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ABSTRACT:

Time-harmonic waves propagate along a cylindrical waveguide in which there is an obstacle. The problem is to
calculate the reflection and transmission coefficients. Simple explicit approximations are found assuming that the
waves are long compared to the diameter of the cross-section d. Simpler but useful approximations are found when
the lateral dimensions of the obstacle are small compared to d. Results for spheres, discs, and spheroids are given.
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I. INTRODUCTION

A basic problem in acoustics concerns propagation
along a cylindrical waveguide containing an obstacle.
Practical applications arise in aeroacoustics (interaction of
sound with rotor and stator in turbomachinery'), noise con-
trol (muffler, silencer, and duct systems designz), and ultra-
sound diagnostics (flow meters, particle and bubble
counters, and localisation of blockage in pipelines®). One
prototypical problem has a cylinder of circular cross-section
(a tube) containing a spherical obstacle. Another important
application is to the problem of scattering by a bi-periodic
array (lattice) of identical objects: a cylindrical waveguide
of rectangular cross-section can represent a periodic element
of such a lattice. These problems are attracting an increasing
interest due to their relevance in the modeling and tailored
design of certain metamaterials and metasurfaces.

Some of these problems can be solved by numerical
methods or by semi-analytical methods. References will
be given later for acoustic problems; for electromagnetic
scattering of a waveguide mode by a sphere inside a cylin-
der, see Refs. 4-6; for analogous elastodynamic problems,
see Refs. 7-9. Perhaps inevitably, such methods are
complicated.

In this paper, relatively simple approximations are
obtained under certain simplifying assumptions. To begin, it
is assumed that the cylindrical boundary of the waveguide is
sound hard (Neumann boundary condition), implying that a
time-harmonic plane wave can propagate along the wave-
guide. Next, it is assumed that the wavelength is long com-
pared to the diameter of the waveguide cross-section, long
enough so that no other propagating waves can exist. Then,
when a plane wave is incident upon an obstacle in the wave-
guide, the basic problem is to compute the reflection and
transmission coefficients. The long-wave/low-frequency
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assumption suggests using matched asymptotic expansions,
in the spirit of Lamb (Sec. 307 of Ref. 10). This approach
was developed in a previous paper'' for two-dimensional
problems with sound-hard obstacles. Here, extensions to
three-dimensional problems and sound-soft obstacles are
made.

The approximations derived require information
obtained by solving certain related boundary value problems
for Laplace’s equation. One of these is uniform potential
flow along the cylinder past the obstacle. The difference
between the values of the potential at the two ends of the
(infinite) cylinder is a constant, 2L (in a dimensionless
form), known as the blockage coefficient. For sound-hard
obstacles, the quantity L arises in the context of the theory
of Coulter counters, electrical devices used to measure the
size and concentration of small objects in a liquid using the
change in resistance due to their presence; for reviews and
collections of approximations to L, see Refs. 12 and 13. For
sound-soft obstacles, however, no published computations
of L have been found.

In addition, for sound-soft scatterers only, it is found
that a second potential problem must be analysed and two
dimensionless constants (denoted by P and Q) extracted.
The boundary condition on the harmonic potential is that it
be constant on the obstacle.

Exact integral formulas are derived for L, P, and Q in
Sec. IV. These are used to obtain various approximations,
which are compared with earlier work when available.
Simple explicit approximations are obtained for discs
(Sec. V), spheres (Sec. VI), and spheroids (Sec. VII). For
small sound-soft obstacles, it turns out that P provides the
dominant contribution to the reflection and transmission
coefficients.

In Sec. VIII, the problem of scattering by a sphere in a
tube is considered in detail. The approximations obtained for
the reflection and transmission coefficients are shown to agree
with Linton’s asymptotic approximations.'* Concluding
remarks are made in Sec. IX.
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Il. FORMULATION

Consider a long cylindrical waveguide containing a
bounded obstacle B. Take the z-axis along the cylinder (par-
allel to the cylinder’s generators). Assume B is symmetric
with respect to the cross-sectional plane z=0.

Assume the cylinder wall W is sound hard. Then, a
time-harmonic plane wave can propagate along the cylinder;
it is partly reflected by the obstacle and partly transmitted.
The problem is to calculate the reflection and transmission
coefficients. The motion is governed by the three-
dimensional Helmholtz equation,

(V24 k2)u =0, (1)

where k = w/c, ¢ is the speed of sound, and there is a sup-
pressed time dependence of e . The normal derivative of
u is zero on the sound-hard cylinder wall, Ou/0n = 0 on W.
There is also a boundary condition on the surface of the
scatterer, S, written concisely as Bu = 0 on S. Two cases are
considered here

Bu =u=0onS,
Bu = 0u/0n=0onS§,

sound-soft scatterer,

sound-hard scatterer.

