LOVE-LIEB INTEGRAL EQUATIONS: APPLICATIONS, THEORY, APPROXIMATIONS, AND COMPUTATIONS*

LEANDRO FARINA ${ }^{\dagger}$, GUILLAUME LANG ${ }^{\ddagger}$, AND P. A. MARTIN ${ }^{\S}$

Abstract

This paper is concerned mainly with the deceptively simple integral equation $$
u(x)-\frac{1}{\pi} \int_{-1}^{1} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y=1, \quad-1 \leq x \leq 1
$$

where α is a real non-zero parameter and u is the unknown function. This equation is classified as a Fredholm integral equation of the second kind with a continuous kernel. As such, it falls into a class of equations for which there is a well developed theory. The theory shows that there is exactly one continuous real solution u. Although this solution is not known in closed form, it can be computed numerically, using a variety of methods. All this would be a curiosity were it not for the fact that the integral equation arises in several contexts in classical and quantum physics. We review the literature on these applications, survey the main analytical and numerical tools available, and investigate methods for constructing approximate solutions. We also consider the same integral equation when the constant on the right-hand side is replaced by a given function.

Key words. Love's integral equation, Lieb's integral equation, Gaudin's integral equation
AMS subject classifications. 45B05, 45-03, 45H05, 45M05, 65R20

1. Introduction. It is well known that one partial differential equation can appear in several models of disparate physical phenomena: one thinks immediately of the three classic examples, Laplace's equation, the wave equation and the diffusion equation. Actually, it is the case for certain integral equations as well. In this review paper, we consider one such family of integral equations, usually associated with the names of E. R. Love and E. H. Lieb (although other names could stake a claim, as we shall see). The simplest Love-Lieb equation reads

$$
\begin{equation*}
u(x) \pm \frac{1}{\pi} \int_{-1}^{1} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y=1, \quad-1 \leq x \leq 1 \tag{1}
\end{equation*}
$$

where α is a positive real parameter and u is the unknown function. Let us clarify our notation. The superscript \pm in the label $\left(\mathrm{L}_{1}^{ \pm}\right)$refers to the sign before the integral, and the subscript 1 refers to the function on the right-hand side. Later, we shall encounter $\left(\mathrm{L}_{g}^{ \pm}\right)$when the right-hand side is replaced by $g(x)$ and, in particular, $\left(\mathrm{L}_{x}^{ \pm}\right)$ when $g(x)=x$. As the solution u depends on the value of α, we shall write $u(x ; \alpha)$ when that dependence matters.

We could have written $\left(\mathrm{L}_{1}^{ \pm}\right)$as a single equation just by allowing α to be negative as well as positive. However, it turns out that the solution does not behave continuously as α passes through zero, and so for some purposes it is more convenient to be able to identify two distinct equations, $\left(\mathrm{L}_{1}^{+}\right)$and $\left(\mathrm{L}_{1}^{-}\right)$. These two integral equations also have distinct applications (see section 2). On the other hand, the distinction between $\left(\mathrm{L}_{1}^{+}\right)$and $\left(\mathrm{L}_{1}^{-}\right)$is largely irrelevant when it comes to solvability (section 3) or choice of numerical method (section 4).

[^0]Let us outline two physical problems leading to ($\mathrm{L}_{1}^{ \pm}$). In his 1949 paper [77], Love derived $\left(\mathrm{L}_{1}^{ \pm}\right)$in the context of an electrostatic problem: determine the potential field about two identical charged coaxial circular discs. This structure is called a circular plate capacitor. The parameter $\alpha=d / R$, where the discs have radius R and d is the distance between them. Equation $\left(\mathrm{L}_{1}^{+}\right)$is appropriate when the discs are equally charged, whereas $\left(\mathrm{L}_{1}^{-}\right)$holds when the discs are oppositely charged. The solution u of ($\mathrm{L}_{1}^{ \pm}$) is an auxiliary function: the exact electrostatic potential field ϕ is given as a certain integral of u. In particular, the capacitance is proportional to $C=\int_{-1}^{1} u(x) \mathrm{d} x$. The problem of determining ϕ and C has a long history, stretching back to the middle of the 19th century; for historical remarks and references, see [113, section 8.1] and [65]. Love proved that each of $\left(\mathrm{L}_{1}^{ \pm}\right)$has exactly one solution u, which is an even, real-valued, continuous function on the interval $[-1,1]$. However, the exact solution is not known in closed form. For more details, see subsection 2.1.1. Actually, in accord with Stigler's Law of Eponymy, "Love's equation" had already been derived in 1910 by Hafen [51, section 3, p. 529, Eq. (10)] for the same capacitor problem.

