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Abstract The governing equations for small-on-large analysis of an incompressible hyper-
elastic solid are reduced to a coupled system of six first-order ordinary differential equations
with respect to the radial coordinate in spherical polar coordinates. This reduction to Stroh
form does not assume a particular form for the strain-energy function.
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1 Introduction

In a recent paper, the scattering of sound waves by a rubber spherical shell is studied, us-
ing analytical, computational and experimental approaches [9]; for the experiments, the au-
thors used “a commercially manufactured American handball”. Another recent paper [13]
considers the oscillations of a thin pre-stressed elastic spherical shell, using analytical and
experimental approaches; for their experiments, the authors used a “helium-filled novelty
balloon”. Our study began with the following related (but more difficult) problem: how is a
sound wave scattered by an inflated (pre-stressed) rubber balloon?

To formulate the problem, suppose that the balloon is spherical and that it is made from
an incompressible hyperelastic isotropic material. Inflate the balloon quasistatically: the re-
sulting large deformation can be calculated. (This calculation is reviewed briefly in Sect. 2.)
We then consider small dynamic perturbations about the static configuration, leading to
a small-on-large analysis. In more detail, suppose that the regions inside and outside the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10659-019-09730-2) contains supplementary material, which is available to
authorized users.

B P.A. Martin
pamartin@mines.edu

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden CO 80401,
USA

@ Springer



126 P.A. Martin

spherical balloon are filled with an inviscid compressible fluid. There is a time-harmonic
plane wave incident on the sphere, resulting in a scattered wave, motions of the balloon, and
a transmitted wave motion inside the sphere. The small motions of the balloon are governed
by the incremental equations; see [8, Chap. 4], [16, Chap. 6] and Sect. 3. These equations
are linear but they are complicated, in general. The main focus of this paper is on solving
the incremental equations.

There is some previous work on scattering in the presence of pre-stress although we are
unaware of previous work on acoustic scattering by an inflated balloon. Problems involving
cavities in a pre-stressed solid have been studied [18, 19] but such problems have the techni-
cal difficulty of specifying the elastic behaviour far from the cavity. The balloon problem has
the advantage of a simpler far-field behaviour (where the acoustic waves are governed by the
Helmholtz equation) but at the cost of a more difficult (but tractable) quasistatic problem.

Our purpose is to develop a Stroh formalism in spherical polar coordinates because
this provides an efficient way of representing the small-on-large solution, as explained be-
low (1.1). A related development was given by Norris and Shuvalov [15] for elastodynamic
problems in radially inhomogeneous materials with spherical anisotropy. For our small-on-
large problem, the inhomogeneous anisotropy is generated by the underlying quasistatic
deformation. Another difference is we have to ensure that the incompressibility constraint is
imposed.

We have no need to specify the underlying strain-energy function, so that our formalism
is quite general. A Stroh formalism for a restricted class of strain-energy functions has been
given by Ciarletta [1]; see the text below (4.42) for more details.

The derivation starts by following Norris and Shuvalov [15], expanding the incremental
displacement using vector spherical harmonics; the unknown coefficients are functions of
the radial coordinate » and they are collected in a column vector U. The corresponding
coefficients for the radial traction vector are collected in a column vector T. Then the Stroh
formalism reduces the governing equations to

j_” = LNeyno, (L)
r r

where 9 = (U, ir?T)T is a 6-component column vector and the 6 x 6 matrix N is given
explicitly below. Thus (1.1) consists of a coupled system of 6 first-order ordinary differential
equations. Efficient methods for solving such systems are available [1, 3]. Evidently, they
will require boundary conditions on spherical surfaces. As these are usually specified in
terms of displacements and tractions, it is seen that the Stroh formalism is convenient. We
note again that the structure of (1.1) does not depend on the choice of strain-energy function
employed in the solution of the finite-deformation static problem.

The entries of the matrix N are functions of r; they involve the incremental constitu-
tive coefficients (denoted by Ag;jx; in [16]) and the hydrostatic pressure (denoted by py,
below) introduced so as to satisfy the incompressibility constraint in the quasistatic large-
deformation problem; all these quantities are assumed to be known.

The first of the 6 equations in (1.1) enforces incompressibility. The remaining equations
come from the incremental constitutive equation and the incremental equation of motion.
Notably absent is p*, the incremental form of the hydrostatic pressure py,; if needed, p* can
be calculated later, after (1.1) has been solved.

Our derivation of (1.1) is given in Sect. 4. It is followed by a discussion of alternative for-
mulations and methods, with most details relegated to an Online Resource (Supplementary
Material). The application of the Stroh formalism to the balloon problem will be the subject
of future work.
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2 The Quasistatic Problem: Inflation of a Thick Spherical Shell

Consider a material body in its reference configuration Bs. A typical point in Bt has po-
sition vector X. We use Grad and Div to denote the gradient and divergence operators with
respect to X. We deform B, into configuration B so that X € B, is taken to x € B by a
deformation yx, with x = x (X). The deformation gradient tensor is F = Grad .

For B, we consider a thick spherical shell made from an isotropic, incompressible,
hyperelastic material. Locate X € B, using spherical polar coordinates R, & and @, where
® is the polar coordinate and @ is the azimuthal coordinate. The undeformed shell occupies
the region A< R < B,0<60 <m, —m < ® < xm. After deformation, a point at (R, ©, D)
moves to (r, 6, ¢) € B. We consider a spherically-symmetric deformation given by

r:Rf(R), =0, (P:(D (21)
For such a deformation, F is diagonal with respect to polar coordinates,

F = diag(Rf'(R) + f(R), f(R). f(R)) =diag(ri. Az, 1), 2.2)

where A; is the principal stretch in the ith direction. We have assumed that i =1, 2 and 3
correspond to r, 6 and ¢, respectively.

