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1 | INTRODUCTION

Motions of a rarefied gas may be characterised using the Knudsen number K, defined as the ratio of the mean free path
in the gas to a typical macroscopic length scale L. Classical continuum models are associated with the limit K — 0. More
elaborate continuum models have been developed for small values of K, starting with a famous paper by Grad!; see also
Grad.> 328 A regularised form of Grad's 13 moment equations was derived by Struchtrup and Torrilhon,? and it is the
linearised form of these equations (known as the R13 equations) that provides our starting point.

The linearised R13 equations are developed by Struchtrup and Torrilhon® $'F and in Struchtrup's book.* 94 For associ-
ated numerical methods, see Claydon et al.’> and Westerkamp and Torrilhon.® We are interested in semianalytical methods
where it is natural to introduce spherical polar coordinates. Indeed, some relatively simple problems involving spheres
have been studied; see previous studies’? and references therein.

The R13 equations relate 13 unknowns, including the five independent components of a symmetric trace-free stress
tensor ¢. Our first observation is that it is simpler to dispense with the equation governing o and to replace it with a new
equation for a force vector g = dive. The resulting 11 x 11 system can be solved by separation of variables using vector
spherical harmonics: if Y denotes a spherical harmonic, systems for each of the mode numbers n and m are obtained
with no coupling with other mode numbers.

Of course, this is only part of the story: we have to show that we can recover the stresses themselves, that they are
consistent with the solution for g and that the five equations governing the stress components are satisfied. We do all
this by introducing suitable representations for the stresses and then checking that all relevant equations are satisfied.
These representations do couple between mode numbers, even though the components of g do not. Exceptionally, this
coupling does not occur for pulsation problems (spherical symmetry, n = 0) as studied in Ben-Ami and Manela® or
for simple axisymmetric problems (steady flow past a rigid sphere, with n = 1 and m = 0) as studied in Torrilhon.”
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For scattering of a plane wave by a sphere, more general solutions are required; constructing these solutions is the main
purpose of this paper.

The governing linear equations are reviewed in Section 2, together with a reduced system involving the force vec-
tor g = dive. This system is solved in Section 3 using vector spherical harmonics. This approach has been used
in other (simpler) situations including anisotropic linear elastodynamics!® and small-on-large problems arising in
nonlinear elastodynamics.!!

The stresses are considered in Section 4. The calculations are fairly complicated; some details are relegated to
Appendices B and C. Nevertheless, we show that the five independent stress components can be represented using
five independent radial functions (see Equations 61, 65 and 67) and that these functions satisfy five equations (i.e.,
Equations 68-70, 81 and 88).

Special cases of our analysis are compared with Ben-Ami and Manela® and Torrilhon’ in Section 5; reassuringly, precise
agreement is found. Concluding remarks are in Section 6.

2 | THE GOVERNING LINEAR EQUATIONS

The basic R13 equations are given in Struchtrup’s book?; see also Torrilhon's review.!? We shall state linearised forms of
these equations in Section 2.1. Using hats to denote dimensional quantities, the basic variables are as follows: ﬁis the
mass density, D is the Ve1001ty and 9 is the temperature in energy units. The pressure p obeys the ideal gas law, p = p& We
also need the stress 6;;, the heat flux vector g and certain moments, A Rl ; and k. The stress is symmetric (6;; = 6;)
and trace-free (6; = 0), and so it is specified by five unknowns. Thus, when combined with the two scalars p and 9 and
the two vectors ¥ and ¢, we see that there are 13 unknowns, hence R13, with R indicating regularised.’

2.1 | Linearisation

In a linear approximation,* 4 we consider small perturbations about an equilibrium state in which 7 = o, 9 = 0, 9 = 9,

andp = po = ])‘030, where py and §0 are constants. Associated dimensionless quantities are defined by

5= +p), =901 +9), p=po(l+p), o=,

with p = p + J. Furthermore, write
~ A A2 N A s A A~ ~ D1/2 ~1/2
ij = DoGij> qi = po190/ qi» A =DpodoA, Rij = podoRij, Mijx = p0190/ Mije, X = Lxi, T = L8 /

where Tisa length scale and 7 is time. The viscosity of the gas also plays a role and leads to a dimensionless quantity,

~ D1/2
Hod,
K:

k)

Poi

the Knudsen number,* ¢4 %41 where i, is the dynamic viscosity coefficient in the equilibrium state.
In the absence of body forces, the governing (linear) equations are as follows. There are three conservation

equations® ¥4I
dp 9V,
) 1
ot 0xj ( )
0q; ov;
399 9% _ % 2
2 dt  0x; ax,

dv; Op 0oy .
4+ =+ 2=0,i=1,23. 3
Jat  ox;  0x; ®

LetV =div v = dv;/dx; and Q = div q = dq;/0x;. Asp = p+ 9, eliminate p from Equation (1) using Equation (2) giving
30p 3 09

0 d—— 0. 4
> 6[+Q+ V an at+Q+v @)
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For steady problems (d/0t = 0), Equations (3) and (4) reduceto Vp+ V-6 =0,V = 0and Q = 0.>¢42!
Equations (3) and (4) are combined with equations for heat flux and stress® $94-3
aq; 00i; OR;; i
ﬁ+éﬁ Y l_“+l%=_21,i:1,2,3, (5)
ot 20x; o0x; 2 0x; 6 0x 3 K
doj; 0q v omy; oij
g0 4 %6, Vi bk _ 20 i=1,2,3, (6)
ot 5 dxjy 0x;) 0Xy K
together with® ¢4 %49
0q; aq; 00ij
A=-12K U g, = Hg e, - ok DU 7
0X; 5 0xjy 0xy,)

The angular brackets in Equations (6) and (7) have the following meaning. First, round brackets indicate symmetric

part, so that® §4-21

1
Ay = = (Aiy +Aji) . Bojp = 5 (Bijk + Bixj + Bjix + Bjki + Buij + Byji) -

1
2
Angular brackets give trace-free versions of these symmetric tensors® $4-22

1 1
Sjy = Saj — gskkéij’ Tujky = Tajp) — 3 (T(i11)5jk + T jiydik + T(kzl>5ij) .

Some calculation gives
0qi d0q; 0q;
%6 _1 <ﬁ N &) Lo,

ox;y 2 \0x; 0x 3
a .
0.9 _1gs 109
ox; 0xj 2 6 0x;
and, using Equation (7),
1 9% + 1oa_ —QKqui - EK@
2 0x; 6 0x; 5 5 ox;
Substitution in Equation (5) then gives
3..0q; 15,08 3.,906;; 9, , 18,,0Q
i+ K— = ——K— - 2 K— + =K*V?q; + —K"—=.
G = a2 ook 50 TSN oy

This agrees with Struchtrup and Torrilhon' ¢4 2; for steady problems, it agrees with Claydon et al.> ¢4 22
Next, consider Equation (6) with Equation (7)3, which we write as

doi; v 0qq; doij
oy + K—2 = 2K—¢ — Al | yge 9 200
ot 0xjy 5 0xj 0Xyc OXy

This agrees with Struchtrup and Torrilhon.'* ¢ 3 Let us evaluate the last term. As o = o},

an) h 3

Jdo4j _ 1 (90 , 9%k 0ok
ax  ox;  ox; )’

whence, using ¢;; = 0,
doa _ 1 (dou , dou , dou\ _2 dou
0xp 3 o0x; o0x; ox; "3 ox;

and, using Equation (8),,

00 i; do;;  00; : ; 00
G =l _U+_jk+% _i @5jk+_ﬂ6ki+@5ij i
0Xy) 3\ oxk 0x; 0X; 15 \ ox; 0x; o0x;

®)

©)

(10)

11)

(12)

13)
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From Equation (7);, we verify that m;; = 0. Differentiating Equation (13),

00/ : 2 020._ 2
iﬂ - leO_l_j + 1 0 Oik jk . l 0 Okl ;. (14)
0Xyc 0Xy) 3 5\ 0x; 0x;  0x; Oxx 15 oxi ox;
Now, using Equation (8);, we have
0 9%k _1( dPon 0 1 dog
Ox; Oxp 2 \0x; 0Xx  0X; 0X 3 ox oxg
Comparison with Equation (14) then gives (see above!> ¢a 101)
00 j; 0o
i ij 1V2 2 0 Jj)k (15)

= — i = — ,
0Xy. 0Xy,) 3 %1 5 oxy Oxg

which is a simplification (because the left-hand side involves a rank 3 computation whereas the right-hand side involves
a rank 2 computation). When Equation (15) is substituted in Equation (12), we obtain

doi; ov; 0qi do;
P _ g2 ‘_lK i + %KZ Vo + ‘_‘KZ 9 %%pk

= — . (16)
ot oxjy 5 ox; 3 5 0x(i 0Xg

Oij +

The steady form of this equation agrees with Claydon et al.> ¢4 22¢
Inspection of Equations (3) and (11) suggests introducing a vector g with components
dojj
gi=—2, i=123.
ox j
This force vector satisfies an equation obtained by taking the divergence of the stress equation (16). Thus, making use of
Equation (10), we find that g satisfies

0gi 2 1., 0V 2 2 2,00 16,5 2 2.
i+ K = =K V% — 2K = - 2K V?q; - =K = + =K? V?%g, + =K
8t 85 ViT3 ox; 5 EET ox; T 8it 13

oG
— 17
s a7
with G = div g = dg;/0x;.