The integral equations $\left(\mathrm{L}_{1}^{ \pm}\right)$also appear in condensed matter physics, more specifically, in the context of certain quantum integrable models. These models describe a one-dimensional gas of identical particles. In the Lieb-Liniger model, the particles are spinless bosons. For N bosons, their pseudo-momenta are solutions to a system of N discrete coupled equations called the Bethe ansatz equations [72]. In the thermodynamic limit $(N \rightarrow \infty)$, this set of equations reduces to three equations, one of them being $\left(\mathrm{L}_{1}^{-}\right)$or $\left(\mathrm{L}_{1}^{+}\right)$: the Lieb equation $\left(\mathrm{L}_{1}^{-}\right)$is obtained for repulsive particles in their ground state [72, Eq. (3.18)], while an excited state of the attractive Bose gas known as the "super-Tonks-Girardeau gas" leads to (L_{1}^{+}) [24, Eq. (8)]. In the Yang-Gaudin model [128, 42], the particles are spin- $\frac{1}{2}$ fermions; their interaction can be repulsive [128] or attractive [42]. Both cases lead to coupled integral equations but, when the total spin is zero and the interaction is attractive, a single integral equation is obtained, namely $\left(\mathrm{L}_{1}^{+}\right)$; we call this the Gaudin equation [41, Eq. (7)]. In both models, the parameter α is related to the strength of the two-body interaction, and the ground-state energy density can be calculated using certain integrals of u in the thermodynamic limit. For more details, see subsection 2.2. The observation that the Lieb and Gaudin integral equations are the same as those studied by Love [77] and Sneddon [113] was made by Gaudin in his 1968 thesis [42]; see also [43].

In what follows, we shall also be concerned with a generalization of $\left(\mathrm{L}_{1}^{ \pm}\right)$,
$\left(\mathrm{L}_{g}^{ \pm}\right)$

$$
u(x) \pm \frac{1}{\pi} \int_{-1}^{1} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y=g(x), \quad-1 \leq x \leq 1
$$

where $g(x)$ is a given function and, as before, α is a positive real constant. This is a Fredholm integral equation of the second kind with a continuous symmetric difference kernel, $K(x-y)$, where $K(x)=(\alpha / \pi)\left(\alpha^{2}+x^{2}\right)^{-1}$ is known as the Cauchy distribution or the Lorentzian function. When $g(x)=1$ in $\left(\mathrm{L}_{g}^{ \pm}\right)$, we recover $\left(\mathrm{L}_{1}^{ \pm}\right)$. Henceforth, we shall refer to $\left(\mathrm{L}_{g}^{ \pm}\right)$as the generalized Love-Lieb equation. This formulation, with an arbitrary right-hand side function, allows us to account for variants of the Love-Lieb equation that emerge in a wide range of seemingly unrelated fields of physics and mathematics.

Recalling Stigler's Law again, we note that an early derivation of (L_{g}^{+}) was already given by Hulthén in his 1938 thesis on antiferromagnetic properties of crystals; see [55, Eq. (III, 58)]. His derivation led to $\left(\mathrm{L}_{g}^{+}\right)$with $g(x)=\left(\alpha^{2}+4 x^{2}\right)^{-1}$ (after some simple scaling).

Although the exact solution of the Love-Lieb equation $\left(L_{1}^{ \pm}\right)$is not known in closed form, efforts to solve it have stimulated the development of many mathematical and numerical methods. Some of these will be discussed below. On the other hand, by inserting specific functions u (such as monomials or orthogonal polynomials) into the left-hand side of $\left(\mathrm{L}_{g}^{ \pm}\right)$, one can compute g; this trivial observation is useful when the aim is to test numerical methods; see subsection 4.3 for details.

The structure of this paper is as follows. In section 2, we survey physics problems involving the Love-Lieb equation or generalizations thereof. Two main contexts are outlined: classical physics problems involving coaxial circular discs, and quantum physics problems involving one-dimensional models. Other types of applications are briefly discussed too. Section 2 may be omitted by readers interested solely in mathematical aspects; these are the focus of the remainder of the paper. Section 3 contains a summary of theoretical results for the Love-Lieb equation, section 4 summarizes the main numerical methods that can be used to solve it, and section 5 is devoted to analytical approximations. Appendix A discusses $\left(\mathrm{L}_{g}^{ \pm}\right)$over an infinite range,

$$
u(x) \pm \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y=g(x), \quad-\infty<x<\infty
$$

an equation that can be treated (formally, at least) using Fourier transforms. We make some concluding remarks in section 6 .