If the deformed sphere occupies the region a < r < b, incompressibility implies that
F(R) ={14+ (a®> — A%)/R?}'/3. One way to see this is to note that the volume between radii
A and R, gy'r(R3 — A3), is unchanged after deformation, and so equals %rr(r3 — a3); for
more details, see [16, Problem 2.2.16 & §5.3.2]. Alternatively, for incompressible materials,
detF = A ;A3 = 1, and then (2.2) gives Rf2f’ + f3 = | with general solution f3(R) =
1 + CR73; the constant C is determined using a = Af (A).

Two stress tensors are of interest, the Cauchy stress ¢ and the nominal stress S. They are
related by 0 = FS; ¢ is symmetric but S is not, in general.

The configuration B is in static equilibrium (no body forces): equivalent statements are

dive =0, DivS =0, (2.3)

where div is the divergence operator with respect to x € 5.
For hyperelastic materials, there is a strain-energy function W (F). As our material is also
incompressible, we have

ow
= pF

ow
UZF——phpI, S 3F

oF

where py, is an arbitrary hydrostatic pressure. For isotropic materials, we can express W
in terms of the stretches only, see (2.2), giving W (A, A2, A3). Then the principal Cauchy
stresses are given by [16, Eq. (4.3.49)]

ow
Ui:)\iﬁ—php, i=1,2,3 (nosumoni) 24)

where 0| = 0,p, 03 = 0Oyg and 03 =0gpgp.
For an incompressible material subject to the deformation (2.1), we have

M=A"2 and Ay=A3;=A, whereA=r/R= f(R). (2.5)
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As the three stretches can all be defined in terms of A, define W(A) = WA "2, A, A). The
chain rule gives

dw W di, LOWdh  aWdis 20w 9W 0w
di o 9A dA o 9k dA o BAz di A3 0A; 9y 0A3

whence

Ai—‘f:—Zklz—K +)\.22—X +)\.3%:—20}r+0’00 +O’¢¢. (26)
Note that py, does not appear in this equation.

Suppose the thick shell is inflated by an internal pressure pi,. There is also an external
pressure pey. In equilibrium, both pressures are constant, with pjy > pex. To relate pin
and pey to the deformation, we have to solve the equilibrium equations (2.3). This was first
done by Green and Shield [7, §7]; see also [21, §57, Family 4], [8, §3.10], [16, §5.3.2]
and [20, §7.2]. There are three equilibrium equations [16, Eq. (1.5.54)], but two of them
are satisfied identically because there is no dependence on 6 and ¢ in our problem. The
remaining equation is

o (r)+r7' (20, — 049 —043) =0, a<r <b. 2.7)
We integrate (2.7) between r = a and r = b. The boundary conditions are o,,(a) = — pin

and 0,,(b) = — pexi. Also, from (2.6), 20,, — 0gg — Tpp = —AW’(A). Hence

b adr
Pint — Pext = W' Q)

y o
Using A(r) =r/R(r) and R? — A® = 1> —a?, we find (A/r)dr/dr = (1 — A3)~!, whence
[11, Eq. (72)], [16, Eq. (53.3.21)], [6, Eq. (3.19)], [2, Eq. (47)]

W)
Pint — Pext = /;b m da, (2.8)
where A, = A(a) =a/A and A, = A(b) = b/B are related: A3 — 1 = (B/A)*(%; — 1). Equa-

tion (2.8) relates the pressure jump across the shell to the inner radius a.
The hydrostatic pressure pp,(r) can be calculated by integrating (2.7) between r = a and
r itself giving

Aa VAV/()\.)

—dAX. 2.9
i A =1

N ow ) +
rYes r Dint =
la)\l Php Pint

‘We remark that the solution given above is for an incompressible material. The analogous
problem for a compressible material is more complicated, but some progress can be made;
see [16, §5.2.2], [20, Chap. 8] and the review by Horgan [12].

3 Incremental Equations

The basic quantities of interest in a small-on-large analysis are the incremental displacement
u(x,t) and the incremental nominal stress X (x,¢) (which is not symmetric, in general).
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They are related by the incremental equation of motion [16, Eq. (6.4.1)]

9%u

divY=p—:1,
p8t2

3.1
where p is the mass density, which is constant due to incompressibility. We also have the
incremental constitutive equation [11, Eq. (79)], [16, Eq. (6.3.3)], [2, Eq. (29)]

where Aj is the fourth-order tensor of elastic moduli, I' = grad  is the displacement gra-
dient, and p* is the incremental form of py,,. The incremental form of the incompressibility
constraint reduces to

trIF =divu =0. 3.3)
3.1 Use of Spherical Polar Coordinates

Let 7,  and (i) be the spherical polar unit vectors. We write u = uF + U0 + u3$ and
then put the components in a column vector w = (u, U5, u3)” . We shall introduce additional
column vectors later.