As a special case, situations where the scatterer shrinks
to a screen occupying a piece of the cross-sectional plane at
z=0 will be considered. For example, B could be a thin cir-
cular disk. There are also complementary problems; for
example, the cross-sectional plane could be rigid apart from
a circular hole or aperture. These will be referred to as iris
problems.

Define a length a by equating the cylinder’s cross-
sectional area to ma®. For a tube (a cylinder with a circular
cross section), a is the cross-sectional radius.

The incident wave is ™ = e**. Assume that ka is suffi-
ciently small so that the only propagating modes are e %,
With u as the total field, define the scattered field by
1% = u — u™; this field must be outgoing, whence

" T elke, zZ — 00,
elkz _{_Reflkz, z — —00,
or, alternatively,
o ikz
U ~ (T 7“\3) e, — 09, (2)
Re ™, z — —00.

Here, R and T are the complex reflection and transmission
coefficients, respectively. They satisfy

R*+|T>=1 and RT* +R‘T =0, 3)

where the asterisk denotes complex conjugation.

As the obstacle is symmetric about the plane z =0, the
whole problem can be separated into two, an antisymmetric
problem (odd function of z, subscript a) and a symmetric
problem (even function of z, subscript s), using
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U=ty +us, u"=uy +u', u=u +u,

with ' = isinkz and u," = cos kz. Equation (2) defines u*
in the outer region, where any evanescent terms have been
discarded. In that region,

u; =Dy ekl sgnz, u) =D e'/"|“"", (4)

where D, and Dy are (dimensionless) constants. Comparison
with Eq. (2) gives

R=Ds—D,, T—1=Ds+D,. (5)

Direct numerical computations of R and T for specific
geometries are feasible but complicated. If the cylinder W
has a square or rectangular cross-section, the problem is
equivalent to a plane wave at normal incidence to a two-
dimensional bi-periodic array of identical scatterers. Such
lattice problems have extensive literature and efficient
numerical methods have been developed. 1516 For lattice iris
problems (an infinite thin rigid screen with a bi-periodic
array of holes), see Ref. 17.

For the problem of scattering by a sound-hard sphere in
a sound-hard tube, see Refs. 14, 18, and 19. Bostrom'® also
gives results for spheroids and for penetrable spheres.
Linton'* also gives results for soft spheres and for soft tubes.
Kubenko and Dzyuba'® do not consider the reflected or
transmitted waves. For the iris problem of a tube with a rigid
screen at z=0 containing a circular hole, see Table V in
Ref. 20.

Approximations to R and T are sought, assuming that
ka < 1. For lattice problems, all the details were worked
out by Twersky.?! Subsequent papers include Refs. 17, 22,
and 23.

The focus here will be on axisymmetric tube problems.
For such problems, introduce cylindrical polar coordinates
so that the wall W is at r =a. Also, introduce the smallest
finite circular cylinder (with cross-sectional radius b and
length 2#) that contains B; for a sphere of radius b, h =b;
for a disk of radius b, h =0; for a prolate spheroid, /4 is the
length of the semi-major axis. Finally, introduce two dimen-
sionless parameters,

Kk=ka and p=>b/a.

lll. LONG-WAVE APPROXIMATIONS

The inner expansions of the outer solutions, Eq. (4), are
Uy = U + u™ ~ Dysgnz + (1+D,)ixz, (6)
us = uy + uisn

~ (1 + D) + ik |z|Dg — % (1 + Dy)*2 (7)

as x|zZ| — 0, where 7 = z/a. These will be matched to the
solutions of certain inner problems.
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A. Determination of D,

Introduce scaled inner variables in a cross-sectional
plane, X =x/a and y =y/a, so that a scaled Laplacian
V> = @®V2 can be defined. Then, in the inner region, sup-
pose that

uy = ikulV(%,5,2) + O(k?)  ask = ka — 0.

Substitution in Eq. (1) gives @zugl) = 0 together with suit-
able scaled boundary conditions on the wall W and the
obstacle S.

Introduce a potential ®, with V2®, = 0 in the fluid,
0®,/0n =0on W, BO, =0on S and

®, =z/a+Lsgnz+o(l) asz — *oo. (8)
This represents potential flow past the obstacle. The dimen-
sionless constant L is sometimes known as the blockage
coefficient. Its computation is discussed in Sec. IV A.