2.2 | Summary of governing equations

Let us collect the governing partial differential equations, writing them in vector-tensor notation. From Equations (3),
(4), (11) and (17), we have

p)
% a—€+divq+§divv=0, (18)
%3—'?+divq+divv=0, (19)
ov

E+gradp+g=0, (20)

3.,0q 15 3 9 9 18 ., .
2K = 22K grad 9 — 2K g+ 2K V2q + — K2 grad (d 21
g+ K= 7 K gra SK g+ 2 g+ K" gra (div g), (21)

P

g+ Ka—f = K Vv — %K grad (div v) — %K Vg - 12—5K grad (div q) + %Kz Vg + %Kz grad divg).  (22)

This system of equations comprises two scalar equations and three vector equations for two scalar unknowns (p and 9)
and three vector unknowns (v, q and g). Recall that g = div o where the stresses are given by Equation (16), which we
write as

o+ Kaa—‘t’ = 2K (V) — %K(Vq) + %Kz Vo + ‘—S‘Kz (Vg). (23)

Here, (Vq) denotes the symmetrised trace-free version of Vq; see Equation (9).
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In what follows, we assume that the Knudsen number K > 0. Indeed, the problem becomes very simple when K = 0.
In that case, Equations (21) and (22) give g = 0 and g = 0. Then, as divq = 0, Equations (18) and (20) reduce to

0
%O_It)+ dlvv—Oand—+gradp 0.

Eliminating v between these equations gives V2p = (3/5)d%p/dt?, the wave equation with dimensionless speed
/573481013
Plane-wave solutions of the governing equations can be constructed. Such solutions are investigated in Appendix A.
Both compressional waves and transverse waves are found. However, our main interest in this paper is in the construction
of solutions using spherical polar coordinates.

3 | USE OF SPHERICAL POLAR COORDINATES

We are interested in solving the equations of Section 2.2 using spherical polar coordinates, (r, 0, @), where 6 is the polar
angle and @ is the azimuthal angle. Let ¥, 0 and @ be the spherical polar unit vectors. We write v = v,¥ + v0§ + v(p(/ﬁ and
then put the components in a column vector v = (v, vy, Vp)T. We use similar notation for g and g.

We are going to use vector spherical harmonics, defined as in,* $3.17

PI(¥) =TY,'(¥) = 1Y (0. D), (24)
1(40 & 0
B'"®=- (02 Y0, ® 25
® /l( 60+s1n96¢> ©.2), (25)
o 16 0 ~o0
@) =-(—2 -2 )y, @ 26
n® A(sineacb ae) ©. ). (26)

where 4 = [n(n+ 1)]"/? and Y™ are spherical harmonics.!# Pefinition 32 Collecting the components of Equations (24)-(26)
into column vectors, we see the structure

= (Y):na 07 O)T7 Brnn = (07 B:[n'; C:'[n)Ta Cnm = (07 C;Lna _B:Ln)T

with
B = A7'9Y" /06 and CI" = (Asin0)~'oY" /0. (27)

We start by seeking separated time-harmonic solutions of Equations (18) and (19) in the form
v=Re Y {VEL0PI®) + Vi, (1) B + V2,00 CI@® | ™, p=Re Y, PROIYIE) e,
nm n,m

with similar expansions for q and 9. Exploiting the orthogonality properties of the vector spherical harmonics, we can
suppress all sums, subscripts and superscripts, and the harmonic time dependence, giving the structure

v = Vp(r) P(¥) + Vp(r) B(®) + Vc(r) C), p = P(NY(®), (28)

v, = VpY, vg = VgB+ VC, vgp = VgCC — VB. (29)

Then we shall see from Equation (20) that g has a similar structure, with
g = Gp(r) P(Y) + Gp(r) B(Y) + Gc(r) C(¥). (30)

Finally, the heat flux and force vector equations, Equations (21) and (22), will lead to an 11 X 11 system for 11 unknown
scalar functions of r.
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3.1 | The three conservation equations

For Equations (18) and (19), we require divv and div q. We have

1 av(p
— (Vgsinf) + —— — 31
rs1n6’c)9(‘9 ) rsin @ od (D

. 10
divv = = (rPv) +

VB VC

Y d oC d . 0B
=L 902y, 4 (-B 9+—>+ _ (—c 0——). 32
rz dr (V) rsin @ (Bsin ) 0D rsin @ 69( sin 6) 0D (32)
But, from Equation (27) and the partial differential equation satisfied by Y,!1-¢a 413
2
_ i( eﬂ) 1 oY _ ey (33)
né oo a0 Sil’l20 o0P?
we obtain
—(Csm 0)— % =0, %(Bsin 0)+ 3705 = —AY siné. (34)
Hence,
divv = (Vp - (/1/r)VB> Y, (35)
where we have introduced the shorthand notation
° 1d 2
f= _Zd_( )= f(n+ - f. (36)

If we expand q and 9 as Equation (28) with V4(r) replaced by Q,(r) and P(r) replaced by ©(r), Equations (18)
and (19) give

3iwP + 2Qp — 2(4/P)Qs + 5Vp — S(4/P)V5 = 0, (37)

3100 + 2Qp — 2(4/)Qs + 2V — 204/ PV = 0. (38)

Next, consider Equation (20). One ingredient is

a/\ a/\
Py 1, 1L g

BRAP =5, T390 OF Fsing o0 (39)
Using p = PY and Equation (27), we obtain
grad p = (P'Y, Pr'0Y /00, P(rsin6)~'a9Y/o®) = (P'Y, (4/r)PB, (4/r)PC) = P'P" + (A/r)PB’. (40)
Hence, Equations (20) and (28) show that g has the expansion (30) in which
Gp = iwVp — P', Gg = iwVy — (A/P)P, G¢ = iwVe. (41)

3.2 | The heat flux equation

For Equation (21), we need expressions for Vv and grad (divv). Combining Equations (35) and (40) gives
grad (divv) = d <Vp - iVB> PT + % <Vp - %VB> BT

= V2VP—3VP—i VB—§VB PT+i VP—iVB BT,
r2 r r r r
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where we have used Equation (36) and

2 _li Zd_f _on z ’
Vf(r)_err<r dr)—f(r)+rf- (42)

For V2v, we can use Dahlen and Tromp,'> ¢® 4143 but it is more convenient to use

VHf(NP®)} = (V2f)P +r*{2AB — (A* + 2)P} f,
VH{f(NB®)} = (V2 /)B+r Q24P — A*B)f, V2{f(NC®)} = (V*/)C — (A/r)*Cf;

see Norris and Shuvalov.1% ¢4 39 Hence,
V2 = {VVp = r (A + 2)Vp + 24r2V } PT + {V?V5 — (A/r)*Vp + 24r Ve BT + {V?Ve = (A/r)°Vc ) CT.