2. Applications of Love-Lieb integral equations.

2.1. Potential problems involving two coaxial discs. We consider axisymmetric boundary-value problems for a potential function $\phi(r, z)$, where r and z are cylindrical polar coordinates. There are two coaxial discs of radius 1, one in the plane $z=0$ and one in the plane $z=\alpha$. We solve Laplace's equation in three dimensions, $\nabla^{2} \phi=0$, outside the discs together with a far-field condition, $\phi=O\left(R^{-1}\right)$ as $R=\sqrt{r^{2}+z^{2}} \rightarrow \infty$, and boundary conditions on both discs.
2.1.1. Circular plate capacitor. For electrostatic (capacitor) problems, ϕ is prescribed on each disc. We take $\phi=1$ on the lower disc (at $z=0$) and $\phi= \pm 1$ on the upper disc; the solution with $\phi=+1(\phi=-1)$ on the upper disc corresponds to the case of "equally charged discs" ("oppositely charged discs"). The solutions for these two problems are given in Sneddon's book [113]. The basic physical quantity to be computed is the charge density σ. On the lower disc, we have

$$
\begin{align*}
\sigma(r) & =-\frac{1}{4 \pi}\left(\left.\frac{\partial \phi}{\partial z}\right|_{z=0^{+}}-\left.\frac{\partial \phi}{\partial z}\right|_{z=0^{-}}\right) \\
& =\frac{1}{\pi^{2}} \int_{0}^{\infty} J_{0}(k r) \int_{0}^{1} u(t) k \cos (k t) \mathrm{d} t \mathrm{~d} k \tag{2.1}
\end{align*}
$$

using $\left[113\right.$, Eqs. (1.1.4), (8.1.12) and (8.1.14)], where J_{0} is a Bessel function and u solves $\left(L_{1}^{ \pm}\right)$. The inner integral is

$$
\int_{0}^{1} u(t) \frac{\mathrm{d}}{\mathrm{~d} t}(\sin (k t)) \mathrm{d} t=u(1) \sin (k)-\int_{0}^{1} u^{\prime}(t) \sin (k t) \mathrm{d} t
$$

Substituting in (2.1), we can change the order of integration followed by use of [113, Eq. (2.1.14)], giving $\sigma(r)=0$ for $r>1$ (as expected) and

$$
\begin{align*}
\pi^{2} \sigma(r) & =\frac{u(1)}{\sqrt{1-r^{2}}}-\int_{r}^{1} \frac{u^{\prime}(t) \mathrm{d} t}{\sqrt{t^{2}-r^{2}}} \tag{2.2}\\
& =-\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r} \int_{r}^{1} \frac{t u(t) \mathrm{d} t}{\sqrt{t^{2}-r^{2}}} \tag{2.3}
\end{align*}
$$

for $0 \leq r<1$. Inverting, using [113, Eq. (2.3.8)], yields

$$
\begin{equation*}
u(x)=2 \pi \int_{x}^{1} \frac{r \sigma(r) \mathrm{d} r}{\sqrt{r^{2}-x^{2}}} \tag{2.4}
\end{equation*}
$$

This known formula [68, Eq. (1.9)], [121, Eq. (7)] is useful because it relates u to a physical quantity, σ, which has known properties. For example, $\sigma(r)$ behaves as an inverse square-root as $r \rightarrow 1$; see the first term on the right-hand side of (2.2). Also, as $u(t)$ is even, (2.2) implies that σ is even too. These facts suggest expanding $\sigma(r)$ using functions of the form $\left(1-r^{2}\right)^{-1 / 2} \psi_{n}(r)$, where $\psi_{n}(r)=\psi_{n}(-r)$ is a polynomial. If we try $\psi_{n}(r)=r^{2 n}, n=0,1,2, \ldots$ and substitute for σ in (2.4), some calculation shows that $u(x)$ is a polynomial in x^{2} of degree n.