Writing ugl = A,®,, comparison with Eq. (6) gives
A, = 14+ D, and D, /(ix) = A,L, whence

ikL 1

D, = - and A, = —.
1 —ikL 1 —ikL

€))

B. Determination of D,

Inspection of Eq. (7) suggests the following expansion
in the inner region:

ug =1 +iculV(x,3,2) — K2ul? (%,5,2) — - -- (10)
Substitution in Eq. (1) gives
Vi) =0, vu? =1, (11)

together with suitable scaled boundary conditions on W
and S.

It turns out that the boundary condition on S matters.
For a hard scatterer (Neumann condition), we have to deter-
mine an additive constant, whereas this complication does
not arise when the scatterer is soft (Dirichlet condition).

1. Soft scatterer

Introduce a potential @y with V2®, = 0 in the fluid,
0®;/0n =00on W, ®; = 1 on S and

O, =Plz|/a+ O+ o(1) asz— *oo, (12)
where P and Q are dimensionless constants; they are both to
be found by solving the boundary value problem for @, (see
Sec. IV B). Note that, unlike ®@,, @ satisfies an inhomoge-
neous boundary condition on S.

As the condition ug =0 on S is required, try the

approximation
uy = Ay(1 — @),
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and then match with the first two terms on the right-hand
side of Eq. (7); this gives —AP = ikDs and A (1 — Q)
= 1+ Dy, whence Ag = ik/{P + ix(1 — Q)} and

—P
b= oy (13)

2. Hard scatterer

Motivated by the last term on the right-hand side of Eq.
(7) and the second of Eq. (11), introduce a function ¥y with
a*V?¥, = 1 in the fluid with 9¥,/0n = 0 on both W and S,
together with W ~ (1/2)(z/a)* as z — *oo. It is conve-
nient to write

Y, =—(z/a)’ + Y.

N —

As a’V?>¥, =1, Y, is harmonic, V?>Y, =0 in the fluid,
with 9, /on = ~9/0n{ (1/2)(:/a)* } on S, 9Y/On = 0 on
W, and

Y, =M|z|/a+0o(l) asz— *oo, (14)
where M is a constant. The condition Eq. (14) eliminates
arbitrary additive constants from the problem for Y. In fact,
as in Sec. 2.2.2 of Ref. 11, M can be calculated exactly,

using a simple application of Green’s theorem,

B
2na3’

15)

where |B| is the volume of the scatterer B.
Next, also as in Ref. 11, try the approximation

us = B{Ws + Cs,

where B and C; are constants. Matching with the right-hand
side of Eq. (7) yields By = —(1 + Ds)x?, B{M = ikDy and
Cs = 1 + Dy, whence By=—x?/(1—ixM), Cs= (1 —i;cM)71
and

ikM

Dy=——.
1 —ikM

(16)

C. Reflection and transmission coefficients

The reflection and transmission coefficients are given
by Eq. (5) in terms of D, and Dy; these are given by Egs. (9)
and (13) when the scatterer is soft, and by Eqgs. (9) and (16)
when the scatterer is hard. The resulting approximations are
found to satisfy the constraints Eq. (3) exactly.

An application to scattering by a sphere in a tube is
given in Sec. VIII.

IV. POTENTIAL PROBLEMS: GENERAL RESULTS

The low-frequency approximations derived in Sec. III
involve the four dimensionless constants L, M, P, and Q.
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The constant M is given explicitly by the formula from Eq.
(15) in terms of the volume of the scatterer. The other three
(when they are needed) have to be determined by solving an
appropriate boundary value problem for Laplace’s equation.
In general, this is not a trivial task, although good approxi-
mations can be obtained for small scatterers (u < 1).

In this section, exact integral representations for L, P,
and Q are derived. In principle, formulas of this kind could
be derived using Green’s function for the empty tube, but
the results would be complicated. Instead, simple applica-
tions of Green’s theorem are used, leading to effective and
useful formulas for L, P, and Q.

A. The blockage coefficient L

For L, V?®, = 0 has to be solved, with 9®,/dn = 0 on
W, the far-field condition Eq. (8), and a homogeneous
boundary condition on S.

If S is hard (0®,/0n =0 on S), an application of
Green’s theorem to @, and z gives

1 0z
=5—5| ®a 5 dS,
27ta2JS on S

A7)
where the normal vector on S points outwards. This exact for-
mula is due to Hurley.?* Similarly, if S is soft (®, = 0 on S),

1 oD,
L=— ds.
2na? L on ~

These formulas will be used later to obtain approximations
to L. They are quite general: they do not assume that the
waveguide is a tube and they do not assume that S is
symmetric.

