) <C45 3% + Cap~— 8 )
From Eq. (20),
IR _Cax—Casy 21)
0x RCus
aR _ Gs5(y +2h) — Cysx — 2hC45/C44
(22)

dJy RCy4
whence
. ~ w2y +2h
69 (x.y) = —kH; (kR) By +2h)

Cas
In particular,
o kh
65,(x ~h) = —Hy (kRy) - e
using ﬁ(x, —h) = R(x, —h) = Ry. This cancels with Eq. (17) when the

two are added.
We conclude that the function

Go(x,y) = Ho(kR) + Ho (kR) (23)

is a fundamental solution: it satisfies the time-harmonic form of
Eq. (3) (which is Eq. (1)) everywhere in the anisotropic half-space
y > —h except for a logarithmic singularity at the origin, and it
satisfies the traction-free boundary condition at y = —h. An erro-
neous formula for Gy is given in [4, Section 5]. In the special case
of orthotropy, Eq. (23) reduces to a formula in Kausel's book [9,

Eq. (5.10)].

3.2. Multipoles

Let un(x,y) = Hy (kR) e"® and
8u au 8R aR
o (%, y) =Cs5—— o L @t % " = kH, (kR) <C45 o +C443 > Qin®

90 90\ .o
+ inHy, (kR) <C45 3% + Cyq—— ay )e .

From e2i® = z/Z, we obtain

9O _ My g 09 mx
ox R2C44 8y - R2C44.

Hence, using Eq. (15), we obtain

2 . .
ol (x.y) = kH, (kR)gTj; e"® ¢ inH, (kR) (CaaX — Ca5y)e"®.

w
R2C44
But, from Egs. (9) and (11),

Rcos® =x —yCy5/C44 and Rsin® = puy/Cyq,

whence (using [10, Eq. 9.1.27])

ol (x.y) = %{kRH;, (kR) sin © + inHy (kR) cos © }e®

_ M i(n+1)®

= 2iR{kRH,’, (kR) — nHy (kR) }el"+D)
M i(n-1)0

- 2iR{kRH,’, (kR) + nHy (kR) }el*~1

= 1“7" {Hns1 (kR) €/™D€ 1 H,_ (kR) =D}, (24)
(When n =0, this formula reduces to Eq. (16).) On the traction-
free boundary, we use R(x, —h) and ©(x, —h), where the latter is
defined by

x — ph

2i0(x,—h) __
e = — .
x — ph

(25)

Next consider the image. We know_that it is singular at the
Ting point, so consider i, = Hy (kR) e~ in® \ith R and © defined by
Eq. (19). Proceeding as above, we have

dtlp

Ay , aR AR\ o
63 (x.y) = Cos—— I T4 Caamr 3y = kH;, (/<R)<C45a +C44a ) in®

— inH, (kR) <c45 %9 +Cay 88® > e in®.

From e2® =3/ we obtain

@Ziiu(yﬂh) and @ K <x+2h%>

= =

0x §2C44 ay R2Cyy Caa)
Hence, using Eqs. (21) and (22),
~ 2 o
61 (x,y) = kH (kR) LY 2N oind
RC44

—inH, (kR) A (XC44 —¥Cy5 )e"”@

= %{kRH,/1 (kR) sin © — inH, (kR) cos (’:)}e*i"@
"5 ~ SN ain1)®

515 (KRHG (R) <+ (R) e

- 2iA{kEH,’, (kR) — nHy (kR) Je-i01+1)

= l'l;k {Hn+1 (kR) e +D®  H, | (kR) ei(n~ l)@}
(26)
From Eq. (19)
Xx—(p+ p)h+ p(y +2h)

eZi@(x,y) —
x— (p+p)h+ p(y+2h)
so that
200 -h) _ X~ ph
x—ph’
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Comparison with Eq. (25) then gives @(x, —h) = -O(x, —h).
As R(x,—h) =R(x,—h), we see from Eqs. (24) and (26) that
oy (x, —h) + 61, (x, —h) = 0: we have constructed multipole solu-
tions

Gn(x,y) = Hy (kR) €® + H, (kR) e~i"®. (27)

These functions satisfy the time-harmonic form of Eq. (3) every-
where in the anisotropic half-space y > —h apart from a singular-
ity at the origin, and they satisfy the zero-traction condition on the
flat boundary at y = —h. Erroneous formulas for G, are given in [3,
Eq. (12)], [4, Eq. (13)] and [7, Eq. (4)].

4. Discussion

We have already mentioned that Gy could be used as an ingre-
dient in a boundary integral equation method for scattering prob-
lems. Such a problem arises when an incident plane wave is re-
flected by the flat boundary and scattered by the defect (which
could be a cavity or an inclusion).

Another option [2,3,5] is to use the multipole solutions Eq. (27),
writing the scattered field, wsc, as

00

Wse®.¥) = Y aGn(x.y). (28)

n=—oc

with coefficients to be determined using the boundary condi-
tion on the scatterer. We recall that one piece of G, con-
tains Hp(kR) with R(x, y) defined by Eq. (12). Recall further that
R = constant represents an ellipse; the size and orientation of
the ellipse depend on the elastic stiffnesses. The infinite series
Eq. (28) is expected to converge for R> Ry for some Ry; whether
the ellipse R=Ry encloses the scatterer or not is related to
what is known as the Rayleigh hypothesis; see [11] for further
discussion.

As the coefficients ¢, must be found numerically, we could
truncate the series Eq. (28) and then seek an approximation, writ-
ing

N

Wse(X,y) ~ Z cn(N) Gn(x, ). (29)
n=—N

The 2N + 1 coefficients c,(N) (which could depend on N) may then
be computed perhaps by applying the boundary condition at 2M +
1 points (with M > N) or by using a Fourier-type method [3,5]; as
noted above, the numerical results in [3,4,7] were obtained with an
incorrect choice of image point (except when Cy5 = 0). We are not
aware of any numerical analysis of these approximation schemes.
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