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a b s t r a c t

Thin plates with attached concentrated masses are considered. Time-harmonic flexural
waves are generated by a force applied over a finite region of the plate. The problem
of calculating the resulting plate response reduces to calculating the displacement of
the masses, and this is done by solving a finite system of linear algebraic equations in
the manner of previous work by Evans and Porter. Numerical results for two masses
are presented and compared with finite element computations. Analytical results for N

masses arranged around a circle concentric with a circular forcing region are obtained;
it is shown that results for a corresponding thin solid ring are recovered as N goes to
infinity. Similar results are obtained for a scattering problem, with an incident plane
wave.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Plates that are undergoing dynamic testing frequently have concentrated (or discrete) masses attached to them, either
as a component of the structure or as accelerometers to make measurements at specific locations. These masses are
sometimes large enough that they influence the response of the structure and thus need to be included in any predictive
model. Modal testing of structures has been an ongoing field for many years. Basic modal testing and analysis is discussed
by Ewins [1] using measured frequency response functions (FRF). During testing of these structures, accelerometers are
used to measure the acceleration at a particular point. Accelerometers are useful instruments because they are relatively
inexpensive, accurate and easily affixed to a structure. The major drawback of accelerometers is that they load the
structure if they have significant mass and this can cause a distorted measurement.

There are numerous papers that discuss mass loading by accelerometers. Good examples include those by Silva et al. [2],
Cakar and Sanliturk [3], Özşahin et al. [4], Bi et al. [5] and Ren et al. [6]. These papers are composed largely of analysis at
lower frequencies where the system model is discretized, and then the accelerometer mass is added as a point mass on
a discrete element of the structural model.

The problem of a vibrating finite continuous thin plate with concentrated masses also has an extensive literature. The
early work is surveyed in Leissa’s report [7] and the 1985 paper by Nicholson and Bergman [8] has a good bibliography.
For two later studies, see [9] and [10].
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In this paper, we begin by developing an analytical model of a thin plate carrying N concentrated masses excited by a
force applied over a finite region (which we subsequently take to be circular). The plate is taken to be infinite in extent
and Kirchhoff–Love theory is used. Thus, for time-harmonic motions, the out-of-plane displacement w(x, y) satisfies the
partial differential equation

∇4w − k4w = q, (1)

where k is the flexural wavenumber and q contains two pieces, one coming from the applied force, and one coming from
the concentrated masses; see Eq. (2) below for details. For problems involving circular geometry, such as forcing over a
circular region in the presence of a concentric circular solid ring or scattering of a plate wave by a circular inclusion or
hole, it is natural to introduce plane polar coordinates leading to separated solutions in terms of Bessel functions [11]. We
proceed more directly by working with the two-dimensional Fourier transform of Eq. (1). This leads to an explicit N × N

linear algebraic system of equations for the values of w at the locations of the N concentrated masses. Systems of this
kind were obtained by Evans and Porter [12]; the fact that w is finite at the point-mass locations is a consequence of the
fourth-order biharmonic operator appearing in Eq. (1). Further applications have been made to infinite periodic arrays
of point masses [13–16] and to various configurations of N point masses [14,17–19]. For example, O’Neill et al. [17]
investigated how a rigid inclusion may be cloaked by active control of a few point masses in its vicinity.

We give one numerical example in Section 5, where two masses are attached to the plate and a simple forcing is
applied over a circular region. The analytical model developed herein is compared to a finite element model to ensure
model validation and accuracy of the results obtained.

In Section 6, we consider the problem of N masses arranged evenly around a circle, with forcing applied over a
concentric circular region. The symmetry of this problem implies that each mass has the same displacement. We then
investigate what happens as N → ∞, and we show that, in the limit, the solution of a related problem for a thin solid
ring is obtained. In Section 7, we consider the same problem except we remove the central forcing and replace it with an
incident plane wave. This problem is more difficult because one has to calculate the displacement of each mass by solving
the N × N system. The system could be solved numerically (as done by Evans and Porter [12]), but the system matrix is
circulant and so it can be inverted analytically. This is done, and then we can investigate the limit as N → ∞. Again, a
connection with a related solid ring problem is shown. (The relevant solid ring problems are solved in Appendix B.)

There are some concluding remarks in Section 8.