For axisymmetric tube problems, with S symmetric
about z =0, the method of separation of variables can be
used. As @, is an odd function of z, consider a semi-infinite
tube 0 < r < @, z > h. (Recall that S is inside the finite cyl-
inder defined by 0 <r < b < a, |z| < h.) Then, separation
of variables gives

(18)

Dy (r,2) = 2+ L+ coliar)e ™, z>h (19

n=1

where Jj is a Bessel function, the quantities 4, are given in

terms of the positive zeros of Jj(x) = —Ji(x), Ji(4a)
=0,n=1,2,..., and the coefficients L and ¢, are to be
determined.

The right-hand side of Eq. (19) is known as a
Dini—Bessel series; see Sec. 18.3 of Ref. 25 with H = v =0
therein, Eq. (2.2.20) in Ref. 26 or Sec. 3.3 in Ref. 27.
Orthogonality leads to exact formulas for L and c,,, although
we are mainly interested in determining L; thus

Z( 2

—+L= —J @, (r,z0)rdr foranyzy > h. (20)
0

Writing @, (r,z) = z/a + ®y(r, z), Eq. (20) becomes
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2 d
L= _ZJ ®y(r,zo) rdr foranyzo > h. (21)
asJo

B. The coefficients Pand Q

For soft scatterers, P and Q are required. They are
determined by solving V2D, = 0, with 9D, /On =0 on W,
the far-field condition Eq. (12) and the boundary condition
O, = 1onS.

An application of Green’s theorem gives

1 [ 0D
P=—| ——4dS
2rna L on

where the normal vector on S points outwards. This exact
formula shows that P is related to the capacity of the object
S in the waveguide. As with Eqs. (17) and (18), Eq. (22)
does not assume that the waveguide is a tube and it does not
assume that S is symmetric.

If @ is replaced in Eq. (22) by the corresponding poten-
tial for an unbounded fluid (thus ignoring the presence of
W), the result would be

(22)

P~ —-2C/a, (23)
where C is the capacity of S; see Eq. (8.10) in Ref. 28.
Approximations of this kind will be used extensively later;
they are often surprisingly accurate.

For Q, let G denote the semi-infinite waveguide z > 0,
and let S denote the half of S in G. Apply Green’s theorem
to @g and z in the subregion of G bounded by W, S, the
plane z =0 and the plane z =z,. To fix ideas, consider a sin-
gle scatterer, so that S is bisected by the plane z=0. The
piece of this plane outside S but inside W is denoted by F;
and the piece inside S is denoted by F_. The piece of the
plane z =z, inside W is denoted by F; its area is na® (which
defines a). The result is

J <z o0, — @ az)dS =0,
FLUS, UF, On On

where the normal vector points inwards (out of S ). For Fy,
use Eq. (12) and let z; — oo; the integral over F; evaluates
to Qna®. On F,, z=0, whereas on S, ®; = 1. The integral
of 0z/0n over S is equal to |F_|, the area of F_. Hence

Qﬂa2 = J

Fy

(Dst—J z 00,
S, on

s + |F_|. (24)

This formula is exact and it does not assume that the wave-
guide is a tube, but it does assume that z=0 is a symmetry
plane.

For axisymmetric problems in a tube, F_ will be a disk
of radius by, say, and then Eq. (24) becomes

00,

n ds. (25)

2 (¢ Bl
Q = EJbO (I)S(I"O) i‘dr + E — @JSJrZ
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For such problems, @ can be written in the separated form
[see Eq. (19)],

Oy (r,z) = P; + 0+ Z cndo(Anr) e ™. z>h

n=1

(26)
Let v(r,z) = 0®/0z. Then orthogonality gives
2 a
P= —J v(r,zo) rdr, 27)
alo
2 a
Py 0= —2J O(r,zo) rdr, (28)
a a 0

for any zy > h. Equation (27) is consistent with Eq. (22)
because Green’s theorem implies that the integral over S can
be replaced by twice the integral over the disk at z =z,

V. DISCS, IRISES, AND OTHER THIN SCREENS

In this section, special cases are considered where the
scatterer occupies a piece of the cross-sectional plane at
z=0. This includes disk problems and iris problems.

If the screen is soft, then the scattered field is an even
function of z, where D, = 0 and Dy is given by Eq. (13).
From Eq. (5),

R =DgandT =1 + Dg, whenceT —R = 1. (29)

If the screen is hard, then the scattered field is an odd
function of z, whence Dy = 0 and D, is given by Eq. (9).
From Eq. (5),

R=-D,andT =1+ D,, whenceT +R = 1. (30)

For the complementary iris problem, there is Fock’s
1941 paper.29 Fock gave results for a tube with a small iris
of radius b (u = b/a < 1) with an emphasis on computing
the blockage coefficient. Leppington and Levine® obtained
an explicit approximation for a large iris (u ~ 1); for
reviews, see Sec. 4.1 of Ref. 31 as well as Ref. 32. For
numerical results, see Ref. 33.