A less obvious choice is $\psi_{n}(r)=P_{2 n}\left(\sqrt{1-r^{2}}\right)$, where P_{m} is a Legendre polynomial. These functions (which evaluate to polynomials in r^{2} of degree n) are useful for single-disc problems and they permit an explicit calculation of the corresponding function $u(x)$ because of the formula [34, p. 357]

$$
2 \pi \int_{x}^{1} \frac{r P_{2 n}\left(\sqrt{1-r^{2}}\right)}{\sqrt{r^{2}-x^{2}} \sqrt{1-r^{2}}} \mathrm{~d} r=\pi^{2} P_{2 n}(0) P_{2 n}(x), \quad 0 \leq x \leq 1
$$

This motivates the use of Legendre polynomials to approximate $u(x)$. We shall return to this topic in subsection 4.3.

The total charge on the lower disc is

$$
\begin{equation*}
\int_{0}^{1} \int_{-\pi}^{\pi} \sigma(r) r \mathrm{~d} \theta \mathrm{~d} r=\frac{1}{\pi} C(\alpha) \quad \text { with } \quad C(\alpha)=\int_{-1}^{1} u(x ; \alpha) \mathrm{d} x \tag{2.5}
\end{equation*}
$$

Asymptotic approximations of $C(\alpha)$ for small gaps $(\alpha \ll 1)$ and for large gaps $(\alpha \gg 1)$ have been found using various methods. For surveys, see, for example, [113, section 8.1] and [65, 114, 107].

The capacitor problem with discs of unequal radii leads to a pair of coupled integral equations of Love type [27, 94]. For several coaxial discs, see [35].
2.1.2. Potential flow past rigid discs. For potential flow past rigid discs, $\partial \phi / \partial z$ is prescribed on each disc. There are two basic problems, both with $\partial \phi / \partial z=1$ on the lower disc. One problem has $\partial \phi / \partial z=1$ on the upper disc, the other has $\partial \phi / \partial z=-1$ there. The basic unknown is $[\phi](r)$, the jump in $\phi(r, z)$ across the lower disc, defined by

$$
[\phi](r)=\phi\left(r, 0^{+}\right)-\phi\left(r, 0^{-}\right)
$$

It is shown in [83] that if we write

$$
\begin{equation*}
[\phi](r)=-\frac{4}{\pi} \int_{r}^{1} \frac{u(t) \mathrm{d} t}{\sqrt{t^{2}-r^{2}}} \tag{2.6}
\end{equation*}
$$

then u solves a special case of $\left(\mathrm{L}_{g}^{ \pm}\right)$, namely,

$$
\left(\mathrm{L}_{x}^{ \pm}\right) \quad u(x) \pm \frac{1}{\pi} \int_{-1}^{1} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y=x, \quad-1 \leq x \leq 1
$$

The solution u of $\left(L_{x}^{ \pm}\right)$is odd, real, and continuous on the interval $[-1,1]$. The integral equations $\left(\mathrm{L}_{x}^{ \pm}\right)$can also be extracted from a paper by Collins [27]; this paper also derives coupled integral equations of Love-Lieb type for discs of unequal radii.

Equation (2.6) can be inverted, using [113, Eq. (2.3.8)],

$$
u(x)=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \int_{x}^{1} \frac{r[\phi](r)}{\sqrt{r^{2}-x^{2}}} \mathrm{~d} r
$$

and this could be used to generate expansions for u using known properties of [ϕ]; for example, $[\phi](r)$ has a square-root zero as $r \rightarrow 1$.

In the context of irrotational flow of an inviscid incompressible fluid, the force on the lower disc can be expressed in terms of the added mass [3, Eq. (6.2a)],

$$
\mathcal{A}(\alpha)=-2 \pi \int_{0}^{1}[\phi](r) r \mathrm{~d} r=8 \int_{0}^{1} u(x ; \alpha) x \mathrm{~d} x
$$

where u is once again the solution of $\left(\mathrm{L}_{x}^{ \pm}\right)$. Analytical approximations of $\mathcal{A}(\alpha)$ for $\alpha \ll 1$ are obtained in [3].

Cooke [28, p. 108] first derived $\left(\mathrm{L}_{x}^{ \pm}\right)$in 1956 for the problem of two discs rotating slowly in a viscous fluid (Stokes flow), with equal, or equal and opposite, angular velocities; see also [29]. For an approximation to the torque on each disc when $\alpha \ll 1$, see [57].