Let us write the governing equations in terms of spherical polar coordinates, starting
with the equation of motion (3.1), as recorded by Ogden [16, Eq. (1.5.54)] and by Fu [4,
Eq. (A10)],

X)) L1 (22 5 5 )+cot02 % (3.4)
08 11 22 33 21 =P 972 " :
BEJZ 821/{2
+ - (22|2 + X))+ —(222 2n)=p—F7 (3.5
ag} dt
8213 82u3
2x X — (X X , 3.6
8&1 ( 13+ 31)+ ( »n+ Xp)= 8t2 (3.6)
where 3/0&, = d/0r, /3& =r~'3/06 and 3/0&; = (rsinf)~'3/0¢.
The constitutive equation (3.2) becomes [4, Eq. (A6)]
i =X0+ pwyji — P 8 with 7= Ajinvi, (3.7
where we have denoted the components of Ay by A;x; they are given by [2, §3.1]
Aiiri = Fip Fi oW =A (3.8)
ijkl — L'ip kanjpaﬂq — Aklijs .
but simplified formulas will be given later (Sect. 3.4). For py,(r), see (2.9).
The displacement gradients y;; are given by [10, Eq. (3.7)], [4, Eq. (A9)]
8u1 1 Bul 75} 1 Bul us
=1 =-_=2 — L= 3.9
v ar iz r 06 r Vis= rsinf d¢ r (39)
auz 1 8u2 u 1 8u2 cotd
=22 =4 = - _ , 3.10
V2 ar vz r 06 + r Vs rsinf d¢ r " ( )
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au'; 1 auq 1 3142 up cotf
= —, =—-—) = - — 4+ — 2. 3.11
V= Y= e e R (3-11)
The incompressibility condition (3.3) becomes [10, Eq. (3.8)]
18(2)+ L2 singy+ 291 2 (3.12)
——(r ——— 1 —(up sin —+=0. .
2ord T Gne 1oe 2 ¢
3.2 Rewriting the Equation of Motion
Inspection of (3.4)—(3.6) reveals the common quantity
BEj,n+22 +cot92 1 8(22 )+ 8(2 _9)+82
- m - m = 5 A \I m — a4 m S1IL a L “3mf(-
0, r! r T 2y T sing | ag 3

This suggests that we can write the equation of motion compactly by introducing three
traction vectors t; with components X,,,

Ell 221 231
t=|2nf. b={2»], = 2%|. (3.13)
213 223 233
The result is
1ad,, 0 0 9%u
——(rt —(t, sin6 —t indKt, + Ht; t = p—, 3.14
rzar(r |)+rsin0{86(zsm )+8¢3+sm 2+ 3} Por (3.14)
where
0 -1 0 0 0 —sinf
K={1 0 0], H= 0 0 —cosf
0O 0 O sinf cos@ 0

This has the same form as an equation obtained by Norris and Shuvalov [15, Eq. (3.1)] for
a different elastodynamic problem (one in which the stress tensor is symmetric). For later
use, we note that, for any column vector v = (v, va, v3)7,

—U —U3 sin @
Kv= vy s Hv = —v3cosf . (3.15)
0 v sin@ + v, cos O

3.3 Rewriting the Constitutive Relation

The first piece of the constitutive relation (3.7) is X ﬁ» = Ajinyu, with y;; given by
(3.9)—(3.11). Define column vectors ey, e, and e; by

8u| 8u2 8u;>T (3 16)

ou
ej=—, rey=—+Ku=("l—uy > tu,
! e =gy TR (ae g T g

rsin@)es= % L H
r Sin €y = — u

Bul . 8u2 8“3 . !
=|— —u3sinf, — —uzcosf, — + u; sin6 + u, cosH (3.17)
Loy Lo Lo
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whence (Vlnu Yom s V3m)T =€, m= 1,2,3. From (37),

Eﬁ' =Ajiuyn +Ajizvar + Ajiys + Ajinvis + Ajinzyn

+ Ajizzyn + Ajiziviz + Ajinves + Ajiszyss
= (Ajit, Ajirz, Aji)er + (Ajiot, Ajina, Ajinz)er + (Ajist, Ajisz, Ajiza)es.
(3.18)

Then, defining vectors t? using (3.13) but with X; replaced by Z‘i’} therein, and using the
symmetry relation A;j; = Ay (3.8), we obtain

t Qi Ry Ly (e
=Rl Ju Si||e (3.19)
t? Lg Sg MA €3
where
Ann Az Ans Azt Anze Anz
Qu=| Az Ao Apis |, Ri=| Ao Ann A |, (3.20)
A A Az A Ain Az
Anat Ane Anss Ao Az A
Li=| Azt Az Az |, Ja=| Aun Axn Anx |, (3.21)
Azt Az Az Az Az Ann
Az Anze Auiss Az Az Aszizs
Sa=| Ansi Ann Aus |, My=| Az Az Az |. (3.22)
Az Apzz Ans Azzz Az A

Equation (3.19) has the same form as [15, Eq. (3.2)].

We note that Q4, J4 and M4 are symmetric matrices. Thus there are 3 x 6 +3 x 9 =45
independent entries in the 6 matrices. We will see later that, for our problem, there are just
9 distinct (but related) entries, in general.