In the remainder of this section, consideration is given
to relevant axisymmetric potential problems for a circular
disk in a tube, with the disk’s center at the origin of cylindri-
cal polar coordinates.

A. Hard circular disk in a hard tube

For a hard disk of radius b, D, is required [see Eq.
(30)], and this is given by Eq. (9) in terms of the dimension-
less blockage coefficient L.

To estimate L, start from Eq. (21), in which zp = 0. The
potential @y (r,z) is a continuous odd function of z for b < r
< a, and so Eq. (21) reduces to

2

b
L= —J Dy (r,0) rdr.

=), 31)

This formula is exact.
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Suppose the disk is small, u < 1. Then an approxima-
tion to L is obtained by inserting the known result for poten-
tial flow about a hard disk in an unbounded fluid into Eq.
(31). Thus,

2
Oy(r,0) ~ — Vb2 —1r2,

na

which gives the approximation

4 (* 4
L~ _J iR ar = (32)
0

T nad T

The blockage coefficient for axisymmetric potential
flow past a rigid disk in a tube was computed numerically
by Smythe.** In fact, he discussed and computed a quantity
AL called the “effective increase in length of tube” due to
insertion of the disk into the tube; it is 2aL. His numerical
results are given in Table I, where they are compared with
the simple approximation Eq. (32); the agreement is seen to
be excellent when yu is small.

There is later work on this and related problems; see
Ref. 35 and Sec. 3.3 in Ref. 27.

B. Soft circular disk in a hard tube

For a soft disk of radius b, Dy is required [see Eq. (29)],
and this is given by Eq. (13) in terms of the coefficients P
and Q. To estimate P and Q, use Eqs. (27) and (28) in which
70 =0. As @g(r,0) =1 for 0 <r < b and v(r,0) =0 for
a<r<b,

a 2 b
P=2[ wt0rar =2 o) (33)
a)o 0
2 [ b2
0| arorar =2+ 5 [ aopran oy

Suppose the disk is small, 4 = b/a < 1. Then approxi-
mations to P and Q are obtained by inserting known expres-
sions for v(r,0) and @s(r, 0) coming from the solution to the
problem of an electrified disk in the absence of the tube.
This classic problem in potential theory can be solved in

TABLE I. Smythe’s (Ref. 34) numerical results from 1964 for the blockage
coefficient L for a hard disc of radius b in a tube of cross-sectional radius a
(from Table VI of Ref. 34). His results (second column) compare well with
the small-p approximation Eq. (32) (third column).

u=bla L 44/ (37)
0.1 0.000425 0.000424
0.2 0.003405 0.003395
0.3 0.011568 0.011459
0.4 0.02780 0.02716
0.5 0.05562 0.05305
0.6 0.1001 0.0917
0.7 0.17 0.15

0.8 0.3 0.22
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several ways; for details and history, see Chap. III in Ref.
26. The results needed here are

or,0) = AT

p2— 2

2
®y(r,0) = —arcsin(b/r)
T

for0<r<b and
for r > b.

Substitution for v(r, 0) in Eq. (33) leads to

Pw4r”ﬂ_%
N 0o Vb:—r? T’

whereas substitution for @,(r, 0) in Eq. (34) leads to

4 (4
0~ u*+ _2J arcsin(b/r) rdr
nas )y

4,uzr/200050
T

:u2+

do,

0o Sin3 0

where u = sin 0. The remaining integral can be evaluated
using integration by parts, giving

42 [0y m cosly
~Y 2 [E— [ —
Q=+ <2u2 4T o

2 4
= — (60 + pcos by) ~
s T

asu — 0.

The estimates P ~ —4u/m and Q ~ 4u /7 can be used in Eq.
(13) to estimate Dg. The estimate for P can also be checked
by using Eq. (22) (keeping in mind that the disk has two
sides).

The problem for @g has been solved by Hunter and
Williams™® using methods described on p. 148 of Sneddon’s
book?® (see also example 3.3.2 in Ref. 27). However, they
made a sign error in their Cy (our P / a), as can be seen by
comparing their Eq. (3) with Sneddon’s Eq. (5.3.28). Taking
this into account, their Eq. (10) can be written as

_ A
W = nf(w)’

where computations of f(u) are presented in Fig. 2 from
Hunter and Williams;*® as £(0) = 1, the estimate P ~
—4u/7 is verified. Hunter and Williams®® did not include
the constant Q; see Eq. (1) in Ref. 36 or Eq. (3.3.16) in
Ref. 27.