Using these results in Equation (21), we obtain

0p — %ia)KQp = —14—5K®’ - %K Gr+ %KZ {3V2Qp _ 22 + 6)Qp — 2(4/P) Qg + SM‘ZQB} , (43)
3. 15, A4 3 9., hd - 2 2
Qp — EleQB = _TK7® — EK Gp + EK {Z(A/V)Qp +2Ar=Qp+ V°Qp — 3(1/7‘) QB} s (44)
3. 3 9. .5 2 2
Qc - EleQC = _EK Gc + EK {V*Qc - (4/r’Qc} . (45)

3.3 | The force vector equation

Similar calculations with Equation (22) yield
1 - iwK)Gp = —%K {4V2vp —BA+8)r2Vp — (A/NVs + 9,1r—2v3}

- %K {4v2QP —BA2+8)r2Qp— (/l/r)(.QB + 9,1r—2QB}

+ %Kz {9VZGP — (84 +18)r2Gp — (A/r)Gp + 191r‘2GB} ,

(46)
(1 - iwK)Gg = —%K { (A/r)f/p + 6Ar~2Vp + 3V — 4(/1/r)2v3}
- %K {(A/r)ép +64r7Qp + 3V?Qg — 4<A/r)ZQB}
+%K2 {(/l/r)ép + 16Ar—2Gp + 8V*Gg — 9(,1/r)ZGB} , 47)
(1 - i0K)Ge = —K {VVe = (4/1PVe} - 2K {V2Qc = (4/rPQc} + 10K {V2Ge = (4/rPGc} (48)

3.4 | Summary

At this stage, we have a system of 11 equations for 11 unknown (scalar) functions of r, namely, P, ©, V4, Q4 and G4
with A = P, B, C. This 11 x 11 system decouples into a 3 X 3 system and an 8 X 8 system. The smaller system comprises
Equations (41);, (45) and (48). We call it the C-system because the three unknowns are V¢, Q. and G¢. The larger system
governs the other eight unknowns and comprises Equations (37), (38), (41)12, (43), (44), (46) and (47); we call this the
PB-system. However, before further investigation, we must consider the associated stresses ¢; we do that next.
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4 | STRESSES
Recall that the stresses are given by Equation (23), which we repeat here:

o+ K‘;—‘Z = 2K (Vv) — ‘—S‘me + ‘—S‘KZ (Vg) + §K2 V2. (49)
In this equation, g = dive and (Vq) is the symmetrised trace-free version of Vq. In fact, every term in Equation (49) is

symmetric and trace-free, so there are five independent components.
The components of v, g and g all have similar forms:

YV = VPY, Vy = VBB + Vcc, Vo = VBC - VcB, (50)
qr = QpY, qo = QB+ QcC, qo = QpC — QcB, (51)
gr = GprY, 8o = GgB + G¢C, 8o = GgC — G¢B. (52)

With these, we can compute (Vv), (Vq) and (Vg) in Equation (49); see Section 4.1. The forms of the stresses themselves
are unclear. We have to determine them so that Equation (49) is satisfied, which entails computing V2c; see Section 4.3.
In addition, the components of g are given by Equations (B7)-(B9), and these must be consistent with Equation (52).

4.1 | Computation of (Vv)

Let us compute (Vv) ((Vq) and (Vg) are similar) using formulas collected in Appendix C. From Equations (B2)-(B6),
we find

20 2. 2
), = (Ve 2ve+ L1y, 53
), = (22~ 2ve+ £1a) (59
(VD) = & <ivp+ Vi — §VB> B+1 <Vc - §VC> c, (54)
2\r r 2 r
1/ 3 1(a, = 3
Vo= -2 (Ve-2Ve)|B+ 2 (2vosvs—2v3)C, 55
(V) o 2<c rc) +2<rp+3 rB) (55)
1. 1% 2 1/. 0B . oC
Wy = (2Ve— 2Vt Lvy) Y —(V— V—), 56
(V0os (r T3Vt B) MPANEFTIRRCrT (56)
1. 10 22 1/, 0B - oC
Voo =  2Vr — 2Vp — 22V, Y——(V— V—), 57
(Voo (r PT3YPT R, B) PANEF YRy 7
A 1/ dC . 0B
Vo) = —2VeY —<V——V—). 58
(VYoo S VeY + Ve = Ve (58)

Here, we have used Equation (35) for divv and, from Equation (36), f'(r) = f — (2/r)f. We also confirm that
<Vv>rr + <Vv>90 + <Vv>d>d> =0.

Note the presence of dB/d0 and dC/d6 on the right-hand sides of Equations (56)-(58). This implies some interaction
with other modes: for example, 0B}’ /06 cannot be written solely in terms of Y}*, B) and C};".

4.2 | The force vector

The components of the force vector g = div o are given by Equations (B7)-(B9). They involve all components of ¢, and
they must be consistent with Equation (52).
Let us start with the radial component, g,, and the rr-component of Equation (49),

0oy,

ot

4 4 2
o+ K = —2K(Vv),, — gK(Vq>rr + §K2<Vg>,, + 5KZ(Vza)W. (59)

From Equation (53), the first three terms on the right-hand side of Equation (59) are multiples of Y. From Equation (B10),
(Vza)rr involves o, 6,9, 6vp and gy + 6pp = —0c, (because o is trace-free). The same stress components are present in

gr = (div 6),; see Equation (B7). These observations suggest proposing the form

t = Tp(r) P(¥) + Tp(r) B(¥) + Tc(r) C@), (60)
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where t = (6}, 619, 00). Thus,
oy =TpY, 0,9 = TgB+ TcC, or9p = TgC — T¢B. (61)

From Equation (B7), we have

. 10 1 0 . 1 Jdoe
= ==— (Fon) +=op+ ——— 0) + -
& = (divo), r2 or (ron) P’ rsind a0 S rsinf o®
hd Tp T3 0 . oC Tc 0 . 0B ° Tp A
=|Tp+— | Y+ — (—B 0+—>+ - (—C 0——): Tp+ — — =Tg | Y = GpY,
< P r> rsin@ 09( sin ) 0P rsin@ 09( sin§) 0P P T P

(62)
where we have used Equation (34). This relates Gp(r) in Equation (52) to Tp(r) and Tg(r) in Equation (61).
For g, and g,, we require tentative forms for gy, 6oe and oye; these will be combined with the proposed forms for o,
or and o,9, Equation (61). Inspection of Equations (56)-(58) suggests trying

o0 = AgY + (L@ +M£), oo = ApY — (L

0B + MdC) oC 0B
a0 20

CiMZ), 690 = AgaY + L= - M,
00 o9/ TP 00 96
where the trace-free condition on o gives Tp + Ay + Ap = 0. There are four arbitrary functions of r in these proposed
forms, so we are expecting constraints: we shall see that Ay, Ap and Aye can be written in terms of Tp, L and M.
From Equation (B8), we have an expression for gy = (div ¢),. It gives

* Tp A > Tc , A L{oB 1 0o°C
=B|Tp+—+4+=Ag | +C|Tc+—=+=App | += | = + ——=
&0 < BTy 0) < TR oq)) r <692 sin 6 00 0@

r

00% sinf 00 0@

r

coto + % (A9 —Ap) Y cotO

12+ mE

M (o0*C 1 4°B + 2( 0B OC)
00 a0

4
p

A

° T ° T
=B<TB+TB+ Ao-{-%(l—/lz)) +C<Tc+7c+7A0<p+¥> +%(A0—A¢.—ﬂL)YCOt9.

Here, we have used Equations (27) and (34) to show that

0’B 1 9°C 0B 5
— t+ ———=-2—cotf0+ (1 - A)B— AY cot @, 63
00?2  sin@ 00 0® 20 ( ) (63)
2 2
E—; OB =—2£cot0+C. (64)
002 sin@ 00 oD 00

Similarly, from Equation (B9), we find that g = (div 6)4 is given by
7

< T T
g¢=C<TB+TB+%A¢+%> —B(TC+TC— ’1A9¢+¥(1—12)> +%(2A0¢+AM)Ycot0.

We want the structure g, = GgB+ G¢C and g4, = GgC—G¢B, and we do not want the terms in Y cot 6. Enforcing these con-
straints leadsto Ag—Ae = AL and 24g9p = —AM.AsAg+Aep = —Tp, weobtain 24y = —Tp+ AL and 2Ay = —Tp—AL. Hence,

1 0B oC
=——(Tp—- AL)YY (L— M—) s 65
Coo 2( p— AL)YY + 30 + 50 (65)
1 0B oC
= ——(T, LY—(L— M—), 66
Cod 2( p+ AL) Y + 50 (66)
1 oC 0B
=—=MY+L— -M—, 67
oo =~ AME+ L5 ~ M5 67

where L(r) and M(r) are to be found.
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Summarising, we have written the five independent stress components in terms of five independent functions of
the radial coordinate, namely, Tp, Tp, Tc, L and M. Moreover, when combined with Equation (62), we have the
following relations:

Gp—TP+ Tp—iTB—T/+3Tp—%TB, (68)
° 1 1 , 3 A uL
Gp=Tg+~—-Tp— —(ATp+ul) =Ty + - TB——Tp— (69)
r 2r 2r 2r’
M M
Ge=Te+ 2t Tc—”—=T’C 3.2 (70)
2r r 2r

where the parameter y is defined by u = 4> — 2 = (n — 1)(n + 2), indicating that the case n = 1 (4 = 0) is special.
It remains to confirm that our forms for the stresses are consistent with the stress equation (49). We shall do that in
Sections 4.4 and 4.5.