2. Formulation

Consider an infinite thin plate in the xy-plane. A typical point in the plate has position vector r = (x, y) with respect to
a chosen origin. The plate is forced over a region Ω; later, we shall take Ω to be a disc 0 ≤ r = |r| < a, and we shall also
consider certain scattering problems. In addition, there are N point masses on the plate, located at r = r j, j = 1, 2, . . . ,N;
the masses are all outside Ω . We assume time-harmonic motions, with a suppressed time dependence of e−iωt .

The basic unknown is the out-of-plane displacement w(r). It satisfies

∇4w − k4w = f (r) +
N∑

j=1

Mjw(r j) δ(r − r j). (2)

In this equation, the flexural wavenumber k =
(
ρhω2/D

)1/4
, where the plate has thickness h, density ρ and flexural

rigidity D = Eh3/(12[1 − ν2]); here E is Young’s modulus and ν is Poisson’s ratio. Also, Mj = −mjω
2/D, where mj is

the mass of the jth point mass on the plate, and δ is the two-dimensional Dirac delta function. The applied forcing is
represented by f ; when Ω is a disc of radius of a, we take

f (r) = f0H(a − r) where f0 = − F0

πa2D
, (3)

H is the Heaviside unit function and F0 is the magnitude of the excitation force. Eq. (2) must be supplemented with a
radiation condition.

We will solve Eq. (2) in Section 4, but first we solve a simpler problem. This will help explain our methodology in a
simpler setting.

3. A simpler problem: Green’s function

Consider an infinite plate with point forcing at the origin, so that we have

∇4w − k4w = A δ(r) (4)

where A is a constant (an inverse length, because the two-dimensional δ(r) has dimensions (length)−2). We seek a
solution representing outgoing waves as r → ∞. In fact, the solution of this problem is well known; we give some
references later, below Eq. (12).
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To solve Eq. (4), we apply the two-dimensional Fourier transform. (It is traditional to use a Hankel transform but that
offers no advantages.) Thus define

W (s) = F{w} =
∫∫

w(r) e−is·r dr, (5)

where the integral is over the whole xy-plane. Then we obtain ∆(s)W (s) = A, where

∆(s) = s4 − k4 and s = |s|.
Evidently, ∆(s) = 0 at s = ±k and at s = ±ik; we will have to handle these zeros properly, but we shall do that later.

Proceeding formally for now, we have W = A/∆ and then, inverting,

w(r) = A

(2π )2

∫∫
eis·r

∆(s)
ds.

Introducing polar coordinates, r = r(cos θ, sin θ ) and s = s(cosβ, sinβ), the integration over β is standard; it uses

eis·r =
∞∑

n=−∞
in Jn(sr) e

in(θ−β),

where Jn is a Bessel function. Thus we obtain

w(r) = AG(r) with G(r) = 1

2π

∫ ∞

0

J0(sr)

s4 − k4
s ds. (6)

In this formula, we must indent the contour below the singularity (a simple pole) at s = +k so that the radiation condition
is satisfied. To see this, split the integral into two, using

2J0(sr) = H
(1)
0 (sr) + H

(2)
0 (sr), (7)

where H
(1)
0 and H

(2)
0 are Hankel functions. Thus

G(r) = 1

4π

(
G(1) + G(2)

)
with G(n)(r) =

∫ ∞

0

H
(n)
0 (sr)

s4 − k4
s ds, n = 1, 2. (8)

To evaluate G(1), we close the contour using a large quarter-circle in the first quadrant of the complex s-plane and a piece
of the positive imaginary axis indented to the right of the pole at s = +ik. This indentation makes a contribution as does
the pole at s = k (which is inside the contour). The large quarter-circle does not contribute as its radius increases because
of the large-argument behavior of H (1)

0 . See Appendix A.1 for details. Eventually, we obtain

G(1)(r) = π i

2k2
H

(1)
0 (kr) − 1

2k2
K0(kr) − 2

π i

∫ ∞

0

K0(σ r)

σ 4 − k4
σ dσ , (9)

where the first term on the right comes from the pole at s = k, the second term comes from the pole at s = ik, the last
term is a principal-value integral arising from the integral along the positive imaginary axis (from s = 0 to s = +i∞) and
Kn is a modified Bessel function.