Suppose next that $z=0$ is the mean free surface of deep water. Small-amplitude water waves are generated by the vertical oscillations of a rigid disc submerged at a depth of $\alpha / 2$. The motion can be calculated by solving a generalization of $\left(\mathrm{L}_{x}^{ \pm}\right)$[83],

$$
\begin{equation*}
u(x)-\frac{1}{\pi} \int_{-1}^{1} \frac{\alpha u(y)}{\alpha^{2}+(x-y)^{2}} \mathrm{~d} y-\frac{2 K}{\pi} \int_{-1}^{1} u(y) \Phi(x-y, \alpha) \mathrm{d} y=x, \quad-1 \leq x \leq 1 \tag{2.7}
\end{equation*}
$$

where $K=\omega^{2} / g$ is the wave number, ω is the frequency, g is the acceleration due to gravity, Φ is a two-dimensional wave-source potential given by

$$
\Phi(X, Y)=\int_{0}^{\infty} \mathrm{e}^{-k Y} \cos k X \frac{\mathrm{~d} k}{k-K}
$$

and the integration path is indented below the pole of the integrand at $k=K$. As before, the discontinuity in ϕ across the disc, $[\phi]$, is given by (2.6). Approximations for $\alpha \ll 1$ (meaning that the disc is very close to the free surface) are developed in [36].
2.2. Quantum integrable models. Quantum integrable models are a class of one-dimensional models that are exactly solvable by the Bethe ansatz [16]. In the thermodynamic limit, the coupled Bethe ansatz equations that describe them reduce, in some cases, to a single Love-Lieb equation. This phenomenon occurs in the continuum (with the Lieb-Liniger and Yang-Gaudin models) and on the lattice (with the Heisenberg model).
2.2.1. The Lieb-Liniger model. The Lieb-Liniger model [72] describes a onedimensional gas of identical spinless bosons interacting through a contact potential. Proposed in 1963 as a generalization of the Tonks-Girardeau gas of hard-core bosons [45], it is arguably the simplest (conceptually), as well as the most studied non-trivial quantum integrable model in the continuum. The quantity $u(x ; \alpha) /(2 \pi)$ denotes the distribution of pseudo-momenta (or rapidities) at zero temperature, x is the pseudomomentum and α is related to the interaction strength.

For repulsive interactions, $u(x ; \alpha)$ is defined as the solution of $\left(\mathrm{L}_{1}^{-}\right)$, known as the Lieb equation in this context. It can be used to determine quantities of physical interest. For example, the dimensionless average ground-state energy per particle, $e(\gamma)$, is determined by eliminating α between

$$
\begin{equation*}
\frac{2 \pi \alpha}{\gamma}=\int_{-1}^{1} u(x ; \alpha) \mathrm{d} x \quad \text { and } \quad e(\gamma)=\frac{\gamma^{3}}{2 \pi \alpha^{3}} \int_{-1}^{1} x^{2} u(x ; \alpha) \mathrm{d} x \tag{2.8}
\end{equation*}
$$

where γ is the Lieb parameter, a dimensionless coupling constant [72]. For more information, see [62, Chapter 1], [20], [44, Chapter 4], [60, 121], [39, Chapter 2]. Many ground-state observables can be computed from derivatives of $e(\gamma)$; see, for example, [67] and references therein. Local correlation functions can be expressed as moments of u in certain approaches [23, 92]. In other approaches, these correlations are calculated from the solution of $\left(\mathrm{L}_{g}^{-}\right)$with $g(x)=x^{n}, n=1,2, \ldots[63,101]$. This happens in a certain special case in which the function f defined in [63] is such that $f(p)=0$ for $|p|>B$ and $f(p)=1$ for $|p|<B$, with B a constant.

The Love-Lieb equation $\left(\mathrm{L}_{1}^{-}\right)$is also involved in the calculation of the excitation spectrum, as is $\left(\mathrm{L}_{x}^{-}\right)$[103, 109], sometimes referred to as the second Lieb equation in this context. These equations are obtained by transforming (L_{g}^{-}) with more complicated right-hand side functions $g(x)$ introduced by Lieb himself [71], using a Green function (solution of (L_{g}^{-}) with g replaced by a Dirac delta) [106]. The boundary energy is another quantity of interest [43, 14, 106], whose calculation also involves $\left(\mathrm{L}_{1}^{-}\right)$and $\left(\mathrm{L}_{x}^{-}\right)$[106].