4.3 | Computation of V¢

Inspection of Equation (49) shows that we require V2o. In principle, this is a straightforward computation: substitute the
proposed forms for the stresses, Equations (61) and (65)-(67), in the formulas for V2o, Equations (B10)-(B15), and then
simplify; for details, see Appendix C.

The following results are obtained for the three radial components:

246 4a
2 _ 2
(V G)rr = <V Tp — =) Tp + r_ZTB> Y, (71)
2 ul 2 M
(V) = (VZTB—’1 g ﬂTp+—>B+<v2Tc— A +4Tc+”—> c, (72)
ré r2 r2 }’2
2 L 2 M
(Vio) , = <V2TB— by LY S ”—) c— <V2TC— ey ”—) B. (73)
rd r2 }’2 r2 r2 }’2

Note the BC-structure in Equations (72) and (73). For the other components, we find

) 1, AP+6 A (o2, ML
(VO')M——E(VTP— S Tp )Y+ (VL= Y

r2
uL 4 0B 2 uM 4 oC
VIL-—=4=Tg ) —=+ VM- "—+ =T¢c | —, 74
+< r2+r2 B>60+< r2+r2 C)ae (74)
L 4 aC uM pl 0B
Vi) = VZL—”—+ Ty ) & - VZM——+ T, ( Y+—> 75
( 6)945 < 12 B ] 50 12 cJ\2 00 (75)

We also have (Vza)rr + (Vza)% + (Vza)(w =0.

4.4 | The stress equation: radial components

Returning to Equation (59), we use o, = TpY, Equations (53) and (71). Then, as each term in Equation (59) is a multiple
of Y, we obtain

(1—ia)K)Tp=—2K<§Vp—sz+iVB> —£K< QP__QP iQ)
r 3r 5

3
+ 4xe 2Gp——Gp+ 26p) + 2k (verp - 267, ﬂTB
5 \3 3r 3 r?

(76)

Next, consider the r-component of Equation (49). From Equations (54) and (72), each term on the right-hand side is
a linear combinations of B and C. From Equation (61), the left-hand side has the same form. Matching the coefficients of
the B-terms and the C-terms gives two equations:
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(1 -i0kK)Tp = -K < Ve + VB - §VB> - %K <%QP + (.33 - %QB)

2 L
+2K2 (2Gp+ Gy— 3Gy ) + 212 (v — 284, 3, L HLY g
5 r r 3 r2 r2 r2
° ° . 2 M
1 —i0k)Te = K (Ve-3ve) = 2K (0o = 30c ) + 22 ( Ge - 26¢ ) + 2K (V2T - 28310 222 . (78)
r 5 r 5 r 3 r2 r2

As expected, the rd-component of Equation (49) reproduces Equations (77) and (78).

4.4.1 | Simplification of Equation (78)

Let us examine Equation (78) in more detail. Suppose we have solved the 3 X 3 C-system from Section 3.4, so that V¢, Q¢
and G¢ are known. Thus, Equation (78) contains two unknown functions, T¢(r) and M(r). These two functions are also
related to G¢(r) by Equation (70): we have two equations in two unknowns.

To simplify Equation (78), start by writing it in the form

(1 - iwK)Te = ~KVe — —KQC + —chc, (79)

where the fractional prefactors have been chosen to match those in Equation (48),

Tc + =

1 1 3 1 5 A +4 uM
VZVI——V, = - ’ :_<G’__G> Q VZT_ 2 ’
c=Ve-2Ve Qc=0Q¢ p Qc., Gc g \Oc—7 0c)+g c 2
and we also have Equation (70), G¢ = T’C +@3/NTc — % uM /r. This leads to consideration of the combinations
V. +@3/Ve =V Ve =2r?Ve, Q.+ (3/1)Qc = VQc — 2r Q. (80)

Differentiating Equation (70) gives

1 6 H H
G.=VTc+=Ge——= Tec — —M' + =M.
¢ Ty TR Ty r2
Use this formula to eliminate V2T¢ from Gc, giving
1 Su Sp
=G.-=Gc— —= Tc+—M
Ge T T
whence
r o, 3 2 6+ 542 Sp Sp 2 uM
+2 Ge=V3Ge - Ge+ L Te+ 22 (vimM -2,
Ge+ 5 Ge e T as T er r

Combining this result with Equation (79) and (80), we obtain

(1 - iwK) (T’ + 3Tc) K (V*Ve—2r72Ve) — —K (V2Qc — 2r2Qc)

2 s 5 M
+16K{VG o5/ Ge + ”Tc+”<V2 ”—)}

15 8r2 4r3 1 r?

The left-hand side of this equation is (1 — iwK)(G¢ + % uM /r), by Equation (70), whereas (1 — iwK)Gc¢ is given by
Equation (48). Hence,

M
1 - iwK)M = —ZK— . fKQC dgale y 2pa (g o MM A0 (81)
5 r 3 r2 r2

This is a simplified relation between M and Tc. These two functions are also related by Equation (70). Thus, in principle,
we can solve for M and T¢.
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4.4.2 | Simplification of Equations (76) and (77)
Suppose we have solved the 8 x 8 PB-system from Section 3.4, so that P, ®, Vp, Vg, Qp, Qp, Gp and Gp are known.
Then, inspection of Equations (76) and (77) shows that these two equations are coupled and they contain three unknown
functions, Tp(r), Tp(r) and L(r). However, these functions are also related to Gp(r) and Gp(r) by Equation (68) and (69).
Apparently, we have four equations for three unknowns.

We proceed as in Section 4.4.1. Write Equations (76) and (77) as

. 1 2 2

1-iwK)Tp = —=KVp — =K ZK3Gp, 82

(1 -iwK)Tp 3 Vp s Op+ s Gp (82)

1 - iwK)Tp = gy, - iKQ + iKzg (83)
S S R e R Tt

where the prefactors have been chosen to match those in Equations (46) and (47) and

V V
V=4 (vh-TE 2v) =3(3v v )

QP=4<Q}_QP+%QB>, QB=3<%QP+QQ;—QB>,

r r

G 2
gp=4<G;—TP+%GB>+5<V2TP—/1';—6TP+%TB>’

2
Gs=3(26rr6,~ 98 1s(very— A4, 3, ).
’ r 12 12 2
From Equations (68) and (69), we require

YV}, + (/1 Ve — (A/r)Vs =4V3Vp — (327 + 8)r 2Vp — (ﬂ/r){./B + 9Ar 2V, (84)

Vi +(3/1 Vs — {4/2r)}Vp = 3V Vp — (A2 + 6)r *Vp + (A/r)f/p + 6Ar2Vp. (85)

The corresponding Q equations are the same as the V equations but with V replaced by Q.
Differentiating Equations (68) and (69) gives

A2+12 51 Gp AGp Ap

/) 2 - -
Cp=ViTp— ——Tp+ S Tp+— - —=- 3L (86)
A2 4+12 51 Gg AGp u u
) 2 _ - -5 _4—/r ~ / ~
Gp=V-°Tg > Tg + > Tp + p > 2rL + rZL. (87)

Use the first of these to eliminate V2T from Gp, giving

G 71 512 51 51
Cr=9 <G;,—TP> + 26— ﬁTp—ﬁTB+2—rl;L.

Similarly, eliminating V2T from Cp gives

_5)2 5
GB>+MGP+2O 54 54 Sup,

=8| Gy~ — Tp+ 22 Tp +
Gp <B r 2r 22 P T

From Equation (68), we require
G, + (3/1)Gp — (A/1)Gp = 9V>Gp — (84% + 18)r*Gp — (A/r)Gp + 19Ar >Gy;
surprisingly, Tp, Tp and L are absent. Then, forming (1 — iwK)Gp from Equations (82) and (83), using Equations (68) and

(84), we reproduce Equation (46): in other words, Equation (82) is redundant from the point of view of constraining the
determination of Tp, Tp and L.
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Next, consider Equation (83). From Equation (69), we require

hd 10 5 L
Q'+ gB__gP=8VG —r—( +1)GB+AGP+QGP+—MTB+;:(sz—’:—2>.