To evaluate G(2), we close the contour using a large quarter-circle in the fourth quadrant of the s-plane and a piece of
the negative imaginary axis indented to the right of the pole at s = −ik. There are no singularities inside the contour. The
large quarter-circle does not contribute as its radius increases because of the large-argument behavior of H (2)

0 . Hence

G(2)(r) = − 1

2k2
K0(kr) + 2

π i

∫ ∞

0

K0(σ r)

σ 4 − k4
σ dσ . (10)

Adding G(1) and G(2), we see that the principal-value integrals cancel, leaving

G(r) = i

8k2
H

(1)
0 (kr) − 1

4πk2
K0(kr). (11)

The first term gives outgoing waves (recall that the suppressed time-dependence is e−iωt ) whereas the second term decays
exponentially with increasing r . Both terms are logarithmically infinite as r → 0 but G(r) is finite at r = 0:

G(0) = i

8k2
. (12)

This can be shown by letting r → 0 in Eq. (11) or by direct evaluation of the integral defining G(0) (see Appendix A.2).
In more detail, starting from Eq. (11), we obtain G(r) ∼ G(0) + (8π )−1r2 log (kr) as r → 0, so that G′(0) = 0 but
G′′(r) ∼ (4π )−1 log (kr) as r → 0.

The formula in Eq. (11) can be found in [20, p. 211], [21, Eq. (7.66)], [11, Eq. (28)] and [12, Eq. (2.3)], for example.
The fact that the outgoing solution of Eq. (4) (which is proportional to G(r), see Eq. (6)) is finite at r = 0 (where the

point loading is applied) is unusual, and is a consequence of the biharmonic operator in Eq. (4). This fact will be exploited
later.
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4. Solution of the full problem

Take the two-dimensional Fourier transform of Eq. (2); see Eq. (5). We obtain

∆(s)W (s) = F (s) +
N∑

j=1

Mjw(r j) e
−is·r j (13)

where ∆(s) = s4 − k4, s = |s| and F = F{f }. Proceeding formally as in Section 3, we divide by ∆ and invert, giving

w(r) = wf (r) +
N∑

j=1

wjMj G(|r − r j|), (14)

where wj = w(r j), G is given by Eq. (11) and

wf (r) = 1

(2π )2

∫∫
F (s)

∆(s)
eis·r ds. (15)

Eq. (14) gives w(r) everywhere once we have computed wf (r) and the N complex numbers wi, i = 1, 2, . . . ,N . To find
these numbers, we simply collocate Eq. (14) at r = r i, giving

wi −
N∑

j=1

wjMj G(|r i − r j|) = wf (r i), i = 1, 2, . . . ,N, (16)

recalling that G(0) is finite, see Eq. (12). Thus we have an N ×N linear algebraic system for the displacements of the point
masses, Eq. (16). Once solved, w(r) is given by Eq. (14).

The method used here is essentially that developed by Evans and Porter [12]. See especially [12, §3] where results for
scattering of a plane wave by N point masses equally spaced around a circle are given; we shall return to this problem
in Section 7.

Evidently, w = wf in the absence of the point masses, so that wf itself must represent outgoing waves. When f

is axisymmetric and given by Eq. (3), wf (r) can be evaluated explicitly (Appendix A.3); see Eq. (A.6) when r > a and
Eq. (A.7) when 0 ≤ r < a.

The far field

When kr ≫ 1, we can approximate the exact solution, Eq. (14). As the modified Bessel function K0(kr) in Eq. (11)
decays exponentially, it can be discarded, and we retain the large-argument approximation for H

(1)
0 (kr) [22, 10.2.5]. We

can do the same with wf when f is given by Eq. (3), see Eq. (A.6). Hence

w(r) = w(r, θ ) ∼
√

2

π
e−iπ/4 e ikr

√
kr

{
Ff + FN (θ )

}
as kr → ∞, (17)

where r̂ = r/r = (cos θ, sin θ ) gives the direction of observation. The quantity Ff + FN is the far-field pattern. The first
part, Ff , is due to the forcing itself; from Eq. (A.6),

Ff = iπ f0a

4k3
J1(ka). (18)

Of more interest is FN (θ ), coming from the N point masses. Using |r − r j| ∼ r − r̂ · r j as r → ∞, we obtain

FN (θ ) = i

8k2

N∑

j=1

wjMj exp (−ikr̂ · r j). (19)

5. Application: a numerical example with two masses

A numerical example problem is now developed and compared to finite element analysis (FEA) for model validation.
The system parameters are as follows: Young’s modulus E = 2.00 × 108(1 − 0.2i) Pa, Poisson’s ratio ν = 0.45, thickness
h = 0.002m, density ρ = 1100kgm−3, frequency ω/2π = 100Hz, applied load radius a = 0.0254m, magnitude of
applied force F0 = 1N. (We have included some simple structural damping by choosing E to be complex; this makes
the FEA computations easier because the computational domain has to be truncated.) These give a flexural rigidity of
D = 0.1672 − 0.0334iNm and a flexural wavenumber of k = 47.45 + 2.34im−1.