VI. POTENTIAL PROBLEMS FOR A SPHERE
IN ATUBE

Consider a sphere of radius » in a tube of cross-
sectional radius a. The z-axis is along the axis of the tube
and the sphere is centered at the origin. We define p = b/a.
The problem is to solve Laplace’s equation in the region
bounded by the tube wall W and the sphere S together with
boundary conditions on W and S and far-field conditions as
|z] — oc.
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In 1936, Knight®’ considered Dirichlet boundary condi-
tions on all boundaries, with ®; = 0 on W and @y specified
on the sphere S. He solved the symmetric problem (even
functions of z) using a multipole method. In 1960, Smythe38
solved the same problem, and he gave some numerical
results. Implicit in both papers is the far-field condition
@, — 0 as |z| — co. Approximate solutions of this sphere-
tube problem when pu < 1 (and for other small obstacles)
have been derived.” For a soft disk in a soft tube, see Sec.
8.3 in Ref. 26.

A. Hard sphere in a hard tube

One year later, in 1961, Smythe® considered axisym-
metric potential flow past a rigid sphere in a rigid tube. He
computed 2 L, where L is the blockage coefficient. In a subse-
quent paper,”* he corrected his computations; his results are
in Table II. Subsequent studies include Refs. 41-43. The last
of these contains approximations to L, obtained as follows.
First, using a multipole method, an infinite algebraic system
for certain coefficients A, () is obtained. This system is then
solved recursively by writing A, (p) = > Kymp™. It turns
out that

L= A (p) = 1A (0) = 42°, (35)
where Kjp = 1 and Eq. (2.10) from Ref. 43 have been used.
This simple approximation is compared with Smythe’s
numerical results in Table II; the agreement is excellent for
small p. Jeffrey et al.** also gave an approximation for L
when p >~ 1.

Another derivation of Eq. (35) can be given using
Hurley’s formula, Eq. (17). Introduce spherical polar coordi-
nates, R and ©, so that R? = 12 + z2 and z = R cos ©, where
r and z are cylindrical polar coordinates. The sphere S is
R =b. Replace @, in Eq. (17) by the corresponding potential
for uniform flow past a sphere in an unbounded fluid. Thus,
insert the approximation

R b >
O, ~|—+—

together with 0z/0n = cos ©, giving

TABLE II. Smythe’s (Ref. 34) numerical results from 1964 for the block-
age coefficient L for a hard sphere of radius b in a tube of cross-sectional
radius a (see Table VI of Ref. 34). His results (second column) compare
well with the small-u approximation Eq. (35) (third column).

w=bla L @

0.1 0.001001 0.001000
0.2 0.008054 0.008000
0.3 0.027594 0.027000
0.4 0.067440 0.064000
0.5 0.13884 0.12500
0.6 0.26103 0.21600
0.7 047317 0.34300
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~2na? )24 ¢ 0

For another derivation, use Eq. (21) with zy = b.

B. Soft sphere in a hard tube

There are two problems to be solved. First, L is needed
so that D, can be calculated using Eq. (9). Second, P and Q
are needed so that Dy can be calculated using Eq. (13).

For L, use Eq. (18) into which the approximation

R b
O, ~ <Zaﬁ>cos®

is inserted giving

1 3b

L~ _ﬁj — cos’@dS

na’ )g a

3[)3 b
:f—gj cos’@sin@®dO = —2p° asp — 0.
a Jo
(36)

For another derivation of Eq. (36), use Eq (21) with
zo = b. Note that the blockage coefficient is O(u?) as yu — 0
for both hard and soft spheres.

For P and Q, use Egs. (22) and (25). For an unbounded
fluid with @5 = 1 on the sphere, ®; = b/R, so that Eq. (22)
yields the approximation

1 J(dS o

= 2na b) 37)

Similarly, Eq. (25) with by = b gives

2 (“b b? 1 ds
~—| —rdr+—-——
0 a? J,, P +a2 na? Jsf (—=b)
2b b2 2p2 (72
=———+—J cos ®sin®dO = 2u. (38)
a a  a )

The estimates in Eqgs. (37) and (38) can also be derived
by using Eqgs. (27) and (28) in which zy = b.

VIl. POTENTIAL PROBLEMS FOR A PROLATE
SPHEROID IN ATUBE

Suppose that S is a prolate spheroid
(r/b)* + (z/h)* =

with & > b. For potential flow about such a spheroid, use
prolate spheroidal coordinates &, 1, ¢ [as defined in Sec.
30.13(1) of Ref. 44] so that

12 =&~ (39)

(1 —#*) and z=cén.

Then § is defined by ¢=¢;, where & =h/c and
¢ = VI — b also b = (& — 1),
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1 3b 3b° (™
J 2®d5—gj cos’@sin@dO = ;.

