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The governing equations for small-amplitude acoustic disturbances are derived by combining an admissi-
ble background flow or medium, balance laws, an equation of state and perturbation theory. This standard
approach is used here when the background medium can vary in both space and time, thus defining a
dynamic material. When the background velocity is zero, the background density cannot vary with time,
assuming that the usual balance laws (such as conservation of mass) are obeyed. When mass conserva-

tion is discarded, perhaps replaced by a growth model, a time-dependent background density is permit-
ted, leading to new equations governing acoustic disturbances in certain dynamic materials.
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1. Introduction

A classical interpretation of the title of this paper is suggested
by the title of a book: Sound transmission through a fluctuating
ocean [1]. For such a problem, we would select an admissible am-
bient flow that is non-uniform in both space and time, and then
we would consider a small-amplitude acoustic perturbation. This
perturbation is governed by equations obtained from the usual bal-
ance laws (such as conservation of mass) and an equation of state.

However, the term ‘dynamic material’ has acquired a slightly
different interpretation. In his recent book, Lurie defines dynamic
materials ‘as formations assembled from ordinary materials dis-
tributed in space and time. When such formation is allotted with a
microstructure, it becomes a dynamic (spatio-temporal) composite’
[2, p. 2]; his book describes many applications. For the beginnings
of a general continuum theory of dynamic materials, see [3].

Yet another kind of dynamic material occurs in biology: living
materials can grow, leading to continuum theories in which such
growth is taken into account [4]. One feature of these theories is
that mass conservation is no longer required.

We are interested in the equations governing small-amplitude
acoustic disturbances in dynamic materials, materials in which the
background medium can vary in both space and time. We assume
that the background medium is an inviscid compressible fluid. In
the first three sections, we recall standard theory for background
media that do not vary with time; familiar equations, such as the
wave equation and Bergmann's equation, are derived.

One observation from these derivations is pertinent: if the back-
ground medium is not moving, then the background density pq
cannot vary with time. In order to overcome this restriction, we
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abandon conservation of mass. This leads to our study of dynamic
materials in Section 5. We start with a simple growth model, as is
used in some theories of biological growth. The result is a modified
form of Bergmann’s equation for the excess pressure p. More gen-
eral growth models (with pg varying proportional to exp {n(r, t)}
with some chosen function 7 of position r and time t) are shown
to lead to a very complicated equation for p. Although alternative
growth models could be considered, we have not pursued this op-
tion. Instead, we considered a simpler approach, discarding growth
models entirely, motivated by the thought: can we merely specify
po(r, t), while retaining the other standard balance laws? It turns
out that we cannot, at least if we want an isothermal model with
a standard equation of state.

We conclude that acoustics and dynamic materials is a subject
with great potential. Technological advances are likely to lead to
dynamic materials for which well-founded acoustic models will be
required. Further work is needed.

2. Governing equations: compressible inviscid fluid

As we are interested in acoustics, we start by recalling the ex-
act governing equations for the motion of a compressible inviscid
fluid [5, Section 3.6], [6, Section I], [7, Section 2.1.1]. Conservation
of mass gives the continuity equation,

D pex
Dt

where pex is the mass density, vex is the fluid velocity and t is
time. (The subscript ‘ex’ denotes ‘exact’.) The material derivative is
defined by

Df _of
Dt ~ ot

+ Pex iV Ve = 0, (1)

+ Vex - grad f.
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In the absence of body forces, conservation of linear momentum
gives

Dv
Pex D:x + grad pex = 0, (2)

where pex is the pressure. For isentropic flows [5, p. 156],
[8, Eq. (1-4.3)], the entropy per unit mass, Eex, satisfies

DEex
Dt

There is also an equation of state which we take in the form
[8, Sections 1-4]

=0. (3)

Pex = Pex (Pex. Eex). (4)
Differentiating, we obtain
grad pex = 2 grad pex + hex grad Eex (5)
and

D D DE .

Dox 2 200 o S5 = — pexl div v, (6)
using Eqs. (1) and (3), where

ad d
ex(pex Eex) = Pex and  hex(pex, Eex) = pex_ (7)
dE
0 Pex ex

Finally, the temperature Tex satisfies [5, Eq. (3.6.6)]

1 DTex % Dpex 2

T Dt = % D = — 3 Cay diV Vey, (8)
using Eq. (6), where % is the ratio of the coefficient of thermal

expansion to the specific heat at constant pressure (»x = f/cp in
Batchelor’s notation [5]).