For this validation problem, there are two attached masses. Their masses and locations are given by mj and r j =
rj(cos θj, sin θj), respectively, with j = 1, 2. We take m1 = 0.01kg, r1 = 0.2032m, θ1 = π/2, m2 = 0.02kg, r2 = 0.3048m
and θ2 = π/4.
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Fig. 1. Normal displacement in the xy-plane for the analytical model (left) and the finite element model (right) when there is central forcing and
two attached masses (indicated by the small white circular markers). The scale is decibels referenced to meters.

Fig. 2. Normal displacement for the analytical model (solid line) and the finite element model (circular markers) when there is central forcing and
two attached masses. The scale is decibels referenced to meters.

The problem is formulated and the analytical results are compared to the FEA results graphically. Fig. 1 gives two-
dimensional plots of the magnitude of the normal displacement of the plate in the xy-plane, |w(x, y)|, using the analytical
model developed in Section 4 (left) and the finite element model (right), displayed using a decibel scale referenced to
meters. The locations of the masses are depicted with two single white circular markers. There is broad based agreement
between the analytical model and the finite element model, indicating that the models are producing very similar
responses. Fig. 2 shows a more detailed comparison along the x-axis and along the y-axis (which passes through the
second attached mass).

6. Application: a circular ring of point masses

Suppose we have N point masses, all of massm, equally spaced around the circle r = b, with b > a. Let h = 2π/N be the
angular spacing between adjacent masses; they are located at r = r j = b(cos θj, sin θj) where θj = jh and j = 1, 2, . . . ,N .
(Note that r0 = rN .)

We assume that the forcing is provided by Eq. (3) implying that the masses have the same displacement; thus wj = w0

and Mj = M for j = 1, 2, . . . ,N , where M = −mω2/D.
From Eq. (16), w0 is given by

w0 = wf (b)

1 − ΩN (r0)
with ΩN (r0) = M

N∑

j=1

G(|r j − r0|), (20)
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where wf (r) is given by Eq. (A.6) and |r j − r0| = b
√
2 − 2 cos θj = 2b |sin (jh/2)|. Then Eq. (14) gives

w(r) = wf (r) + wf (b)ΩN (r)

1 − ΩN (r0)
.

The component of the far-field pattern associated with the N masses, FN (θ ) (see Eq. (17)), is given by

FN (θ ) = i

8k2
w0EN (θ ) = i

8k2
wf (b)

EN (θ )

1 − ΩN (r0)

(see Eq. (19)), where

EN (θ ) = M

N∑

j=1

exp {−ikb cos (jh − θ )}.

Let us suppose now that N is large. Intuitively, we expect that FN should approach that for a solid thin ring of radius
b. Suppose the solid ring has mass Mr, and then choose the mass of each point mass according to Nm = Mr. Equivalently,
we have NM = Mr = −Mrω

2/D as M = −mω2/D. Hence, as h = 2π/N ,

EN (θ ) = Mr

2π
h

N∑

j=1

e−ikb cos (jh−θ )

∼ Mr

2π

∫ 2π

0

e−ikb cos (ϑ−θ )dϑ = Mr J0(kb)

as N → ∞. This follows because the sum can be seen as a way of approximating the integral by the trapezoidal rule.
Moreover, as the integrand is smooth and 2π-periodic, the error is exponentially small as a function of N [23].

Let us now examine ΩN (r0). From Eq. (11) and Eq. (20)2, we have

ΩN (r0) = Mr

2π
h

N∑

j=1

G(2kb |sin (jh/2)|)

∼ Mr

2π

∫ 2π

0

G(2kb |sin (ϑ/2)|) dϑ = Mr L0 (21)

as N → ∞, where, from Eq. (A.3),

Ln = i

8k2
H (1)

n (kb) Jn(kb) − 1

4πk2
Kn(kb) In(kb) = L−n. (22)

However, although the integrand in Eq. (21) is 2π-periodic with one continuous derivative, its second derivative is
logarithmically infinite at ϑ = 0 and ϑ = 2π (see the discussion below Eq. (12)). Consequently, the limit Eq. (21) is
achieved rather slowly, O(N−2) as N → ∞ [24, p. 30, Example 2], [25, Theorem 1.19].