The second piece of the constitutive relation (3.7) is pppyy;i. The column vector on the
left-hand side of (3.19) is (X7}, X5, T, T3, Z3b, T35, T4, T, Zib)T to which we must
add pry(V11, Y12, Y13, V21, V225 V23, V31, V32, y33)T. But the column vector on the right-hand
side of (3.19) is (Y11, Y21 V31> Y12+ V22, V32. V13- V23, ¥33) T » so that some simple reordering is
required, leading to one change in each of the matrices (3.20)—(3.22). Finally, taking account
of the last term in (3.7), we obtain

t; Q R L e i
tLt|=[R" T S||le|-p|h (3.23)
t3 LT ST M €3 i3

where iy = (1,0,0)", 1 = (0, 1,0)", i3 = (0,0, 1),

Al An A Ao Anze Ans

Q=\| A Aoz Apns |, R=1[ A}, Ann A |, (3.24)
Ani A Az Azt Az Anpzs
Azt Anze Anss Ao Asin Asins

L=] Aoy Apn A |, J=| Aun A, Ams |, (3.25)
Al Asn Apbs Az Ampz Aoz
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132 P.A. Martin

Az Anze Aus Azizr A Az
S=| Axz Axn Ans |, M=| A3132 Ann Anzn (3.26)
P P
-A233l -A2332 -A2333 -A3l33 -A3233 -A3333

and we have defined

Al = Aiji + Prp (3.27)
with pp,(r) given by (2.9).
Alternatively, we can write
t t 21 iy
t, | = t? =+ Pp |l & | — p* ir (328)
t; t} 23 i3

with g, = (V1> Y2, Ym3) "5 see (3.9)=(3.11) and (3.19). Compare the definition of g,, with
that of €, = (Vim, Yams V3m)" -

3.4 The Components of Ay

The components of Ay are defined by (3.8) in terms of certain derivatives of the strain-
energy function W. For an isotropic material, W may be taken as a function of the three prin-
cipal invariants I,, I, and I3, defined in terms of the principal stretches by [16, Eq. (4.3.51)]

I =A+23+ A5, L = AA5 +A3A5 + A3AT, I = ATA5A3;

for an incompressible material, 73 = 1. The chain rule gives

oW oW 91, oW oW 2L W
- =24y — + 20, (I = 22) — SR (3.29)
ar, 9L, 9, oI, ALk, 0L
1w oW oW
— =28, —— +2(8,, I} +2A A, — 3228,,) —
3)np3)~q Pq811+ (Pli 1+ 2ApA P ”")312
2 1 ow 2w 1w
21 -4 4 phy Ah,hg (I = 22V — 22—
* 3<A Ay A2 ”") or, e T (1= 25) (1 =) or;

417 W W Ay A 2w
+ 3 + 4,k (21 =22 —17) +4I3(—‘+—">—

Aphy OIF a1, 01, A a1, 015
A Aq *w
4L 2(n — 23 I 3.30
- 3(xq( 1)+ Ap( b )) YA (330)

For an isotropic incompressible material, all the non-zero components of Ay are given
by [16, Egs. (6.3.15)—(6.3.17)] as follows. First, we have

Appag = 2prqgWhpq, (3.31)

Apaap = Agppg = Apapg —2pWp, P #4q, (3.32)
2

Apapg = OpWy =2 Wo) ———. pF#q. kpF Ay, (3.33)

A2 A2’

@ Springer



A Stroh Formalism for Small-on-Large Problems in Spherical Polar. .. 133

where W, =0W /oA, and W, = 82W/8A,, 0A,. Combining (3.32) and (3.33),

Apgap = Agppg = Mg Wy — 2, W, )

)\2’ PEG, Ay E . (3.34)

Second, suppose that A; = A; with i # j. (For our application, A, = A3, see (2.5).) In this
case, (3.29) gives W; = W; whereas (3.30) gives W;; = W;; and Wj; = Wj;. From (3.31),

Aiiii = Ajjji =8 Wi, Aiijj = Agji = 2 Wi,
Aiikke = Ajje = Arkii = Awkjj = Midi Wik,
For k #1i # j # k, (3.33) gives Ajxix = Ajrjx and Ayixi = Agjij, and then (3.32) gives
Aikki = Axiik = Ajuj = Axjjr. Finally, in place of (3.33), we have [16, Eq. (6.3.16)]
Aijij = (Aiiii —Aiijj T AW = Ajiji. (3.35)
For our problem, A, = X3, and so the non-zero components are as follows [16, Eq. (6.3.168)]:
A, A = Az, Az = A = Anss = Az,

-A1221 :A133l :AZIIZ :A3]l37 A2222 :A33337 A2233 :A33227
~A2|21 = A3l3l s A2323 = A32327 A2332 = -A3223-

We see that there are 9 different components although they are related because they are given
in terms of 6 partial derivatives of W, namely W, W, = W3, Wy, Wi, = Wy = W3 = W3y,
W,y = Wiz and Wy3 = Ws;,. One useful relation follows by combining (3.32) and (3.35).
They give

Aoz = Az — Mo Wo  and 24533 = Axpn — Ansz + A Ws.
Eliminating A, W,, we obtain
Aoz + Assza = Az — Anzs. (3.36)

Using the non-trivial components of Ay, (3.24)—(3.26) simplify:

AT 0 0 0 Aun 0
Q= 0 Ao 0 s R= .Alfzm 0 0],
0 0 A1z 0 0

0
? Azzzz (U
Al 0 A

Azn
0
0
0 0 0 Az iz 0
0
0

=)

A 0

L

=)
=)

(=)
=)

S=10 0 Apsi |, A2323 0
0 A, O 0 Apy

Recalling (3.27), (3.36) gives

-A2323 + -A5332 = -Agzzz - -A2233- (3-37)
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134 P.A. Martin