3. Linearisation
3.1. Ambient flows

Consider an ambient flow in which vex =U, a constant velocity.
(The case U =0 will be of most interest to us) For such a flow,
let pex = 0p, Pex = Po. Eex =Ep, Tex =Tp, ex = Cg and hex = hg. We
have pg = pex(po. Eo). ¢§ = c& (0. Eo) and ho = hex(po, Eg). Then
Egs. (1)-(6) and (8) give the following constraints on the ambient
flow,

DIOO _ _ DEO _

> =0 grad pg = 0, 2 =0 9
Dpo DTO

—=2 -0 and — =0, (10)
Dt

where Df/Dt = df/dt + U - grad f. Combining Egs. (9),, and (10),
shows that pg is a constant, whereas Eq. (5) gives
grad py = c3 grad py + hp grad g = 0. (11)

The easiest way to satisfy Eqs. (9)3 and (10), is to suppose that Eg
and Ty are constants. Then Eqs. (9); and (11) imply that pg is con-
stant. In this situation, we say the fluid is homogeneous: its prop-
erties do not vary with position (or time). However, we are inter-
ested in more general situations.

3.2. Acoustics

For linear acoustics, we consider small perturbations about the
ambient state, and write
Dex =Ppo+€p1+---,
Vex=U+ev1+---,
Cex =Co+&CL+---,

Pex =pPo+EP1+ -+,
Eex=E0+SE]+---,
hex =ho +&hy +---

where ¢ is a small parameter. Substitution in the equation of state,
Eq. (4), gives

Pex (Pex. Eex) = pex(po+€p1+ -+, Eg+€E1 + )
0 Pe
= Pex (00, Eo) + €01 30 . Eo)
ex
+6‘E18Eex .E0)+-",

giving po = pex(00. Eg) and py = c§ p1 + hoEy with
g = c&(po.Eo) and hg = hex(po. Eo).
Substitution in Eqs. (1)-(3) and (8) gives, at first order in &,

Dy
PPL 4 div (o) =0, po 3L+ grad py = (12)
DE
Ditl +vq-gradEg = (13)
%7;1 +v;-gradTy = —x ATp divy;. (14)

We are mainly interested in perturbations from the ambient
state. Therefore we define the excess pressure p by pex = pg + D,
and we accept the linear approximation, giving p = £p;. We make
similar definitions for other relevant quantities. Thus

P =Dex— Do =ED1, V=Vex—U=e1,
P =Pex— Po=¢Ep1, E=Eex—Eg= ¢k,
and T = Tex — Ty = €Ty. The equations relating these quantities are
readily found, making use of Eqs. (9) and (10). They are
D .
p=cip + hoE, D—f + div (pov) = 0, (15)
Dv DE
poﬁ +gradp=0, E+v gradEy = (16)
DT .
o +v-gradTy = —x 2T divw. (17)

These are the basic equations for acoustic small-amplitude pertur-
bations. We proceed to examine several special cases.

4. Some familiar special cases
4.1. Zero ambient velocity: Bergmann'’s equation

When U =0, Eqs. (9) and (10) imply that pg, Eg and Ty do not
depend on t, whereas pg is a constant. The constraint Eq. (11) per-
mits us to have spatial variations in cg and pg within a stationary
fluid (but not if Eq is constant).

For the acoustic perturbation, Eqs. (15) and (16) give

ap 8
o +div (pov) = 0 57 +gradp =0, (18)
8—}:"Jrv-gradEo =0. (19)

ot

As p=c3p + hoE in which ¢ and hy do not depend on t, we can
combme Egs. (18); and (19) to give

ap
at

Eliminating hg grad Eg using Eq. (11), we obtain

+ 2 div (pov) + hov - gradEg = (20)

ap
3 +p0cod1vv_0 (21)
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Finally, eliminating v, using Eq. (18),, gives

. 1 92
podiv (py ' grad p) = %87123 (22)

in which pg(r) and c% (r) can be functions of position r = (x,y, z)
(but not of t). This is Bergmann’s equation for the (excess) pressure
[9, Eq. (14)], [10, Eq. (5.15)].

Suppose that the motion is known to be irrotational, meaning
that the vorticity @ = curlv = 0. Then we can write v = grad ®,

where & is a velocity potential. It follows from Eq. (18), that
p=—po(r)dd/0dt and then Eq. (21) yields
1 03%®
2 = - 23
c3(r) o2 (23)

4.2. Zero ambient velocity, constant ambient density

When U=0 and pg is a constant, Bergmann's equation,
Eq. (22), reduces to

1 9%p
V2p = —.
b c3(r) ot?