Then, forming (1 — iwK){Gg + uL/(2r)}, using Equations (69), (82), (83) and (85), followed by comparison with
Equation (47), we obtain

(1 —iwK)L = —2K VB _ 228 | 4galp | 210 <V2L KL 4 TB> (88)
r 5 r 5 r 3 r2

which has a pleasing similarity to Equation (81).

At this stage, we have three equations for Tp, T and L, namely, Equations (68), (69) and (88). We also have two equations
for Tc and M, namely, Equations (70) and (81). However, we still have to check that the angular components of the stress
equation do not impose any further constraints; this does not seem to be obvious because we no longer have orthogonality
of the angular functions occurring.

4.5 | The stress equation: angular components

For the 6@-component of Equation (49), we use Equations (67), (58) and (75) and obtain

1 -iok) {L aC—M(’11/+‘)—B)}=—2K EE—EUYM)—B) ~ 2k @E_&( Y+a—B)
20 2" "0 ro0 r\2° Toa)f 75 \rae r \20 Tan

4 BgoC Gc (4 0B 2 yL aCc uM 4 A 0B
+2K? ————(—Y+—) il (v A v - B AT <—Y+—> .
5 { rod r \2 " 90 3 2t o0 rz ) \27 T o

Write this equation as

iY 0B aC
2P B =0
AM( 2 aa) 50 ~
where
M
Age = (1 — iwK)M + ZK— + 4KQC dgele _2pa (g #M A1)
5 r 3 r? r2
L
Boo = (1 — iwK)L + ZK— + 4KQB dgale _ 2o (yop _#L A0
5 r 3 r2 r2

Both of these vanish by Equations (81) and (88), and so the #®-component of the stress equation (49) is satisfied.
For the #9-component of Equation (49), we use Equations (65), (56) and (74), giving

. 0B oC 1 1° A 0B oC
1- K{——T—ALY L— M—}=—2K Vp—=V V)Y <V— V—)
(1 - iwK) (Tp )Y + 094' 90 {( PT3 P+3 B) + - Bag‘l‘ c30

4 1 1° A 0B aC 4 1 1% A 0B aC
--K<{ (=Qp—=Qp+ — Y + ( — + —) +—K2 -Gp—=Gp+—=Gp | Y + = (G—+G—)
5 {(er 3¢ 3rQB> ey T 5 } ol 3 P Bae €00
2 .9 1 (., A +6 Aoy, ML 2. ML aB 2 uM aC
+2K2Q -2 (VPTp - T )Y+ 2 VL—— Y+ (VLT 4 T VM- + = 4
3 { 2( P rr 2 r? i 06’ rr ) o0
(89)

Write this equation concisely as

0B oC
SAY +B,2Z v, 5 =0,
A" 2050 T %0

where

A =1 —iwK)Tp — (1 — iwK)AL + 2K < Vp— —Vp — i—AVB> + %K <§Qp - %Qp — 2—iQ3>

2 L
_ Ak Gp——Gp—ﬁGB 22l v, A EO (v PR L
5 3 r2 2
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formulas from By and Cy can be read off from Equation (89). From Equation (76), we have an expression for (1 — iwK)Tp;
using this in .44, we obtain

. Vi G L

Ap = (1 — iwK)AL — 2K VB _ 23 Q8 | 4208 | 2ya; (gop _HE | A )
r 5 r 5 r 3 r2 o r?

and this vanishes by Equation (88). Equation (88) also shows that 3y = 0, whereas Equation (81) shows that Cy = 0.

Hence, the #9-component of the stress equation (49) is satisfied.

4.6 | The stress equation: summary

We have represented the five independent stress components using five independent radial functions, Tp, T, T¢, L and
M; see Equations (61), (65) and (67). These functions satisfy five equations, namely, Equation (68)-(70), (81) and (88). If
these equations are satisfied, then the stress equation (49) is satisfied.

5 | TWO SPECIAL CASES

5.1 | Spherical symmetry

For problems with spherical symmetry (such as that for a pulsating sphere), we have n = 0. Thus, A = 0, and the 8 x 8
PB-system of Section 3.4 reduces to a 5 x 5 system. We can replace the spherical harmonic Yg by 1, and the corresponding
vector spherical harmonics B and C are zero, as are the six functions Vg, V¢, Qg, Qc, Gg and G¢. The remaining equations
come from Equations (37), (38), (41), (43) and (46) and are

3iwP = 2Qp + 5Vp, 3iw® = ZQP +2Vp, Gp =iwVp — 7)/, (90)
O — SiwKQp = — 22K’ — 3K Gp + 2LK2 £0p, 91)
2 4 2 5
. 4 8 6.,
(1 — ICOK)GP = _EK [,Vp — EK £Qp + EK [,Gp, (92)

where L is a second-order differential operator:
2 2 2
LN =V —=Zf=1"+>f - =]
r r r

We could rewrite the equations as a first-order 8 X 8 system, with unknowns P, 0, Vp, V;,, Qp, Q;, Gpand G;,. Alternatively,

we could reduce to a smaller system. To do this, start by eliminating 7 and ©, noting that, for example, (d/dr)Vp = LVp
(see Equations 36 and 42), whence 3iwP’ = L{2Qp + 5Vp} and 3iw®" = L{2Qp + 2Vp}. The 3 x 3 system for Vp, Qp and
Gp then comprises

3iwGp = —302Vp — L{2Qp +5Vp), i (QP - %inQp) - —%K L{Qp+Vp) — %in Gp + 2—57in2 £Op

and Equation (92). Evidently, further reductions are possible.
Once Vp, Qp and Gp have been determined, P and © are given by Equation (90),v = Vp ¥,q = Qp Fand g = Gp T. For
the stresses, the non-trivial components are ¢, = Tp and 699 = opp = —%Tp, where Tp(r) is determined by Equation (68):

T, + 3/ Tp =r~> (d/dr)(r*Tp) = Gp,

which is a simple first-order differential equation.

Ben-Ami and Manela® have treated the spherically symmetric R13 equations. They found a single sixth-order differ-
ential equation for the temperature.> 312 We have derived a similar equation for ©(r); it agrees precisely with their
equation. See Appendix D for details.
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5.2 | Axial symmetry withn =1

For simple problems with axial symmetry (such as that for oscillations of a rigid sphere), we can take n = 1 and m = 0.
Thus, A = \/5 and yu = 0. For Y2, we can take Y = P;(cos 6) = cos 6 (P; is a Legendre polynomial), whence B = —2~1/2sin #
and C = 0 (see Equation 27). Consequently, we can take Ve = Q¢ = G¢ = T¢ = 0. However, the 8 X 8 PB-system defined
in Section 3.4 does not simplify, although reductions can be made (such as elimination of 7 and ©).

In any case, the formulas for the stresses simplify. The radial stresses are

61 = TpcoSO, 6r9 =—2"?Tgsinb, c,p = 0.

The angular stresses are given by Equations (65)-(67). At first sight, these formulas involve L and M, but those functions
are multiplied by %AY + 0B/00, and this combination vanishes when n = 1. Hence, the angular stresses are simply

0pp = Opp = —2_1Tp cos o, oo = 0.