4 Use of Vector Spherical Harmonics

In this section, we start by following Norris and Shuvalov [15]. As in [14, §3.17], define
vector spherical harmonics by

P (F)=rY,(F) =7Y," (6, 9), 4.1)
1/ b 0

By =+ (0@ ; %Q)Y:’w, o). (42)

moa L0 8 B\

Cn (r) - X(m% _¢£)Yn (05 ¢)1 (43)

where A = [n(n + 1)]7"/? and Y are spherical harmonics [14, Definition 3.2]. Collecting
the components of (4.1)—(4.3) into column vectors, we see the structure

pr=(r.00".  BI=@8.C) . Cr=0.c -8

with
B'=2"'9Y" /30 and CI = (Asin6)"'3Y"/d¢. (4.4)
Suppose

u=Re Y U}, (P + Uy, (1B} )+ UL, () Cr(F) fe ™,

n,m

p* —Re Z P,II?’I (r)Y’;n (i:) efiwf.

n,m

Exploiting the orthogonality properties of the vector spherical harmonics, we can suppress
all sums, subscripts and superscripts, and the harmonic time dependence, giving the structure

u=Up(r)P(F) + Up(r)B(F) + Uc(r) C(F), p*=Pr)Y(#), (4.5)
uy=Up(r)Y(F), uy=Up(r)B(F)+Uc(r)C(F), (4.6)
us =Ug(r)C(F) — Uc(r)B(F). 4.7)

The motion is governed by the equation of motion (3.14), the constitutive relation (3.23)
and the incompressibility condition (3.12). We are going to write these equations in Stroh
form. The equation of motion (3.14) starts with the radial derivative of rt;, where t; is
the radial traction column vector; see (3.13). Expanding t; using vector spherical harmonics
gives

ty=Tp(r) P(F) + T (r) B(F) + Tc(r) C(F). (4.8)

Define column vectors U= (Up, Ug, Uc)T and T = (Tp, Tg, Tc)". Then we will see that
the governing equations can be cast in Stroh form (see [15, p. 473]) as

i . a
= r—2N7] with 9(r) = (ir2T>’ 4.9)
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A Stroh Formalism for Small-on-Large Problems in Spherical Polar. .. 135

where N is a 6 x 6 matrix,

(N N
N—(N3 N4)' (4.10)
The four constituent 3 x 3 matrices will be defined later; see (4.20) and (4.37). In particular,
N, is diagonal, N, is singular, Ny = NJ and Ny = —NT.
Written out, (4.9) gives

U=ir?NU-N,T,  (r’T) =rN;U+iN,T, @.11)

where the first of these will come from the constitutive relation and the incompressibility
condition, and the second of (4.11) will come from the equation of motion.

4.1 Incompressibility Condition

Substitution of (4.7) in the incompressibility condition (3.12) yields

Yyd, , Ug (8, . 9C Ue (o .. 9B
——(r°u —(Bsinf) + — —(Csinf) — — | =0. (4.12
i LD ey (ae( sinf) + a¢>> t g <39( sinf) a¢>> “+12)
From (4.4) and the partial differential equation satisfied by Y [15, Eq. (3.5)],
19 (. aY 1 9y )
——(sin— | + —— — = -2%, (4.13)
sin@ 90 06 sin @ d¢?
we obtain
0 0B 0 aC
—(Csinf) — — =0, —(Bsinf) + — = —AY sinf. 4.14)
36 FY 36 3

Equation (4.12) reduces to (r>Up)’ = ArUp after use of (4.14). Thus the incompressibil-
ity condition is

rUp, =AUp —2Up. (4.15)
4.2 Constitutive Relation
From (3.16) and (3.17),
e =(UpY,UpyB+U.C,U,C —U.B) =UP+UyB+U.LC,

U .U 3B oC\" U, aC 9B\’
e=—0.B,7,0) + B(‘B ) +_C<‘C’— ) :

r r

907 90 r 30" 090
Up ; Usg 3C aB\"
=L0C01) + L -C.— Ay — —
e = ( )+ < 36 30)
Ue aB  aC\’
+25(B, -2y ——, ——)
r 30° 96

where we have used (4.4) and (4.14), which give

0B oC 1 aC 0B
— —Ccosf =—sinf and Bcot + — —=—-AY — —.
¢ 00 sinf 9¢ 00
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From the first row of (3.23), t; = Qe; + Re; + Le; — p*i;. Calculating,

Qe = AflllUI,’P —+ Auu(UéB + U&C),

| AnnQRUpY — UpAY)
R62 +Le3:— All)zzl(Up)\.B—UBB—Ucc)
AL, (UphC — UpC + Uc B)

Hence t; = TpP + T3B + T C (see (4.8)) where, as p*i; = PP,

Tp =AUy +1 " A QUp — Uph) — P, (4.16)
T =AUy +r ' AL, (Upk — Up), (4.17)
TC :A1212U(/: —rilAfZZLUC. (418)

Combining the first of these with (4.15) gives
P=—Tp+r " (Ann — A},)QUp — Ugh). (4.19)

This enables the determination of the incremental form of the hydrostatic pressure p* = PY
once Up, Up and Tp have been determined.