Comparison with the solution of the solid-ring problem (see Appendix B.1) shows that we do obtain the corresponding
far-field pattern as N → ∞, but, as already noted, this limit is reached rather slowly as the number of masses increases.

7. Application: scattering by a ring of point masses

We consider the same geometry as in Section 6, with a ring of N identical, equally-spaced point masses. However, we
suppose that the forcing is provided by an incident plane wave instead of the central forcing used in Section 6. This has
the effect that the motion of each mass has to be calculated because we no longer have an axisymmetric problem.

Before specializing to a ring, let us start with the problem of scattering by N point masses, with arbitrary locations
and masses. Let w denote the total displacement field. It satisfies Eq. (2) with f ≡ 0. The incident wave win satisfies
∇4win − k4win = 0 everywhere so that the scattered field wsc = w − win satisfies

∇4wsc − k4wsc =
N∑

j=1

wjMj δ(r − r j), (23)

together with a radiation condition. Here, wj = w(r j), as before. Solving Eq. (23), we obtain (see Eq. (14) with wf ≡ 0)

wsc(r) =
N∑

j=1

wjMj G(|r − r j|). (24)
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To find the complex numbers wj, we evaluate at each point-mass location. As wsc(r j) = wj − win(r j), we obtain an N ×N
system,

wi −
N∑

j=1

wjMj G(|r i − r j|) = win(r i), i = 1, 2, . . . ,N. (25)

Evidently, this system has the same structure as Eq. (16). It is [12, Eq. (3.3)].
Let us return to scattering by a ring of point masses. The incident wave is

win(r) = W eikx

where W is a constant (a length). As Mj = M and |r i − r j| = 2b|sin {(i − j)h/2}| with h = 2π/N , the system Eq. (25)
reduces to

N∑

j=1

Ci−jwj = gi, i = 1, 2, . . . ,N, (26)

where gj = W exp (ikb cos jh),

C0 = 1 − MG(0), Cj = −MG(2b|sin (jh/2)|), j 6= 0 mod N

and Cj is N-periodic: Cj+mN = Cj, m = ±1, ±2, . . ..
Movchan et al. [19] have considered the homogeneous version of Eq. (26), and found non-trivial solutions for certain

complex values of k.
Evans and Porter [12, §3] gave some numerical solutions of Eq. (26) for N = 4 and N = 8. However, it is notable that

Eq. (26) can be solved explicitly, for any N , because the system matrix in Eq. (26) is a circulant matrix; see [26] and [27]
for details and related applications. Thus introduce discrete Fourier transforms (DFTs),

wn = 1

N

N∑

j=1

w̃j ̟
−nj and w̃n =

N∑

j=1

wj ̟
nj (27)

where ̟ = e2π i/N = eih. Then the DFT of the solution to Eq. (26) is given by w̃j = g̃j/̃Cj with

g̃n =
N∑

j=1

gj ̟
nj and C̃n =

N∑

j=1

Cj ̟
nj.

Having determined wn, the displacement anywhere in the plate is given by Eq. (24),

w(r) = win(r) + M

N∑

j=1

wj G(|r − r j|). (28)

In particular, at the center of the ring, w(0) = W + MG(b) w̃0, and the far-field pattern is

FN (θ ) = iM

8k2

N∑

j=1

wj e
−ikb cos (jh−θ ) = iM

8k2

∞∑

n=−∞
w̃n(−i)nJn(kb) e

−inθ . (29)

Suppose now that N is large. Proceeding as in Section 6, with M = Mr/N ,

1

N
g̃n = W

2π
h

N∑

j=1

eikb cos (jh)einjh ∼ W

2π

∫ 2π

0

eikb cos θeinθ dθ = W in Jn(kb)

as N → ∞, with exponentially fast convergence.
Similarly, but with a much slower rate of convergence, we have

C̃n = 1 − Mr

2π
h

N∑

j=1

G(2b|sin (jh/2)|) einjh

∼ 1 − Mr

2π

∫ 2π

0

G(2b|sin (ϑ/2)|) einϑ dϑ = 1 − Mr Ln

as N → ∞, using Eq. (A.3). Then, using M = Mr/N and w̃n = g̃n/̃Cn, Eq. (29) gives the estimate

FN (θ ) ∼ iMr

8k2
W

∞∑

n=−∞

J2n (kb)

1 − MrLn

e−inθ as N → ∞.