For Tp and T, we have Equations (68) and (69), a coupled 2 X 2 system:

4
-

A

T},+§Tp— T = Gp, T1/;+§TB__TP=GB' (93)
r r 2r

Let us compare with Torrilhon's steady analysis.” In order to eliminate many factors of A = \/5 write Gz = AG, Qp = 1Q,

Tz = —AT and V3 = AV. Then, as @ = 0, Equations (37) and (38) reduce to Vp = (2/r)V and Qp = (2/r)Q; these are
Torrilhon.”- ¢4 25and 26 From Equation (41); 5, we obtain G = —r~'P and Gp = —P’. Combining these with Equation (93),
we obtain

P’+T1’,+§TP+ET=0, T’+§T+iTP—lP=0; (94)
r r r 2r r
these are Torrilhon.” ¢4 27and 28 From Equation (43), we have
Qr = —14—5K®' - %K Gp+ %Kz (3V2Qp — 8r72Qp — (4/1Q’ + 8520} . (95)
Differentiating 2Q = rQp = rQ}, + 2Qp gives
2Q" = rv2Qp + 2/1(Q - Qp). (96)

Then, using Gp = —P’ and dividing by %K, Equation (95) becomes
iQP - 2o +7 + 8k {V?Qp —4rQp +4r2Q};
3K 2 5 ’

this is Torrilhon.” ®4 3 A similar calculation shows that Equation (44) is equivalent to Torrilhon.”- ¢3! For the stresses,
we have Equations (76) and (77). The first of these becomes

Tp = —2KV}, - %KQ; +K?Ap, 97)
where 8 1 1 2 8 8
A =—(G’ pYe +—G>+—<V2T _ 57 ——T),
P= g \Pp T PP LY )TN AP PT
and we have used
2° 2 2 2

v ——V+—I7=‘./——V=V'
3 PR T gy LS

with a similar equation for Qp. But, from Equation (86), we have

G;,— le+

7 10
r 2

lg- V2Tp— =Tp— =T~ 1
r r2 r r
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whence
6 22 4 ~ 68 ~
A =—<V2T _ 22 —T’——T)
P~ 5 P32 P g 9r2

after using G = —r~'P and Equation (94),. Thus, Equation (97) agrees with Torrilhon.” %32 Finally, consider
Equation (77),

T v 1 ! 2 ~/ 1 / 2

T=K(V —EVP>+EK<Q - 2Q}) + K*As, (98)
where

Ag=—2 (G’ 1y 1Gp) +2 <V2T— Sy_ iTP),
5 r r 3 r2 r2
and we have used
yprv vty -lyov oLy
r r r r 2

with a similar equation for Qp. From Equation (93),, G = =T’ — (3/r)T — (2r)~! Tp from which we can calculate G’. From
Equation (93),, we also have Gp = T}, + (3/r)Tp + (2/r)T. Hence,

8 1 4

. 1= 1 - .
G —=G+=Gp==-VT+ =T+ =T+ =T
r ror r2 2 PR
and
16 (c2m 274 3 27
A =—<V2T——T——T’——T )
P15 42" 16r Pg2t

Then we see that Equation (98) agrees with Torrilhon”>® 33 (after use of Torrilhon” ¢4 26 to simplify the right-hand side
of Torrilhon? ¢4 33),

6 | DISCUSSION AND PROSPECTS

We have shown how to solve the linearised form of the R13 equations using a two-step process. Five of the 13 unknowns
are components of the symmetric trace-free stress tensor o. In the first step, we introduce the force vector g = divo,
leading to an 11 X 11 system for two unknown scalars and the components of three vectors. This system is solved in
spherical polar coordinates using vector spherical harmonics. The result is a coupled system of 11 ordinary differential
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equations for the radial variation of the 11 unknown functions. In fact, the system decouples into a 3 X 3 system and an
8 x 8 system. These systems depend on m and n, where Y} is a typical spherical harmonic, but they do not couple to
systems with different values of m and n: this property is familiar when solving simpler problems, such as when the scalar
wave equation is solved by separation of variables.

In the second step, we have shown how to recover the stress components. This required guessing the form of the
stresses and then showing that the proposed form is consistent with the known form of the force vector g and with
the five of the R13 equations that involve the stresses. The five stress components are written in terms of five radial
functions, but just two of these (denoted by L and M) are required to solve new equations. Interestingly, the stress com-
ponents associated with m and n do couple with solutions at other values of m and n (in general), even though the force
vector g = div o is decoupled.

Evidently, much remains to be done. The systems obtained involve second derivatives in the radial direction. We could
build a system of coupled first-order differential equations, and this could be done in a variety of ways. For example,
there may be merit in developing a Stroh-like formulation, as has been done in anisotropic elastodynamics!® and for
small-on-large problems arising in nonlinear elasticity.'!

Specific choices will involve the boundary conditions that are to be imposed, and these are complicated. For example, the
boundary conditions on a rigid impermeable surface have been developed by Torrilhon!? ¢4 2* and linearised in Claydon
et al.> % 23; for steady flows (@ = 0), see Torrilhon.” ¢4 820410 T addition, for unbounded flow regions, we also expect to
impose some kind of far-field or radiation conditions. These will be especially relevant for scattering problems, such as
when a plane wave (see Appendix A) interacts with a rigid sphere. All this awaits further investigations.
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APPENDIX A: PLANE WAVES

Look for waves propagating in the x, -direction: put p = P€, d = ©&,v; = Vi€, q; = Q;€ and oy; = S;;&, where P, O, V;, Q;
and S;; are constants and £ = exp{i(kx; — wf)}. As Q = ikQ:€ and V = ikV1 &, Equation (4) gives

—3wP + 2kQ; + 5kV; = 0 and — 3w0® + 2kQ; + 2kV; = 0. (A1)

From Equation (3), —oV; + kP6;; + kSy = 0,1 = 1, 2, 3; written out, we have

—wV1 + kP + kS11 =0, —wV, + kS1, = 0,—wV3 + kS153 = 0. (A2)
From Equation (11),
Q- %ia)KQi - —14—SikK®5i1 - %ikKSil - ngKZQi - %kzﬂéolaﬂ, i=1,2,3: (A3)
written out,
Q1 - JiwkQ, = —LikKe - JikKs,, — Z12K20Q,, (A4)
2 4 2 5
3. 3. 9,202
Q- EIG)KQz = —EleSu - gk K*Q2, (A5)
3, 3, 9. 212
Qs - Eleog = _EleS“ - gk K2Qs. (A6)

Finally, consider Equation (12). From Equation (10), we have

9q

(1 1 1
= k(— 81+ = Qb — = 5'-)5
axj) 1 5 Ql i1 2 Qj il 3 Ql ij

with a similar equation for dv;/dx;,, whereas Equation (14) gives

0 do; 5 (1 1 1 2
9 Wk (—S~-+—S~5- + 18,160 — =S 5~->8.
()xk axk> 3 ij 5 1951 5 j109i1 15 110ij
Hence,
. . 1 1 1 4. 1 1 1
(1 - i0K)S; = ~2iKK (3 Vidjn + 5 Viéu — 3 Vidy ) = SIkK (3 Qb+ 5 Qb — < Qudy )
2 2 3 5 2 2 3 (A7)
1 1 1 2
— 2k2K2 (ESU + gsiléjl + gsjléil - ESuéij) .
Five non-trivial equations are contained in Equation (A7):
. 4, 8. 6,909
(1 - le)Sll = ——leVI - —IKQl - k'K Sll’ (A8)
3 15 5
(1 — iwK)Sy, = —ikKV; - %ikKQz - %szzsu, (A9)
(1 — iwK)Sys = —ikKV; — %ikKQ3 - %kZKZSB, (A10)
. 2. 4, 2,002 4 o002
1- la)K)Szz = =ikKV; + —leQl — =k’K*Sy + —k°K*Sy;, (All)
3 15 3 15
(1 - iwK)Sy; = ‘§k2K2523~ (A12)

The equation obtained from Equation (A7) with i = j = 3 is redundant: it is a linear combination of Equations (A8) and
(A11) because S;; = 0.
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There are 13 homogeneous equations and 13 unknowns. However, they decouple. Equation (A12) gives S,; = 0 unless
1-iwK+ %szz = 0. Equations (A2),, (A5) and (A9) give a system of three equations for V5, Q, and S;,. Equations (A2)3,
(A6) and (A10) give a similar system for V3, Q; and S;3. These two 3 X 3 systems determine transverse wave motions.
Longitudinal motions are obtained by solving Equations (A1), (A2),, (A4), (A8) and (A11), a 6 X 6 system for P, ®, V1, Qy,
S11 and Sy,.

A.1 | Transverse motions

Consider Equations (A2),, (A5) and (A9) for V3, Q, and S,. The first equation gives @V, = kSi,. Eliminating S, from
the other two equations gives

(1- %in + %szz) Q+ %inv2 — 0 and %iszQz + (= 080 + ICK + 1—21811{2@) V,=0.
Setting the 2 X 2 determinant to zero gives
(1 _ %in + %szz) ((1 — K)o + kK + %szzw) + %wszz —o. (A13)

Given a real frequency w, Equation (A13) is a quadratic equation for k*. This is the dispersion relation for transverse
waves. Exactly the same relation is obtained when solving Equations (A2)sz, (A6) and (A10) for V3, Qs and Sy3.

We note that we cannot put K = 0 in Equation (A13). This is not surprising because the governing equations do not
support transverse motions when K = 0; see Section 2.2. We are not aware of previous studies of transverse motions.