Equations (4.15), (4.17) and (4.18) give U’ in terms of U and T. We rewrite these equa-
tions in Stroh form as U’ =ir"2N; U — N, T (see (4.11)) and find

ir 2A11,  —AAp 0 | 0o 0 O
lem AAY, —AD, 0,, , szAm 0 —1 0 |. (420)
0 0 —AL, 0 0 -1

Next, evaluate t, = R”e; + Je, + Se; — p*i, and t; =L e, + ST e, + Me; — p*is:

()1 = ADy (Up B+ ULC) + 1~ Aya) {(Uph — Up) B — UcCY, 4.21)
(t3)1 = Aly, (UsC — ULB) + r~ Aoy {(Upr — Up)C + Uc BY, (4.22)
()2 = AnnU,Y + r‘l(Aé’m +A2233)UPY — 7' Aps3UpAY
+1(A” Apss) (U B L ulC) —py (4.23)
r 2222 2233 B 809 C 89 5 .
1 1 , aC B
(t3)r = _;A2323UC)\Y + ;(Azm + AlLs) (UB 20 Uc £>, (4.24)
1 1 le IB
(t); = —;A§332UCAY + ;(AM + AZs,) <UB FYhe Ucﬁ), (4.25)
(t3)3 = A1122U;3Y + r_l(Agzzz + A2233)UPY — r_l.AgzzzUB)\Y
1, B e
— - - Ug— +Uc— | — PY. 4.26
r(A2222 A2233)< Ly +Uc 89) P (4.26)

These formulas will be used in Sect. 4.3.
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4.3 The Equation of Motion

The equation of motion is (3.14), which we write as

., , ,0%u
E(r t) +z=pr PR 4.27)
where z = (z1, 72, z3)7 is defined by
" (2 (tr5in0) + - t, + sin0 Ko + H (4.28)
Z27=———\| — sin — sSin . .
sing \ 30 ap > 2l

We start by evaluating the components of z before returning to (4.27) in Sect. 4.3.4.
4.3.1 The Radial Component

For the radial component of (4.28), z;, substitution of (4.21) and (4.22) gives

r

d . 9 /
sind {ﬁ[(b)' sinf] + @“3)1’ == A rUp + Aot (Uph = Up) }Y

after using (4.14). To this, we add (see (4.28))
r(Kt, + [sin6]"'Ht;) | = —r(t) — r(t3)s
=—{2A1122r U}, + (A3, + An233) QUp — Ugh) }Y + 2rPY,
using (3.15) and (4.14). Hence
21 =2r(P— AnnUp)Y — (245, + 2An33 — Ay A%)UpY
—AAY rURY + (./45222 + Aoz + Azlzl)UB)»Y- (4.29)

4.3.2 The Polar Component

For the 6-component of z, z,, we require

9 ]
r{%[(t2)2 sin@] + ﬁ(t3)2}
0. 9B aC
= (AL, — A2233)@ {SIHG<UB£ + Uc¥>}
Qo .
+ {AIIZZVUI/: + (-Agzzz + A2233)UP - .A2233U3)\ — FP}@(Y s1n6)

aY 9 /. aC 9B
— Az Uch— + (.A2323 + A§332) (UB — —Uc )

Y ap\ " a0 90
={A122rUp + (AL, + A2az3)Up — AnpssUph — rPY(Y cos6 + ABsin6)
Apsp3UcA*C sinf + (ADy) — Anss)U. O (sina?2) 4 s
- sin - — [ sinf—
2323V C 2222 2233 B Y 96 96 3¢
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0 aC 0’B
P — Uc{ —(sino— ) —
+ (.A2222 .A2233) C{ PY: (sm EY: ) Y 8¢ }

where we have used the relation (3.37) and

a Y
—(Y'sinf) = ABsinf + Y cos#, — =ACsinb.
a0 d¢

Eliminating the ¢-derivatives using (4.14), we obtain

9 dB 92C dB

— | sind— | + =—AYcosO + (1 — AZ)B sinf — cos —, (4.30)
a6 06 06 d¢ a6

a (. aC 9’B . aC

— | sinf— | — =Csinf — cosf —. (4.31)
a6 06 06 0¢ 06

Hence
r d ad
— | (t in6 —(t
sin@{ag [(t)2sin6] + 3¢( 3)2}

=—rP(Y cotd +1B) + {AunrUp + (ADy + Ans)Up — Afy,Ush}Y cotd
+ {An22rUp + (AL, + Az )Up — AnassUph JAB
+ («45222 - A2233)(1 - )‘2) UsB + (Agzzz — Az — A2323)‘2)UCC

— (ADy — Anz) (U 9B U2 Y cots
2222 2233 389 C89 .

To this, we add (see (4.28))

r(Kt, + [sin6]7"'Htz), = r(ty); — r(t3); cotd
= AP r(UpB + ULC) + Asini {(Uph — Up) B — UcC}
— {An2r U} + (A%, 4+ Asz)Up — A%y, Ugh}Y cotf

0B aC
+ (Agﬂz o A2233) (UBE +Uc £> cotf + rPY coth

and obtain

22 ={A12rUp + (ADy, + Anz)Up — Ans3Uph}AB
+ (ADy, — Anns) (1 = A)Up B — rPAB + (ADyy, — Aoz — Asnsd®)UcC
+ Al (U B+ ULC) + Asion | (Uph — Ug) B — UcC)
= —r(P — AunUp)AB + (Al + Az + Aza)UpiB
AL Uy + (AL, — Az — Asiay — ALy ?)Us | B
A+ { AL P UL+ (Alyy — Angy — Aapay — Aspsd?) Uc ) C. (4.32)
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4.3.3 The Azimuthal Component