This limiting result agrees with the corresponding result for a solid ring, Eq. (B.8).
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8. Discussion

The method described in this paper provides an efficient way to compute the effect of any number of attached point
masses on wave propagation in an infinite thin plate. It could be extended to problems where the masses have rotary
inertia; this leads to a modified form of Eq. (2) in which there are additional terms involving the gradient of w evaluated
at the mass locations [28, Eq. (3)].

Future work will consider thick plates with attached discrete masses. This will allow analysis for a much higher
frequency range and it will provide an ability to model greater plate thicknesses. It will, however, produce a model of
significantly greater complexity.
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Appendix A. Evaluation of some integrals

A.1. Evaluation of G(r)

We give a few more details of the computations outlined in Section 3. After splitting G as Eq. (8), we start with G(1)(r),
r > 0. Close the contour with a large quarter-circle in the first quadrant of the complex s-plane. The large-argument
behavior of H (1)

0 [22, 10.2.5] ensures that the quarter-circle does not contribute as its radius grows. The pole at s = k
makes a residue contribution of

2π i
1

4k2
H

(1)
0 (kr).

Thus

G(1)(r) +
∫

C1

H
(1)
0 (sr)

s4 − k4
s ds = π i

2k2
H

(1)
0 (kr), (A.1)

where the contour C1 comes down the positive imaginary axis (from s = +i∞ to s = 0) indented to the right of the pole
at s = ik. The indentation contributes

−π i
ik

4(ik)3
H

(1)
0 (ikr) = 1

2k2
K0(kr),

using [22, 10.27.8]. The straight parts of C1 give a principal-value integral; if we put s = iσ on that piece of the contour,
we see that

∫

C1

= 1

2k2
K0(kr) +

∫ 0

∞

H
(1)
0 (iσ r)

σ 4 − k4
iσ (i dσ )

= 1

2k2
K0(kr) + 2

π i

∫ ∞

0

K0(σ r)

σ 4 − k4
σ dσ .

Substitution in Eq. (A.1) leads to Eq. (9).
For G(2)(r), we close the contour with a large quarter-circle in the fourth quadrant of the s-plane. The large-argument

behavior of H (2)
0 [22, 10.2.6] ensures that the quarter-circle does not contribute as its radius grows. There are no poles

inside the contour. Hence

G(2)(r) +
∫

C2

H
(2)
0 (sr)

s4 − k4
s ds = 0 (A.2)

where the contour C2 goes up the negative imaginary axis (from s = −i∞ to s = 0) indented to the right of the pole at
s = −ik. The indentation contributes

π i
−ik

4(−ik)3
H

(2)
0 (−ikr) = 1

2k2
K0(kr).
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The straight parts of C2 give a principal-value integral; if we put s = −iσ on that piece of the contour, we see that
∫

C2

= 1

2k2
K0(kr) +

∫ 0

∞

H
(2)
0 (−iσ r)

σ 4 − k4
(−iσ )(−i dσ )

= 1

2k2
K0(kr) − 2

π i

∫ ∞

0

K0(σ r)

σ 4 − k4
σ dσ .

Substitution in Eq. (A.2) leads to Eq. (10).
A certain integral of G is needed in Sections 6 and 7. It is

1

2π

∫ 2π

0

G(2kb |sin (ϑ/2)|) einϑ dϑ = 2

π

∫ π/2

0

G(2kb sinϑ) cos 2nϑ dϑ

= i

4πk2

∫ π/2

0

H
(1)
0 (2kb sinϑ) cos 2nϑ dϑ − 1

2π2k2

∫ π/2

0

K0(2kb sinϑ) cos 2nϑ dϑ

= i

8k2
H (1)

n (kb) Jn(kb) − 1

4πk2
Kn(kb) In(kb) = Ln, (A.3)

say. The integrals were evaluated using formulas (6), (7) and (13) in [29, §6.681]. See also [19, §3.3].

A.2. Direct evaluation of G(0)

The evaluation of G(0) is elementary. We give this evaluation because it can be used to check the value of G(r) as
r → 0. We use partial fractions, paying attention to potential divergences. As J0(0) = 1, Eq. (6) gives

G(0) = 1

2π

∫ ∞

0

s ds

s4 − k4
= 1

4πk2

∫ ∞

0

(
s

s2 − k2
− s

s2 + k2

)
ds.