As pg is constant, taking the curl of Eq. (18), shows that the
vorticity @ = curlv does not depend on t. Therefore if the motion
starts from a state in which v is constant, then @ = 0: the motion
is irrotational, and we can write v = grad ®. Then, as in Section 4.1,
we have p = —pgd®/dt, whereas Eq. (24) shows that @ satisfies
the wave equation, Eq. (23).

Note that irrotationality was assumed in Section 4.1 in order to
obtain Eq. (23), whereas it can be proved when pq is constant.

Eq. (23) often appears in the context of seismic inversion; see,
for example, [10, Eq. (5.9)] and [11]. It also appears in other imag-
ing contexts [12, Eq. (2.1)]. Stochastic versions of Eq. (24), in which
c(z) (r) is a random function of position, have also been studied and
used; see, for example, [12, Eq. (12.1)], [13,14] and [15, Eq. (3.17)].

(24)

4.3. Zero ambient velocity and homogeneous fluid

This is the textbook case, in which pq and cy are constants and
U = 0. The governing equations are the wave equation,
1 0’®
N cg at2’
with v = grad ® and p = —pg dP/0t. Evidently, p and any Cartesian
component of v also solve (25).

Vip (25)

4.4. Non-zero ambient velocity and homogeneous fluid

In this case, the governing equations are Eqs. (15) and (16), in
which py, g, hg and Eg are constants:

D .
p=cip + hoE, D—'(t)+p0d1vv=0, (26)
DE Dv
ﬁ=0, poﬁ-i-gradpzo. (27)
The first three of these give
Dp .
o= —poC3 divy
from which we can eliminate v using Eq. (27), to obtain
2
1D2p 1[0

Vip—_—— LY _ (= 4+U-grad| p. 28

P=a e cg(at+ gra)" (28)

This is the convected wave equation |6, Eq. (6)]. If the flow is irrota-
tional, with v = grad ®, we find that & also satisfies Eq. (28) with
p=—po (00/0t +U - grad ®).

Eq. (28) was used by Tatarski [16, Eq. (5.1)] with U replaced by
U(r), the local ambient velocity at position r; see also [6, Eq. (4)].
There are other versions of the convected wave equation that are
intended for inhomogeneous fluids with a non-uniform ambient
flow; see [6,7,17] and Section 5.

5. Non-uniform ambient flows, dynamic materials

Perhaps the simplest model of dynamic materials is obtained by
considering the wave equation, Eq. (25), in which ¢ is a function
of time, giving [18]

21 %w
IO KEE

(29)

More generally, models of the form div{a(r,t)gradw} = 3%w/dt?
have been used [19]. In such models, including Eq. (29), no phys-
ical meaning is attributed to w. For some related one-dimensional
studies, see [20-24].

5.1. Pierce’s equation

For acoustic problems, Pierce [6] has derived a Bergmann-
like wave equation, under certain assumptions about the dynamic
medium: he assumes that it is ‘slowly varying with position over
distances comparable to a representative acoustic wavelength and
that it is slowly varying with time over times comparable to a
representative acoustic period’ [6, p. 2293]. A stochastic version of
Pierce’s equation has been used recently [25].

For zero ambient velocity (U =0), Pierce’s equation
[6, Eq. (23)] reduces to

1 . d 1 ad
G div{po(r) grad ®} = 3f(cﬁ(r,t) 8t> (30)

where @(r, t) is a velocity potential, with v=grad® and p=
—po d®/0dt. Eq. (30) is W3 in the collection compiled by Cam-
pos [17]. Flatté [1, Eq. (5.1.11) with Eq. (6.1.1)] uses another equa-
tion for @,

2
g 1 0%

_ 1
co(r.t)y a2’ (31

which reduces to Bergmann'’s equation, Eq. (23), when cg does not
depend on t.

Note that we have written pg(r) in Eq. (30), not po(r, t). This is
because we showed in Section 4.1 that conservation of mass com-
bined with U = 0 implies that po cannot depend on t. In other
words, if we want to have py(r, t), then we must have a moving
ambient flow or we must abandon conservation of mass.

Note also that if c% does not depend on t, then Eq. (30) does
not reduce to Bergmann's equation, Eq. (23). Pierce [6, Eq. (30)]
attributes the discrepancy to a second order effect that may be dis-
carded.

In [26], the authors model a dynamic material by modifying
Bergmann's equation, which we write as

2
div (ﬁ grad p) — ko(r) %. (32)
in which «q = (poc2)~! is the (adiabatic) compressibility [8, p. 30].
In [26, Eq. (4)], Eq. (32) is used but with pg(r, t) in place of po(r),

. 1 9%p
div (m grad p) = Ko(r) FTeR (33)

We have already seen that such an equation is inconsistent with
conservation of mass. This provides one motivation for relaxing the
constraint of mass conservation. Another comes from continuum
models of growing materials [4].
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5.2. Exponential growth

Let us replace conservation of mass, Eq. (1), by

D pex
Dt

where y(r) is a given function of position, the growth rate function;
see |4, Eq. (13.5)]. We retain the other governing equations, namely
Egs. (2), (3) and (4).