Several generalizations of the Lieb-Liniger model also involve (L_{g}^{-}). Equation $\left(\mathrm{L}_{1}^{-}\right)$appears in an extension of the model to multicomponent bosons [69], and a generalized Love-Lieb equation yields its excitation energy [70]. Equation (L_{1}^{-}) also appears in an extension of the Lieb-Liniger model to anyonic statistics, but with α replaced by $\alpha \sec (\kappa / 2)$, where $\kappa \in[0,4 \pi]$ is an anyonic phase parameter [13, 96]. For another generalization, leading to (L_{g}^{-}) with $g(x)=(1-\beta x / \alpha)^{-2}$ and a certain parameter β, see [115].
2.2.2. The Yang-Gaudin model. The Yang-Gaudin model is the two-component counterpart of the Lieb-Liniger model, with bosons replaced by spin- $\frac{1}{2}$ fermions and an arbitrary total spin S compatible with the individual spins [128, 41]; see [49] for a review. It generalizes a model studied by McGuire [84, 85], where only one spin is flipped with respect to all the others.

Interactions between these fermions can be repulsive [128, Eq. (26)], [49, Eq. (12)] or attractive [42, Eqs. (14.16) and (14.17)], [49, Eq. (13)]. In both cases, the result is a pair of coupled integral equations of Love-Lieb type. The attractive case reduces to a single integral equation, $\left(\mathrm{L}_{1}^{+}\right)$, when $S=0$ (the so-called "balanced case"). To
see this, start with Gaudin's coupled equations [42], which we write in his notation:

$$
\begin{align*}
& 1=f_{1}(k)+\frac{|V|}{2 \pi} \int_{-q_{0}}^{q_{0}} \frac{f\left(q^{\prime}\right) \mathrm{d} q^{\prime}}{\left(k-q^{\prime}\right)^{2}+V^{2} / 4}, \quad-k_{1}<k<k_{1} \tag{2.9}\\
& 1=\frac{1}{2} f(q)+\frac{|V|}{2 \pi} \int_{-q_{0}}^{q_{0}} \frac{f\left(q^{\prime}\right) \mathrm{d} q^{\prime}}{\left(q-q^{\prime}\right)^{2}+V^{2}}+\frac{|V|}{4 \pi} \int_{-k_{1}}^{k_{1}} \frac{f_{1}(k) \mathrm{d} k}{(k-q)^{2}+V^{2} / 4} \tag{2.10}
\end{align*}
$$

for $-q_{0}<q<q_{0}$. Here, $2 V$ is the intensity of the two-body potential, with $V<0$ for attractive interactions, and k_{1} and q_{0} are Fermi pseudomomenta. In the thermodynamic limit, the wavenumbers k are dense on $-k_{1} \leq k \leq k_{1}$ and the auxiliary parameters q are dense on $-q_{0} \leq q \leq q_{0}$. Both unknown functions, f and f_{1}, are positive; $(2 \pi)^{-1} f_{1}(k)$ and $(2 \pi)^{-1} f(q)$ are densities. Moreover, when the total spin $S=0, f_{1}$ must satisfy [42, Eq. (14.13)] $\int_{-k_{1}}^{k_{1}} f_{1}(k) \mathrm{d} k=0$, which we enforce by letting $k_{1} \rightarrow 0$ [59, p. 10]. In this limit, (2.9) becomes irrelevant whereas (2.10) reduces to (L_{1}^{+}) with $\alpha=|V| / q_{0}$ and $u(x)=\frac{1}{2} f\left(q_{0} x\right)$. In this context, we refer to (L_{1}^{+}) as Gaudin's integral equation [41, Eq. (7)], [59, Eq. (2.35a)], [122, Eq. (3)]. Having solved $\left(\mathrm{L}_{1}^{+}\right)$for $u(x ; \alpha)$, the dimensionless average ground-state energy per particle, $e(\gamma)$, is determined by eliminating α between

$$
\begin{equation*}
\frac{\pi \alpha}{2 \gamma}=\int_{-1}^{1} u(x ; \alpha) \mathrm{d} x \quad \text { and } \quad e(\gamma)=-\frac{\gamma^{2}}{4}+\frac{2 \gamma^{3}}{\pi \alpha^{3}} \int_{-1}^{1} x^{2} u(x ; \alpha) \mathrm{d} x \tag{2.11}
\end{equation*}
$$

see [122, Eq. (4)], [79, Eqs.(6) and (7)]. The low-energy spin excitations can be calculated using (L_{g}^{+}) and a certain $g[42,130]$.