Then, for any X > k,
∫ X

0

s ds

s2 + k2
= 1

2

[
log (s2 + k2)

]X
0

= 1

2
log (X2 + k2) − log k,

1

2k2

∫ X

0

s ds

s2 − k2
= 1

4k2

∫ X

0

(
1

s − k
+ 1

s + k

)
ds,

∫ X

0

ds

s + k
= log (X + k) − log k.

Finally, consider the remaining integral,
∫ X

0 (s− k)−1 ds. The contour is indented below the pole at s = k. This indentation
contributes π i. The rest of the integral leads to a principal-value integral,

lim
ε→0

(
−

∫ k−ε

0

ds

k − s
+

∫ X

k+ε

ds

s − k

)
= lim

ε→0

(
[log (k − s)]k−ε

0 + [log (s − k)]Xk+ε

)

= log (X − k) − log k.

Assembling all the pieces, we have

G(0) = 1

8πk2
lim
X→∞

(
π i + log

X2 − k2

X2 + k2

)
= i

8k2
.

A.3. Evaluation of wf

The function wf is defined by Eq. (15) in terms of F = F{f }. We shall evaluate wf when the forcing is given by Eq. (3).
In that case, we have

F (s) =
∫

Ω

f (r) e−is·r dr = f0

∫ a

0

∫ 2π

0

e−isr cos (θ−β) r dθ dr

= 2π f0

∫ a

0

J0(sr) r dr = 2π f0
a

s
J1(sa). (A.4)

Then substitution in Eq. (15) gives

wf (r) = f0a

2π

∫∫
J1(sa)

∆(s)
eisr cos (θ−β) ds

s

= f0a

∫ ∞

0

J1(sa) J0(sr)

s4 − k4
ds. (A.5)
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In this formula, the contour is indented below the singularity at s = k so that the radiation condition is satisfied. Also,
we shall write wf (r) for wf (r).

Suppose first that r > a. We proceed as in Appendix A.1. Using Eq. (7), we write

wf (r) = f0a

2

(
w

(1)
f + w

(2)
f

)

where

w
(n)
f (r) =

∫ ∞

0

J1(sa)

s4 − k4
H

(n)
0 (sr) ds, n = 1, 2.

Using the same notation as in Appendix A.1, we obtain

w
(1)
f (r) +

∫

C1

J1(sa)

s4 − k4
H

(1)
0 (sr) ds = 2π i

J1(ka)

4k3
H

(1)
0 (kr),

w
(2)
f (r) +

∫

C2

J1(sa)

s4 − k4
H

(2)
0 (sr) ds = 0.

For C1, the indentation to the right of s = ik contributes

−π i
J1(ika)

4(ik)3
H

(1)
0 (ikr) = 1

2k3
I1(ka) K0(kr)

whereas for C2 the indentation to the right of s = −ik contributes

π i
J1(−ika)

4(−ik)3
H

(2)
0 (−ikr) = 1

2k3
I1(ka) K0(kr).

The principal-value part of the integral along C1 is
∫ 0

∞

J1(iσa)

σ 4 − k4
H

(1)
0 (iσ r) (i dσ ) = 2

π i

∫ ∞

0

I1(σa)

σ 4 − k4
K0(σ r) dσ

whereas the principal-value part of the integral along C2 is
∫ 0

∞

J1(−iσa)

σ 4 − k4
H

(2)
0 (−iσ r) (−i dσ ) = − 2

π i

∫ ∞

0

I1(σa)

σ 4 − k4
K0(σ r) dσ .

Adding w
(1)
f and w

(2)
f , the principal-value integrals cancel, and we are left with

wf (r) = f0a

2k3

{
π i

2
J1(ka)H

(1)
0 (kr) − I1(ka) K0(kr)

}
, r > a. (A.6)

Suppose next that r < a (so that we are evaluating wf at points in Ω). In order to have proper decay at infinity,
we split J1(sa) in Eq. (A.5), using 2J1(sa) = H

(1)
1 (sa) + H

(2)
1 (sa), but this introduces singularities at s = 0 because

H
(1)
1 (z) ∼ −H

(2)
1 (z) ∼ 2/(π iz) as z → 0.