For ®, and an unbounded fluid, write (see Sec. 105 of
Ref. 10)

=(c/a){E+EQi(&}n, ¢> &

where the constant E is to be determined from the boundary
condition on S and Q; is a Legendre function,

¢, &+l
0i(8) = 5log 37— 1.
1 c—l—l ¢
Q\(&) =5log 7y~ (40)
Also, given two axisymmetric functions, (&, %) and
lpZ(éan)’
W, LT O hyhy
JonGres=, | nogtie asa
1
o,
(41)

using formulas for the metric coefficients h¢, hy,, and hy
given in Sec. 30.13(ii) of Ref. 44.

A. Hard spheroid

For a hard spheroid, impose 0®,/0& =0 at &= &,
where 1 + E Q' (&) = 0. Then, using Hurley’s formula, Eq.
(17) and Eq. (41),

c . 1 0z
L :—2(;3 - I)L(Daa_é dn

)

o]
[39)

= ;(53 - D{&+EQi(&)} J_1 n” dy

263
= 7—3a3Q’1(§0) , 42)

which is Hurley’s estimate [Eq. (5) in Ref. 24].

The estimate from Eq. (42) can be compared with
Smythe’s computations® for a prolate spheroid with
h/b =2, giving ¢/b=+/3, & =2//3 and the estimate

~ 1.6134 ,u3 for small u, the agreement is good (Table
III) Cooke* also gave results for flow past a spheroid.

TABLE III. Smythe’s (Ref. 34) numerical results for the blockage coeffi-
cient L for a hard prolate spheroid with semi-minor axis » and semi-major
axis 2b in a tube of cross-sectional radius a (see Table VI of Ref. 34). His
results (second column) compare well with the small-u approximation Eq.
(42) (third column).

u=bla L 1.6134 13
0.1 0.001616 0.001613
0.2 0.013037 0.012907
0.3 0.04501 0.04356
0.4 0.11139 0.10326
0.5 0.2332 0.2017
0.6 0.448 0.349
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The limit as the spheroid becomes a sphere can be
examined. This implies that £, — oo and ¢ — 0 in such a
way that ¢y = h — b. From Eq. (40), it is found that
01 ~ 7(2/3)573, so that Eq. (42) reduces to Eq. (35), as
expected.

B. Soft spheroid

For a soft spheroid, impose ®, =0 at ¢ = &,, where
o+ EQ1(&) = 0. Then, using Egs. (18) and (41),

1
C 0 oD,
L~——(&—1 d
az(CO )Jilz 8&: n

C3 !

—-Sa@-v{+Eg@) | s

203¢&,
- L 43
333 01(&) “3)

In the limit as the spheroid becomes a sphere, Eq. (36) is
recovered from Eq. (43) using Q;(¢) ~ (1/3)&7% as
& — oo.

For a soft scatterer, the constants P and Q also have to
be determined. They can be estimated using Eqs. (22) and
(25). For an unbounded fluid with ®; = 1 on the spheroid,

~_ 00(&) . 1 i+l
s = 00(%0) with  Qo(¢) = 5 log 1 (44)
Then Eqgs. (22) and (41) give the estimate
1
~S@ony[ 9%
P=t@-n| G
2, O 2
=—(& -1 = - 45
Oy T T “

using 0 (¢) = (1 - &)™
For Q, Egs. (25) (with by = b) and (41) give

2 a b?
0~ aon(éo)L Qo(&)|,—ordr + 2
_ 2¢2E, 04 (&)

1
)
R R

0
The last term simplifies to ¢?&,/{a*Qo(&)}. For the first
term, 2 = cz(é2 — 1) when z=0, so rdr = ¢*>¢d¢é. Hence
2 a éa
2| aolrar=2| oo
, .

S0 3 Y
Yoy
= [20y()] ¢+ J ;2 _51

&

= [+ (@ -1D2©®]; .

where a® = 2(& — 1) and &(& — N '=1- 04(¢) has
been used. Thus,
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0 ~ e [E+(E-1)0 (C“)f“‘"b_z*'czi
—a?00(&) ' TRt a T a0(&)
_ 2 @) - POu) | B

200(&) a2Qo(%) @
Czéa + azQO(éa)
_ Xt a00() 46
a*Qo (&) o

In the limit when the spheroid becomes a sphere, Eq. (45)
becomes

in agreement with Eq. (37), where Qo(&) ~ ¢! as & — oo
and (c&))® =b>+c? have been used. Similarly, from
Eq. (46),

0 Flatd’féy 2d7+ 2% 2
az/fo N azéa/éo fa a ’

in agreement with Eq. (38), using (cfa)2 =a*+ 2

VIil. SCATTERING BY A SPHERE IN A HARD TUBE

Formulas for R and T are given by the prescription
described in Sec. III C. They are valid for long waves, which
means Kk = ka < 1, where k is the wavenumber and the
length a is defined so that the cross-sectional area of the
cylindrical waveguide is ma®. Further approximations can be
invoked if the obstacle is geometrically small, which means
u=>b/a <1, where 2b is the lateral diameter of the
obstacle.