Linearising about an ambient state in which U = 0 (and ignor-
ing any temperature dependence), we find that py is constant, Eg
does not depend on t and
3,00 _ _ ty(r)
¢ = Poy whence po(r.t) = poo(r)e” ™, (35)
where pgo(r) = po(r,0). As Eq. (11) also holds, we substitute pg
and obtain

+ Pex diVVex = pexV . (34)

mert(grad pog + tpgo grad y) + gradEg = 0

where pu(r,t) = cg/ho. To eliminate the term containing tpgg, we
are forced to take grad y (r) = 0: y is a constant, yg, say, giving

po(r.t) = poo(r)er’. (36)
Then, we infer that e cannot depend on t, whence
p(r.t) = po(rye "t (37)

and Ky = pojeho = poo (1) o (Mhex (o (1, t), Eg(r)), which de-
pends on t, in general.

For the acoustic perturbation, we obtain a slightly modified
form of Eqs. (18) and (19):

a . av
P +div(pov) = pyo. po e +gradp=0, (38)
at ot
5 JE
p =c§p + hoE, m-i-v-gradEo:O. (39)
As Ey does not depend on ¢, differentiating Eq. (39), gives
0%E ov 1
- o -gradEp = % (grad p) - (grad Eo)

after use of Eq. (38),. Eliminating E using Eq. (39); and gradE,
using Eq. (11), we arrive at

ho 32 (p—c3p 1
%W fio = —% (grad p) - (grad py), (40)
which is an equation relating p and p.

For a second equation, start by integrating Eq. (38),. Let
g(r.t) = p, ! grad p. Assuming that v(r, 0) = 0,

v(r,t) = f/otg(r, 7)dr. (41)

We substitute this expression in Eq. (38);:

t
80 ow= div(m(n o [ g r)dr) _F(r.), (42)
0
say. Assuming that p(r,0) =0, we can solve for p:
t
o(r.t) = / e (r £y dr. (43)
0
Hence dp/dt =F + yop and 32p/dt2 = 9F /0t + yoF + yZp. Using
these relations, we substitute Eq. (43) in Eq. (40), recalling that
w(r.t) = c3/hg is given by Eq. (37):

19%(up) _ 9%
w02 T o2

20pdp  p i _OF
wm ot 9t ot2 ot

YoF. (44)

Next, let us evaluate F, defined by Eq.
Eq. (35)y,

(42). Making use of

t
F(r,t) = div/ e’ grad p(r, r) dt
0

t
= / en =D V2p(r, 7)dr.
0
Hence

dF t
3= VPt VO/D e V2pdr = V?p + yoF. (45)

Using Eqs. (44) and (45), Eq. (40) becomes

ho 3 (py _ 13*up) 1
%W(%)_f 5~ o (@radp) - (grad po)

m

Lo

Evidently, this is a generalisation of Bergmann’s equation, Eq. (22).

Recall that hg = hex(pg(r,t), Eg(r)), so that, in general, hy de-
pends on t. Exceptionally, when 5 = 0, po no longer depends on t
(see Eq. (36)), and then Eq. (46) reduces to Bergmann'’s equation,
Eq. (22).

5.3. A more general growth model

We have seen that if we start from Eq. (34) with growth rate
function y(r), then we are forced to take y = yy, a constant, so
that spatial variation of y is lost.

For a more general model, let us replace Eq. (34) by

D pex an
Dt at’
where 7(r, t) is specified. Proceeding as in Section 5.2, we find that

+ Pex divVex = Pex (47)

po(r.t) = poo(r) €0 (48)
The acoustic perturbation is governed by Eqs. (38),, (39) and

ap . an

- =p 5. 4
ST div (pov) = p ot (49)

As before, we obtain Eq. (40), an equation relating p and p. Then,
eliminating v from Eq. (49) using Eq. (41), we find

ap on

a3 " Par =F(r1),

where F is defined by Eq. (42). Integrating,
t

o(r.t) = f e?CT I E(r ¢y dr, (50)
0

where ¢(t, 7;1) = n(r,t) — n(r, ). Hence

d9%p OF on 3%n an ?