The ground state of the balanced fermionic gas is described by $\left(\mathrm{L}_{1}^{+}\right)$, as is the first excited state of the attractive Lieb-Liniger model [25], the so-called "super-Tonks-Girardeau gas" [12, 1]. This connection was anticipated by Gaudin [41]. In 2004, a modified Yang-Gaudin model that bridges the Yang-Gaudin and Lieb-Liniger models was introduced $[40,120]$ as a toy model to study the crossover from a BoseEinstein condensate to a Bardeen-Cooper-Schrieffer state (BEC-BCS crossover) in one dimension. Here, both signs of the Love-Lieb equation ($\mathrm{L}_{1}^{ \pm}$) are involved [40, 59].

The generalization of the Yang-Gaudin model to fermions with arbitrary halfinteger spin $s[116,118]$ is sometimes called the κ-component model, where $\kappa=2 s+1$ [50]; the result is κ coupled integral equations. In the infinite-spin limit $(\kappa \rightarrow \infty)$, an exact mapping (infinite-spin bosonization) transforms the thermodynamics of the κ-component model with repulsive interactions into that of a single Lieb-Liniger gas [129, 76]. As a consequence, the Lieb-Liniger model described by $\left(\mathrm{L}_{1}^{-}\right)$is a good approximation to multicomponent fermions with a high number of internal degrees of freedom.
2.2.3. The Heisenberg model. The Heisenberg model (also known as the XXX spin chain) refers to an isotropic one-dimensional chain of quantum spins with nearest-neighbor interactions [54]. Its solution was provided by Bethe in 1931, making use of his ansatz technique [16]. As already mentioned above, it was in this context that Hulthén first obtained a generalized Love-Lieb equation [55, Eq. (III, 58)]; see also [48] for a more comprehensive study. In more detail, Hulthén [55] and Griffiths [48] derive $\left(\mathrm{L}_{g}^{+}\right)$with $g(x)=\left(\alpha^{2}+4 x^{2}\right)^{-1}=g_{H}(x ; \alpha)$, say, after some rescaling. The type of order is antiferromagnetic here, and the spin $s=\frac{1}{2}$. Under these conditions, $\left(\mathrm{L}_{1}^{+}\right)$is satisfied by the dressed charge $\left[18\right.$, Eq. (2.5)], $\left(\mathrm{L}_{g}^{+}\right)$is satisfied by the dressed energy with $g(x)=C-g_{H}(x ; \alpha)$ (where C is a constant) [18, Eq. (2.7)], and $\left(\mathrm{L}_{g_{H}}^{+}\right)$is
satisfied by the inverse of the spinon velocity [52, Eq. (5)]. For $s=-1$ (this formal case with $s<0$ can be viewed as an effective field theory of Quantum Chromodynamics), (L_{1}^{-}) is satisfied by the fractional charge and $\left(\mathrm{L}_{g}^{-}\right)$is satisfied by the density of particles [53].
2.3. Miscellaneous applications. The integral equations ($\mathrm{L}_{g}^{ \pm}$) appear in several other physical contexts. One of these is in the construction of solutions within little string theory, with $g(x)=x^{n}$ [75, Eq. (3.7)] and $g(x)=1-\beta x^{2}$ [75, Eq. (C.5)], where β is a positive constant. The same quadratic g arises with multicomponent bosons [69, Eq. (47)], in a super-Yang-Mills theory [74, Eq. (3.29)], [123, Eq. (3.8)], and in the zero-temperature limit of the Yang-Yang model [62, p. 36, Eq. (7.9)]. In the last two applications just mentioned [62, 74], the constant β is chosen so that $u(1)=0$. For a similar mathematical problem, with a rational g and an application to spin chains, see [53, Eq. (4.21)].

Further applications include evaluating statistical properties of a two-dimensional lattice of elastic lines in a random medium [33, Eq. (53)], and calculating the groundstate properties of the attractive two-component Hubbard model [81, Eq. (2.44)], in particular at half filling [117, Eq. (7)].

There are also applications in probability theory. For instance, in 1953, Reich [105] showed that the Love-Lieb equation (L_{1}^{-}) applies to a specific one-dimensional random walk with absorbing barriers: "In addition to its theoretical interest, the random walk appears to provide a practical means for the calculation of the capacitance by a Monte Carlo technique"; for another application, see [58].