A.2 | Longitudinal motions

Consider Equations (A1), (A2);, (A4), (A8) and (A11) for P, ®, V1, Q;, S11 and Sy,. Eliminate P and ® from Equations (A2);
and (A4), using Equation (A1). When combined with Equation (A8), we obtain a 3 x 3 system for V1, Q; and S11,

2K2Q, + (5K — 362)V; + 3wkSy; =0, %iKQl + gikal + (1 —iwK + ngKZ) Sy =0,
1 . 2 2 27 2 2 S . 2 3 .
(CO + EIK(Sk - 3w) + ?a)k K ) Q + zlk KV + Ela)kKSu = 0.

This system is equivalent to the system studied in Struchtrup and Torrilhon® $V4; see also Struchtrup.*$1%1 Note that
Equation (A11) gives a formula for S,

(1 —iwK + gszZ) Sy = zle <V1 + le - gleSn) ,
3 3 5 5
and recall that S; = 0.

APPENDIX B: FORMULAS IN SPHERICAL POLAR COORDINATES

Formulas for grad, div and V2 in spherical polar coordinates are familiar; see Equations (31), (39) and

0 0 0%
Vp = 19 (0 + 1 9 (sing 22 41 7P (B1)
r2 or or r2sin g 00 00 r2sin%@ 0d?

In Cartesians, (Vv);; = dv;/dx;. In spherical polars, we have Dahlen and Tromp'> ¢4 A-138

ov, 10vg Vv, 1 oJdve Vv, cotl o0vy 10v, vy
V), = —, (VW) ==+ —, (Wpp = ———— + — + —=Vp, (VV),y = —, (VW)p, = ~— — —,
(VV)rr or (Voo rood r (Voo rsin o® r r ! (Vs or (V¥or roo r
1 ov, vg 10ve 1 OJvg coth

ov,
(VW)p = =2, (V) = s (Voo = =2 (VWhap =~ = = — Vg

rsinf od  r rsin @ 0@ r
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Note that the trace of Vv is divv. Denote the symmetrised trace-free version of Vv by (Vv). Then

ov 1,.
(W), = (VW)(y = a_rr - gle v,
1 dvy Vy 1..
V), = (V =-Z0 47 Zdiv,
(V) = (V)9 ~ o0 T T 3dvv

1 0dvy 10v,

2or Yorae T2

(Vv>r0 = (VV)(re) =

1 dve 1 oJv v

V = V = - — + _
(Voo = (V¥)ra) 2 or 2rsinfo® 2r
1 ove 1 dvg cotf

(VW)go = (VV) gy =
with (Vv),, + (VV)py + (VD) pe = 0.
Let 6 be a symmetric tensor. The vector div ¢ has the following entries!> ¢4 A-144;

—_— _— v .
2r 00 + 2rsin @ o® 2r @

. 10 1 0 . do, 1
div6), = =— (rPon) + Tsind (% (org sin @) + a(;d)) - (600 + o) »

. 190, 1 d . do0s\ 1

(dive), = 2o (r O'rg) + Tend <£ (699 SN ) + 3D ) + ;(6,9 — opg COLO),
. _ 1 a 2 1 () . 00'4545 1

(div O)p = ﬁ; (l’ Urdi) + p— <% (ope SIN Q) + By > + ; (orp + oy COLO) .

The diagonal elements of V2 are’> Appendix1

2 4 0 . do,
(Vza)rr = Vo — 2 (200 — 699 — Oop) — 5—— (@ (cro8in @) + rd)) )

r?sin @ P
4 doyg 2 . 4 cot@ dogap
V36), =V%p+ ——2+ —=_ (5,,8i0%0 — 699 + cos?0) — 2
( )99 000 T 25750 12sin20 (on 000 T 00D ) r2sing o®

4cotd 4 dore | 4cotf dope 2
Vo), = Vioee + oro + -
(V) g PP T T 2sing o P2sind 0@ r2sing

Note the trace (Vza)rr + (Vza)99 + (Vza)(p = 0 when o is trace-free, 6,y + 699 + G = O.

The off-diagonal terms are’- Appendix 1

D

2cotf do,p 1+ 4sin?0 29 2 dogp 2coth
Vi) = Vi — - o9 + —— (0 — Ogp) — Cod — 0gy) »
(V)4 "% Y2sing od 2sinze " 1200 (O = 000) =~ 3iine oo 7 (o0 = 00)
2cotd doy 1+ 4sin’6 2 0 2 dogep 4 cot0
V?6) = V60 + = — o — (o — 0 - -

( )r‘l’ "7 2sin0 od r2sinZ0 " Y25in 0 0 S r2 00 r2
2 06y 200, 2coth 2cotd 0 2(1 + cos?0)

Vo = V2 4= 2770 = - =

( )04) %02 T 2 sing 0@ | 12 00 72 T 2 5ing 0@ (000 = o0a) r2sin’6

APPENDIX C: COMPUTATION OF VZ¢

(arrsinzﬁ + 69000829 - O'q;@) .

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

We start with (Vzo) - Substituting Equation (61)and 699 +0pe = —0o - in Equation (B10), we readily obtain Equation (71)

after use of Equations (33), (34) and (B1).
Next, from Equation (B13), (Vzo')re = V20,9 + r2Qq + 2 r2Q,, with

2cotf 06,0 1+ 4sin0 d 1 Jdoye
T - ] 6r0, 2 = — (0w — Go9) — ——
sinf od sinZ0 00 sinf o0®

1=

+ (O’qup - 0'99) cotéd.
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For V26,9, we use Equation (B1) and the following relations, obtained by differentiating Equation (33):

2
pp= L 9 (sine @) + L 9B _ 598 0 -B°S20 _ g 25y coto, (C1)
sin 6 90 00 sin2p 0d? 00 sin%6
2
no o 20 sing 02 90 © sin%0

Then V26,9 = BV2Tg + CV?T¢ + (T DB + Tc DC)/r?. We also have

sin“0

aC
Qi =Tc|2—coth +
' C( 96 sin2g

[cos 26 — 4sin29]> + T <23—§ cotd + [cos20 — 4sin®0] + 24Y cot0> .

Hence, combining this with the expression for V26,9, we see that the terms containing 0B/d6, dC/d6 and Y cot @ all
cancel, leaving

Q 2 2
V2619 + r—; = (VZTB 4 rj4TB) B+ <V2Tc _4 r+4Tc> C. (C3)

For Q,, we use Equations (63) and (64) and obtain

0 0B ()C) 1 0 ( oC 0B> ( 0B aC

Q=2 ( larp—any-12 - Mm% - L2 (_Limy 4125 —Mm%2 ﬂLY+2L—+2M—)cot9
90 90 " 90) simood \ 2 00 90 90 90

2 2 2 2
=—(3Tp—/lL)AB+ Lime—aryeoto—rn( 9B 1L _90°C \_p(2C__1 0B\ (L@+M£)cote
602 sin 6 90 0@ 002 sin0 00 o® 00 00

- %(3,1Tp +ul)B + %yMC,

where y = A* — 2. Combining this formula with Equation (C3), we obtain Equation (72).
Next, from Equation (B14), (V26) , = V26,0 +r72Qs + 2 r2Q, with

_200t960r0_1+4sin290 o 1 ad — )_aam
7 sing od sino P M T singad T 7% T Tog

- 20’04) coto.

Then V26,6 = CV?T — BV2T¢ + (T DC — T¢ DB)/r?. We also have

oC .2 0B
Q 2—cotf + cos20 —4sin“0] | —T¢c | 2— cot O +
T ( 20 sm20[ ]> ¢ < 00

[cos 20 — 4sin%6] + 24Y cot 9) )
sin“@

Hence, combining this with the expression for V26,4, we obtain

Q 2 2
V26,0 + —; = <V2TB _4 j4TB> C- <V2TC _ 4 i4TB> B. (C4)
r r r
For Q4,
Q=-L 9 ( Lar, 4y + 198 +M£> _9 (——AMY L% —M‘)—B) —2 (-1,1MY+ L% —M‘)—B) cotd
sin 6 0@ 00 " 90) a0 00 90 2 00 " a0

1 ) 0°C 1 0°B 0’B 1 o%*C oC 0B
= Lamranic+ LemBa amycoto— (25 - L M8 —20.% coto+2m 28 coto
R (T +ALIACH S «© <aez Sin 6 09 0@ 962 " sin6 00 0@ 20 ° a0 *°

- %(3/1Tp +ul)C — %MMB.