We integrate H
(1)
1 (sa) J0(sr) (s

4 − k4)−1 around a closed contour C1 comprising a piece from s = ε to s = R passing
below the pole at s = k; a large quarter-circle from s = R to s = iR; a piece from s = iR to s = iε, indented to the right of
the pole at s = ik; and a small quarter-circle from s = iε to s = ε. Similarly, we integrate H

(2)
1 (sa) J0(sr) (s

4 − k4)−1 around
a closed contour C2 comprising a piece from s = ε to s = R passing below the pole at s = k; a large quarter-circle from
s = R to s = −iR; a piece from s = −iR to s = −iε, indented to the right of the pole at s = −ik; and a small quarter-circle
from s = −iε to s = ε. The pole at s = k is inside C1 but outside C2. Proceeding as before, the large quarter-circles
do not contribute as R → ∞ and, when the two integrals are added, it is found that the two-principal-value integrals
from integrating along the imaginary axis cancel. The indentations at s = ±ik contribute equally, as do the two small
quarter-circles as ε → 0. We obtain

wf (r) = f0a

2k3

{
π i

2
H

(1)
1 (ka) J0(kr) + K1(ka) I0(kr) − 2

ka

}
, r < a. (A.7)

Eqs. (A.6) and (A.7) agree with formulas obtained by Klanner and Ellermann [30, Eq. (3.25)] using a different method.
Moreover, using Wronskians, we can check that wf (r) is continuous at r = a.

Appendix B. Ring problems

We consider two problems involving thin-plate waves in the presence of a thin circular ring of mass Mr and radius
b. We have not found solutions of these problems in the literature; there are a few papers on free vibrations of circular
plates with a concentric circular support [31–35]. For such geometries, separated solutions in plane polar coordinates can
be used [11].
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B.1. An axisymmetric problem

Consider the axisymmetric problem with waves forced by Eq. (3). The governing equation is

∇4w − k4w = f (r) + Mr (2πb)−1w(b) δ(r − b), (B.1)

where Mr = −Mrω
2/D. The Fourier transform of Eq. (B.1) is

∆(s)W (s) = F (s) + Mr J0(sb)w(b).

Dividing by ∆ and inverting gives

w(r) = wf (r) + Mr w(b)J0(r, b), (B.2)

where

Jn(r, b) = 1

2π

∫ ∞

0

Jn(sr)Jn(sb)

s4 − k4
s ds = Jn(b, r) = J−n(r, b). (B.3)

The method used to evaluate G(r) can be used to show that

Jn(r, b) = i

8k2
H (1)

n (kr)Jn(kb) − 1

4πk2
Kn(kr) In(kb), r > b. (B.4)

As a check, J0(r, b) reduces to G(r) when b = 0; see Eq. (6)2 and Eq. (11).
From Eq. (B.2), (1 − Mr L0) w(b) = wf (b), where we have noted that Jn(b, b) = Ln; compare Eq. (A.3) with Eq. (B.4).

Hence

w(r) = wf (r) + Mr wf (b)J0(r, b)

1 − Mr L0
.

The corresponding far-field pattern (see Eq. (17)) is Ff + Fr, where Ff is given by Eq. (18) and

Fr = i

8k2
wf (b)

Mr J0(kb)

1 − Mr L0
. (B.5)

B.2. A scattering problem

Let us replace Eq. (B.1) by

∇4wsc − k4wsc = Mr (2πb)−1w(b, θ ) δ(r − b), (B.6)

with wsc = w − win giving outgoing waves. The Fourier transform of this equation is

∆(s)Wsc(s) = Mr

∞∑

n=−∞
(−i)nJn(sb) e

inβ ŵn,

where we have used the Fourier expansion w(b, θ ) =
∑

n ŵn e
inθ , which means

ŵn = 1

2π

∫ π

−π

w(b, θ ) e−inθ dθ.

Inverting Wsc = F{wsc} gives

wsc(r, θ ) = Mr

∞∑

n=−∞
ŵn Jn(r, b) e

inθ , (B.7)

with Jn defined by Eq. (B.3). To find ŵn, we use

wsc(b, θ ) = w(b, θ ) − win(b, θ ) =
∞∑

n=−∞

{
ŵn − W inJn(kb)

}
einθ

and Jn(b, b) = Ln, whence

ŵn(1 − MrLn) = W inJn(kb).

The far field can be obtained from Eq. (B.7), using Eq. (B.4) and [22, 10.2.5]. The corresponding far-field pattern is

F (θ ) = iMr

8k2

∞∑

n=−∞
(−i)nŵnJn(kb) e

inθ

= iMr

8k2
W

∞∑

n=−∞

J2n (kb)

1 − Mr Ln

einθ . (B.8)
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