W_§+Fﬁ+plw+ W } (51)

For F itself, using Eqs. (42) and (48),

t
F(r,t) = div/ e?CTn g(r, 1) dT
0

t
= / e?TIV2p + q . grad ¢ }dr
0

where q = grad p. Hence

) - on on t "
W_V p-l—Fm-i—(gradat -foeth (52)
and

t T’
p(r,t) :/ e‘“”':”/ e T {V2p + q-grad p}dr dr’
0 0
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t t
:f e‘f’(“;’)/ {V?p+4q-grad¢(z/ ;1) }de’ dt
0 T

t
=/ Tt~ T)V2p+q-grad W(t, i) }dr  (53)
0
where

t
‘I’(t,f:r)=f ¢t/ t;r)dr’

t
— [ n@ehdr - @ - o). (54)
T
We substitute for p from Eq. (53) in Eq. (40); we have

13*(up) _0°p  23udp  pd*u

w9tz 92 T ot 9t | p 9t

_ OF an 2 0u
_8t+F(3t+u3t)

10%u 20pdn  9%n on 2
+p[*7+ﬁﬁﬁ+87+ a) |

=V2p+1L, (55)
say, where we have used Eqs. (51) and (52), and

t
L(r,t) = (grad E;’Z) / eqdt
0
t
+ (287’ + 2 8“)/ e!{V2p+q-gradp}dr
at 0

w ot
10%u 20udn 0%n an 2
[EWWWW+W+ at }
t
x/ e?{(t — T)V?p+q-grad W} dr. (56)
0

In this formula, ¢ = n(r,t) —n(r,t), q=grad p(r,t) and V(¢ t;
r) is defined by Eq. (54). Hence Eq. (40) becomes

hg 9%/ p\ _ . (gradp

This is a complicated integrodifferential equation for p(r, t).

As a simple check, suppose that 1 = 0: the material is static.
Then both pg and Ey do not depend on ¢, so that ¢y and hy also
do not depend on t; here, we have used cg = cZ.(po, Eo) and hg =
hex(pg, Eg). Hence, as u = cﬁ/ho does not depend on t, L =0 and
so Eq. (57) reduces to Bergmann'’s equation, Eq. (22).

We have developed further examples (such as separable 1, with
n(r,t) =y (r)T(t)), but we have not found any that lead to sub-
stantial simplifications of L, or to the model used in [26]. Of course,
our growth model, Eq. (47), is simple (and linear in pex), so there
is plenty of scope for alternative models.

5.4. No growth model at all: specify pq(r, t)

Instead of replacing conservation of mass by a growth model,
such as Eq. (34) or Eq. (47), let us simply specify pg(r, t), as-
suming that this specification is contrived by some external means.
This is a plausible approach if we wish to create dynamic materi-
als. As before, we take U = 0, and we find that p, is constant and
0Eg/dt = 0. Then, from Eq. (6), we obtain

o_ 2P0 _adm  0F,

ot — % ot ot
which reduces to 009/0t =0. In other words, if we want
dpo/dt+#0, then we must modify Eq. (3), DEex/Dt = 0. This could
be done, perhaps by retaining temperature effects [5, Egs. (3.6.3)],
[8, Egs. (1-4.6)]. However, as far as we know, this option has not
been contemplated.

+ hg

6. Discussion

In this paper, we have investigated the possibility of building
a linear theory of acoustics when the ambient flow varies in space
and time, using the standard balance laws. We gave most attention
to the special case in which the ambient velocity is zero (U = 0);
then, with a fairly general equation of state, we found that the am-
bient density py cannot vary with time.

Motivated by this result, and by continuum theories of bi-
ological growth, we relaxed the requirement of mass conserva-
tion, starting with a simple model permitting exponential growth,
Eq. (34). The result is an equation for the excess pressure,
Eq. (46); this equation is similar to Bergmann’s equation for in-
homogeneous but static ambient conditions, Eq. (22). The new
equation implies that pg(r,t) = pgo(r) e¥o!, which is very spe-
cial (and probably unrealistic). For a more general growth model,
with ygot replaced by a function n(r, t), we obtained a very
complicated equation for the excess pressure, Eq. (57). We also
considered discarding growth models entirely, opting instead for
specification of pg(r, t). However, this was shown to be in-
compatible with standard equations of state under isothermal
conditions.

The discussion above is essentially exact, within the limits
of perturbation theory. We have not introduced additional ap-
proximations, such as those arising from relevant time scales.
For example, time scales associated with acoustic disturbances
are much shorter than those associated with biological growth
[4, Section 13.1]. However, we should keep in mind that tech-
nological progress may lead to dynamic materials that can
change rapidly, thereby making material and acoustic time scales
comparable.
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