Combining this formula with Equation (C4) gives Equation (73).
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For the #6-component, we have Equation (B11), in which

A2 A A2 0B oC L 0B M _oC
Viegg = == (VT = STp ) Y+ 5 VZL——L Y +(VL)— + (V’M)— + = D— + — D—,
700 < Tr=2 P) 2 < VL5g + (VMo + 2 Doy + 32 Pg

2 2
9010 _ g, 9B 7 9C 9% _ _Looncging 41-2C 9B
00 a0 00 od 2 a0 0D 00 0d
- a3 - 5 0B aC
0SIN“0 — 09y + 6ppCc0s“0 = =TpYsin“0 — (1 + cos“H) ( ALY + L— +M—)
2 00 00
Substituting in Equation (B11) gives
2
(V?o),, = ~Lver, - A + 4 (v - —L
00 2 r2 2 (C5)
4 0B 4 L M
+ V2L+—T>—+<V2 — )—+ =Qs + —=Q,
( r2 ") 96 2°5) 90 P2
where
2 2
QS:D@_M_:OW 0°C —1+COS0(AY 2@) (C6)
90 sin® 00 0®  sin%e 20
2 2
Q=D A0 IB_ 5 50corg o LSO OC C7)
30 ' sinf 00 0 sinZg 00
From the definition of the operator D, Equation (33), we have
0B 0°B 1 0°B 0°B
—=—+————"—+ —coté
00 003  gin2%9 00 0% 002
whereas, from Equation (C1), we have
2 2
9B _ _9Bn2g — 298 6in26 — B(cos20 + A%sin%6) — AY sin 26
od2 692 2060
whence
3 3
9B _9Bane-2 °B sin20 — @(4cos 20 + A%sin®0) + 2(1 — 4*)Bsin 20 — 2AY cos 26
00 0?2 603 2002 00
and
2 2 2
JB _ _4£ cotl — 4.c0s20 + A“sin“@ JB +4(1— A2)Bcotd — ZCOSZG'AY.
00 062 sin®@ 00 sin%0
From Equation (63), we have
4C0t0 02C azB 0B 2 2 2
=4— cotfh + 8—cot“f — 4(1 — A*)Bcot O + 4AYcot°0
SN0 00 0B 907 90" (1 = 4%Bco «©
whence
2  22qin2
aB _4cotd 0°C _ 4-—A%sin’0 @+ 21Y (C8)

ae sind 00 0®  sipn29 90  sin2p’

and then substitution in Equation (C6) gives Q5 = AY — ;1 dB/3d6.
For Qs, we use Equation (C2) to give

2 2
9C _ _9Cn29 - 39C Gin 29 — C(cos 20 + i2sin’0)
0?2 602 2 00
whence
3 3 2
_o¢Cc _ oC sin?0 — 30°¢C sin 20 — £(4cos 20 + A%sin0) + (2 — A*)Csin 20
00 02 693 2 062 20
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and
2 2
DE__“E cotd — 4cos 260 + A%sin%6 oC +2(2— 22)C cot 6.
a0 00? sin’0 90
From Equation (64)
2 2

acotd 0B _ 49°C o9+ 8% cot2g — 4C coto

sinf 00 od 002 00
whence

dC _4cot® 0*B _ 4— A%sin’9 oC
90 " sind 00 od sinZ0 00

—2A%Ccotd (C9)

and then substitution in Equation (C7) gives Q¢ = —u 0C/00. Finally, substitution in Equation (C5) gives Equation (74).
For the 0@-component, we have Equation (B15), which we write as (V20) o> = V26pe + 2r2(Q; + Qs), where

cotd 9 1 + cos?0 1 0o, 000
= - —— 6, Q= —— + - to.
77 sin6 o (000 — 000) sinZ0 o, 238 sinf od 00 ore €0
Proceeding as before,
A A 0B M __ 0B
Viopp = —= (VM - =M | Y + VZL—+—D—— VZM———D—,
%0e =7 < r ) VGg t 2 Pog ~ VMg — 52 P
2 2 2
Q= LLCootg + 2200 (1 CB gy 00 ) 4 22980 (Zamy - 122+ MD ),
sind \ 00 o 00 0D sin2g \2 00 20
whence
2 2(1 20
Viopo + 20 =2 (VM - L) v+ (v2) 6 - (VZM)a—B 20 + cos 0) (5amy -12% + M%)
r? 2 r2 a0 00 VZSII'I 0 2 00 00

2 2
+£ D£+4?ot0 0°B +22Ccot 6 DaB 4cotf 0°C _
r2 00 sinf 00 0d r2 20 sin@ 00 od

Using Equations (C8) and (C9), the last line of this equation becomes

L 4—%in’0 oC M (4— Asin’0 0B 24Y )
sin’9 90 sin’0

whence

2 A oC 4\ OB
Voo + 2Q, = -2 (VZM _ —M) Y + (VZL _ —L) (VZM _ —M) 95

Goe T 5NTE TS ) 30 ") 90
For Qg, we have

g= L 9 BB+TCC)+—(TBC TeB) — (T5C — TeB) cot 0
sin @ 0@
1 0B aC 1 oC 0B aC oB
=(—Z+%& _c t0)+T (————+B ta)_zT——T (ﬂY 2—)
<51n9 o> oo ° c\snood a0 ~° Bo0 ~ C 90

Finally, we obtain the formula (75).

APPENDIX D: SPHERICAL SYMMETRY: AN ODE FOR ©

For motions with spherical symmetry, the governing equations are Equations (90)—(92). If we drop the subscript P and
eliminate P using Equation (90), 3, we obtain

3iw® = 2Q + 2V, 3iwG = =2 LQ = 3w’V =5 LV,
Q——1 KQ——K2£Q+ KG——%K@’,

1 - iwK)G — Or2 po+ 2K cv+ SK L£Q=0.
5 3 15
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Apply the overdot operator to the last three equations using © = V2@ and £Q = V2Q:

3iw® = 2Q + 2V, 3iwG = -2 V2Q — 3w*V — 5 V?V,
3, .° 27 ~ 3" 15
- ZiwKQ — =2 K2 V2Q + 2KG = ——=KV?0,
Q- 3wkQ=3 Q+3 4
. ° 6 2 2 hd 4 2 ° 8 2 b
(1 - iwK)G — =K? V2G + =K V*V + —K V?Q = 0.
5 3 15
Eliminate V using the first equation, 2V = 3iw® — 2Q:
6iwG = 6 V2Q + 60*Q — 9iw’® — 15iw V30,
3. _.* 27 3.0 15
- 2iwKQ — =K? V?Q + =KG = ——KV?0,
Q- 3iwkQ=3 Q+3 4

(1 - iwK)G — ng V3G + 2iwK V0 — %K V2Q =0.

Eliminate G using the first equation:
i0Q + 30°KQ + (3K - Ziok?) v2Q = Ziv'Ke,

©*(1 —iwK)Q+ (1 _ %imK— ngKZ) v2Q— ngv“Q —iw Eaﬂa _iwK)®+ (g _ %ia)]K— %a)ZKZ) V20 —3K*V*6)| .
Finally, eliminate Q between these two equations:

[w2(1 —iwK) + (1 _ gin - ngKz) V2 ngv“] %#K@

_ [ia) + 307K + (%K - 2—57in2) vz] [%wz(l _ipK)® + (g _ %in - %MKZ) V20 — 3K2V4®] —0.

This has the form
AgVo0 + A4 V40 + A,V20 + A0 =0, (D1)
Where 9 18 15 31 222 324
Ag = 2K3 (1 - —in) A= 2K (1 ~ oK — 222 2K2 —ico3K3) , (D2)
2 5 4 5 25 125
A, = =i (1 _ 20K - 22002 4 @iaﬁﬂé) . Ap = -1’ — iwK) (1 - EimK) . (D3)
2 5 25 25 2 2

An equation equivalent to Equation (D1) has been given by Ben-Ami and Manela.® °3 >12 To see this equivalence, denote
their frequency and Knudsen number by @ and Kn, respectively. They are related to our w and K by w = \/5 @ and
K= \/5 Kn. (The extra \/5 comes from their scalings; see the definition of U, above.> ¢4 24) Using these relations (which
give oK = 2@ Kn and 2(@/w)? = 1) in Equations (D2)-(D3), and noting that we used e~'* rather than e*i! %431 we
find complete agreement with the corresponding terms in Ben-Ami and Manela.” ¢ 312