A comparison with Linton’s work'* for the problem of
a sphere (radius b) in a sound-hard tube (cross-sectional
radius @) is made next. He developed an exact semi-
analytical method, and he extracted rigorous asymptotic
approximations. Precise agreement is found between these
approximations and those obtained by the methods devel-
oped above.

A. Hard sphere

Consider a sound-hard sphere of radius b. Its volume is
\B| = (4/3)nb’. From Eq. (9),

ikL

= ~ kL ~ ikp’,
1 —ixL K

D,

where the approximation L ~ 3, Eq. (35), has been used.
From Eqgs. (15) and (16),

Then Eq. (5) gives

1
T —1=Dy+ D, ~=iry’.

R:DS—Da:—girqf, 3
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These results agree with Linton’s rigorous asymptotic analy-
sis; see Egs. (4.8) and (4.9) from Ref. 14.
B. Soft sphere

For a soft sphere, D, ~ ixL ~ —2ixyu’, using Eq. (36).
For Dy, Egs. (13), (37), and (38) give
B —P 2u
CP+ix(1—0) " ir(l —2p) —2u°

Dy

The approximation in Eq. (38) shows that Q is small com-
pared to 1, and so it can be neglected, giving

2u

~————=D(k
F— (16, 1),

S

say. Notice that D(x,0) = 0 and D(0, u) = —1: D(k, u) is
not continuous at (x, u) = (0,0). Note also that when « and
i are both small, D, is negligible, giving
R~T—1~Ds~TD. Also, for fixed k, R~ —2iu/K as
i — 0, in agreement with Eq. (4.21) from Ref. 14.

IX. DISCUSSION AND CONCLUSIONS

Acoustic propagation along a cylinder containing an
obstacle is considered. Simple explicit estimates for reflec-
tion and transmission coefficients have been presented, mak-
ing use of certain coefficients that are extracted from the
solutions to related boundary value problems for Laplace’s
equation. Good approximations to these coefficients are
obtained by combining integral representations and solu-
tions of similar boundary value problems without the wave-
guide boundary: the obstacle is surrounded by an
unbounded fluid. This may seem crude but it has been
shown to give excellent agreement with published numerical
results, and it leads to approximations for R and T that agree
with rigorous asymptotics.

One outcome of the study is the provision of a simple,
but self-consistent, approach to modeling the effects of vari-
ous thin “metascreens” on wave propagation, where a meta-
screen is a configuration of perforations and small obstacles
nominally in the plane z=0. The effect of such a screen is
often modeled using certain transmission conditions across
z=0, leading to a one-dimensional problem. Write these
“homogenized” conditions as

] = iy (u) + Bro () and W] = By (u) + By (1),
47

where [] denotes jump and (-) denotes average, [u]
=u(0+) — u(0—) and (u) = (1/2){u(0+) + u(0—)}. The
parameters f3; are to be specified in terms of the geometry
and the composition of the metascreen. For a soft screen,
Eq. (47) may be simplified to

] =0 and [u'] = B,u, (48)

whereas for a hard screen,
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[u] = Bou and [u/] = 0. (49)
The literature on such homogenized interface conditions is
extensive.**>! Related homogenized boundary conditions
arise in various diffusion problems.””

For a screen that is symmetric about z=0, write
u(z) =e* +Re * for z<0 and u(z) = Te* for z>0.
Substituting in Eq. (48) and eliminating T gives

_ 2ikR 2P
1+R a(Q-1)

Bai (50)

for a soft screen using Eqgs. (13) and (29). Similarly, for a
hard screen, Eq. (49) gives

2R
ﬁlz = TS = 2(1L

k(R —1) G

using Eqgs. (9) and (30). These formulas provide a simple
characterization of the parameters f5,; and f1, appearing in
the homogenized boundary conditions, Egs. (48) and (49),
in terms of the constants L, P, and Q appearing in the analy-
sis of the paper.

Another outcome of the study is that the dependence on
the shape of the waveguide cross-section is weak, sugges-
ting that the formulas obtained have broad applicability. In
addition, the discussion of prolate spheroids in Sec. VII
shows that the dependence on the longitudinal length (2 /) is
also weak, suggesting that an analysis based on slender-
body theory>® should be pursued.
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