For the ¢-component of z, z3, we want

r{ ) sing] + %“’*)”’

a . aC oB el .
= (Aozs + Abs3,) 5 {sm@ (UB@ —Uc £> } - A§332UCA@(Y sin®)
’ 4 p Y
+ {AnrUp + (AD, + Axss)Up — A5y, U 7%

a

_ (-’45222 —A2233)£<UB£ 4 ch) —_ps

a (. oC 9°B .
= (ADp — .A2233)UB{— <s1n6£> ~ 3690 ’ —rPACsiné

» 3 (. 0B 92C ) -
—(A2222—A2233)Uc Py Sln@@ + 2099 — A533,UcA(ABsinf + Y cos6)

—+ {Auzer;p + (A§222 —+ .A2233)UP — -AgzzzUB)\}}\C sin6.
Hence, using (4.30) and (4.31),

r

0 . 0
Sind { 28 [(t2)3sin6] + @(%)3}

= Ay33Uc LY cot — rPAC + {.Anzer;D + (Agzzz + .A2233)Up })»C
+ (A5, — Azzzs — A§222)\2)UBC — (A5, — Anzzs — «A2323)\2)UCB

aC 0B
- (Agzzz - A2233)<UB£ - Uc£>cot9.

To this, we add
r(Kty + [sin6] "Htz), = r(t3); + r(t3); cot 0
= Al r(UsC — UL B) + Ay {(Uph — Up)C + Uc B} — ApspaUc LY cotd

y aC 0B
+ (Afyp — Axs3) (UBE - Uc ¥> cotf

and obtain
23 ={An22rUp + (A, + A233) Up JAC + (A3,5y — A3z — A5y, A7) UpC
= rPAC — (AYyy, — Apazs — Ax33d?)Uc B + Ay r (U C — U B)
+ A1 {(Upr — Up)C + Uc B}
=—1(P = AnnaUp)AC + (Afy, + Az + Aziz )UpAC
+ { AV rUp + (ADyy, — Anazs — Asior — A5,,,0%) U | C
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- {AfzzH’U/c + (-/45222 — Az — Azio — A2323)»2)Uc}3. (4.33)
4.3.4 Synthesis
Inspection of (4.29), (4.32) and (4.33) shows that
z2=ZpP+ZzgB+Z:C, (4.34)
where

Zp=2r(P — AunUp) — (245, +2An33 — Ay A*)Up

— AAD U + (AN 4+ Az + A1) Us A,
Zg=—r(P — AnunUp)r + (A%, + Axss + Az ) Uph

+ Al rUp + (-’45222 — Az — Azl — Agzzz)‘z)UB’
Ze = ALy rUL + (ADy, — Avass — Ao — Azspsh®) Ue.

We eliminate (P — A, 12U}), rUy and rU(. in favour of U and T. Thus, combining (4.15)
and (4.19) gives

r(P—AnnUp) =—rTp + (2A122 — A}},,)QUp — Ugh). (4.35)

Also (4.17) gives Ajp1orUp = rTg + AL, (U — UpA) and (4.18) gives ApporUf = rTe +
A?,,, Uc. Substitution then gives

oy (B0 i vz 0
7 — Alzzl 4 1 0JU=|wv v O |U+iN'T, (4.36)
1212 0 0 1 0 0

where Z = (Zp, Zg, Z¢)T, N, is defined by (4.20),

v =4A7, — 8A112 + 2A0,, + 24033 — Arpi A7,
v2 = A4 A1 = 2A7) ) — Agy, — Axss — Aaia),
v3 = Aozz — Ay + Asin1 + (Afm —2A1n+ A§222)A2,

vy = A3z — Aé’m + Az + Apspzh.
Substituting (4.5), (4.8) and (4.34) in (4.27), we obtain
(rZT)/ =—7— prio*U.

Comparison with (4.11), (r*T)" = r=2N3U +iNyT, then gives Ny = —N7 and

1 VT 0 (.Ap )2 }\2 —A 0 1 00
SNs=[|wm v O0|-"B=—|-2 1 0|-prfw®[0 1 0]. (437
r 0 0 Acz \ o o 1 00 1

We note that N3 is symmetric, N3 = N2
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4.4 Decoupling

The Stroh formulation gives a 6 x 6 system of coupled first-order ordinary differential equa-
tions (ODEs) for (U, T) (4.9), which we write as

d/ U\ i/(N N, U
E(iﬂT)‘ﬁ(M —N{)(ir2T>' (4-38)

Once solved, the incremental pressure p* = PY is given by (4.19).

As might be expected from the symmetry of the problem (and from the analysis in [15])
the system (4.38) can be decoupled into a 2 x 2 system for (U¢, T¢) and a 4 x 4 system for
(Up,Ug, Tp, Tg). No generality is lost by making this decoupling.

To obtain the simpler system, suppose that U = (0,0, Uc)”. Then the first piece of the
Stroh system (4.11), U = ir=2N,U — N, T, reduces to

Alzlz(O, 0, Ué) = r_lAlllzzl 0,0,Uc¢) + (0, Tp, T),

which gives Ty = 0 and (4.18). Using Tz = 0, the second piece of (4.11), (r*T) =
r2N;3U +iN,T, becomes

((I’ZTP)/, 0, (rzTc)/) = (0, 0, M33Uc)
+ ("/Alzlz)(zAlzlzTP, —AA TP, _-A11)221TC)7 (4.39)

where 33 = vy — (Al,))?/ A1212 — prie’. The second component of (4.39) gives Tp =0
so that the first component of (4.39) is satisfied. The remaining component yields a second-
order ODE for U (r) after T is eliminated using (4.18). The ODE does not simplify further,
in general, because it contains Az12(r) and A7), = Ai221(r) + pip(r). From (4.19), we
obtain P = 0; it is not surprising that p* = PY = 0 because the incompressibility condition
(4.15) is satisfied identically.

For the 4 x 4 system, suppose that U= (Up, Ug, 0)T. The third component of the Stroh
system (which is equivalent to (4.18)) then gives T¢ = 0 and the sixth component is seen to
be satisfied. This leaves a 4 x 4 system

d/ U0\ i(N N, U
dr <ir2T> N <N3 —NT ) (ir2T> (440
where U= (Up, Uy)T, T = (Tp, T,
S ir 2A1212 _)‘-AIZIZ) 3 1 <0 0 )
N = . Ny=— , (4.41)
' A (A'AIL)ZZI — Al 2T A \0 -1
[ AT (A2 (A2 = , o1 0
r_ZNS_(Vz U3)_ A \ =41 o 1) 4

The formula for P, (4.19), is unchanged.

The system (4.40) is similar to one obtained by Ciarletta (see Sect. 1.3 in the Supple-
mentary Material for [1]) for a simpler (static) problem, one in which A;jx; = ukl.szkS j1 (no
sum over i, (4 is a constant); see just below [1, Eq. (3)]. See also [17, Eq. (26)], where a
residually-stressed solid sphere is studied.
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5 Alternative Approaches

Recall the basic incremental equations, (3.1)—(3.3),

3%u

divE:p?, Y=Y+ punl —p'l, divu=0, (5.1

where ¥, = Ayl and I' = grad u. If we eliminate ¥ between the first two of (5.1), we can
use [16, p. 50] div(pnpI") = (grad pp)I' + pip div I'. However, incompressibility implies
that div I' = 0. (This is easily seen by reverting to Cartesian components.) Consequently,
grad py,, appears in the equation of motion but not py, itself:

2

0“u
ar2’

divY =divX, + FTgradphp —gradp*=p (5.2)
Eliminating the pp, terms has been a common feature in previous analyses. Our analysis
began with the equation of motion in the form (3.14). If we had started with (5.2), we would
have found the following equivalent form,

1o 1 3 3
: (rt)) + {_(tg sinf) + —t4 + sind Kt; +Ht§‘}
e

rsinf | 00 ¢
p'e ap*/or 32u
+ | pTe | — r=1op* /36 =P (5.3)
p’e; (rsin@)~'ap* /0 ¢ !

where p = (3pny/0r, r~'0pny /06, (rsin®)~'dpy,/0¢)". When pp, is spherically sym-
metric, p’e,, = Php(r)Vim, m=1,2,3.

We have developed a Stroh-type formulation starting from (5.3). However, we do not give
details here because it seems to be inferior to (4.38). One reason concerns the application of
boundary conditions on spherical surfaces. Then we usually want t, not t{'. Of course, t; and
t{ are related by the first line of (3.28), but this leads to another difficulty: how to calculate
p*? A related question is: how is incompressibility to be enforced (and not just used)? With
(4.38), incompressibility is enforced explicitly by the first equation of the 6 x 6 system. The
system itself does not involve p*, which is computed by a separate formula (4.19).

Most previous analyses have derived coupled second-order partial differential equations
(PDEs) for the components of u prior to the introduction of spherical harmonics. Inevitably,
these PDEs are complicated, and comparisons are not straightforward; one reason is that
multiples of the incompressibility equation (3.12) can be added. Nevertheless, we have made
comparisons; see the Online Resource (Supplementary Material) for details.

The most general formulation is that given by Haughton and Chen [10]. For the ra-
dial equation, we find complete agreement with [10, Eq. (3.9)]. For the polar equation,
we agree with [10, Eq. (3.10)] apart from one discrepancy: in their coefficient multiply-
ing wy = dus/0¢ replace (Bss + Byz3z) by (B + Bass). For the azimuthal equation,
we agree with [10, Eq. (3.11)] apart from one discrepancy: in their coefficient multiplying
Up = 3141/3¢ replace B2 by Biy.

Several publications are concerned with axisymmetric solutions, implying that there is
no dependence on the azimuthal angle ¢ and u; = 0. In this case, a single PDE for u; can
be derived; we find agreement with [11, Eq. (92)], [16, Eq. (6.3.173)] and [2, Eq. (64)].
Another PDE relates u; and u,; we find complete agreement with [11, Eq. (93)] and [16,
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Eq. (6.3.174)]. We also see that there is a typographical error in the second line of [2,
Eq. (65)]: replace dAg221/dr by dAg212/dr. For another discussion, see [5, §15.6].

It seems worthwhile to make these comparisons because the equations themselves are so
complicated, especially when compared to the elegantly compact Stroh formalism.

6 Prospects

We have said little so far about the original problem, scattering of sound by an inflated
spherical balloon. The Stroh formalism for the solid must be combined with the acoustic
fields inside and outside the balloon; these scalar fields are represented in a standard way
using separated solutions of the governing Helmholtz equation [ 14, §4.6]. The fields are then
connected using transmission conditions across the spherical interfaces at r =a and r = b.
All this remains to be done.
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