3. Solving Love-Lieb integral equations: basic theory.

3.1. Difficulties near the endpoints when α is small. Recall the generalized Love-Lieb equation $\left(\mathrm{L}_{g}^{ \pm}\right)$, which we write as

$$
\begin{equation*}
u(x) \pm \int_{-1}^{1} K(x-y) u(y) \mathrm{d} y=g(x), \quad-1 \leq x \leq 1 \tag{3.1}
\end{equation*}
$$

where the kernel is given by

$$
\begin{equation*}
K(x)=\frac{\alpha}{\pi\left(\alpha^{2}+x^{2}\right)}, \quad \alpha>0 \tag{3.2}
\end{equation*}
$$

Equation (3.1) is classified as a Fredholm integral equation of the second kind with a continuous kernel. This is a textbook case [112, 26, 64]: standard theory applies (see subsection 3.2) and almost any sensible numerical method can be employed to solve it. However, difficulties are expected when α is small because $K(x)$ is a well-known approximation to a Dirac delta: for continuous functions f,

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \int_{-1}^{1} K(x-y) f(y) \mathrm{d} y=f(x), \quad-1<x<1 \tag{3.3}
\end{equation*}
$$

To see why these difficulties arise, start by considering the Love-Gaudin equation $\left(\mathrm{L}_{1}^{+}\right)$. Using (3.3) in $\left(\mathrm{L}_{1}^{+}\right)$yields $u(x) \simeq \frac{1}{2}$ for $|x|<1$, whereas the integral equation itself gives

$$
\begin{aligned}
u(1) & =1-\int_{-1}^{1} K(1-y) u(y) \mathrm{d} y \simeq 1-\frac{1}{2} \int_{-1}^{1} K(1-y) \mathrm{d} y \\
& =1-\frac{1}{2 \pi} \arctan \frac{2}{\alpha}=\frac{3}{4}+\frac{1}{2 \pi} \arctan \frac{\alpha}{2},
\end{aligned}
$$

hence $u(1) \simeq \frac{3}{4}$ for $\alpha \ll 1$. Here, we have used

$$
\begin{equation*}
\int_{-1}^{1} K(x-y) \mathrm{d} y=\frac{1}{\pi}\left[\arctan \left(\frac{1-x}{\alpha}\right)+\arctan \left(\frac{1+x}{\alpha}\right)\right] \equiv \mathcal{K}(x ; \alpha) \tag{3.4}
\end{equation*}
$$

say. This argument (which is taken from [98, p. 26]) shows that rapid variations in $u(x)$ near the endpoints are to be expected when $\alpha \ll 1$.

If we try to apply the same arguments to the Love-Lieb equation (L_{1}^{-}), we find that the two terms on the left-hand side cancel, so that we need a refined version of (3.3). From [36, Eq. (21)], we have, for twice-differentiable functions f,

$$
\begin{equation*}
\int_{-1}^{1} K(x-y) f(y) \mathrm{d} y=f(x)+\frac{\alpha}{\pi} \underbrace{1}_{-1} \frac{f(y)}{(x-y)^{2}} \mathrm{~d} y+O\left(\alpha^{2}\right) \quad \text { as } \alpha \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where x is bounded away from ± 1 and the cross on the integral denotes a hypersingular (finite-part) integral; see (3.6). We are going to use (3.5) to approximate the left-hand side of $\left(\mathrm{L}_{g}^{-}\right)$. Before doing that, we note that

$$
\begin{equation*}
\not_{-1}^{1} \frac{f(y)}{(x-y)^{2}} \mathrm{~d} y=-\frac{f(1)}{1-x}-\frac{f(-1)}{1+x}+f_{-1}^{1} \frac{f^{\prime}(y)}{y-x} \mathrm{~d} y \tag{3.6}
\end{equation*}
$$

where the integral on the right is a Cauchy principal value (CPV) integral. If this formula is used in (3.5) and it is assumed that $f(1)=f(-1)=0$, we recover a formula used by Kac and Pollard [61, Lemma 5.1] and by others. The connection with CPV integrals is attractive (because they are more familiar) but the condition on $f(\pm 1)$ is not satisfied by solutions of $\left(\mathrm{L}_{g}^{-}\right)$, in general.

Now, solutions of ($\mathrm{L}_{g}^{ \pm}$) depend on α; suppose that $u(x ; \alpha) \sim \alpha^{\nu} u_{0}(x)$ as $\alpha \rightarrow 0$, where the parameter ν is to be determined. Then, returning to $\left(\mathrm{L}_{1}^{+}\right)$, use of the leading approximation from (3.5) gives $2 \alpha^{\nu} u_{0}(x)=1$ whence $\nu=0$ and $u(x) \simeq \frac{1}{2}$ as before. A similar procedure applied to $\left(\mathrm{L}_{g}^{-}\right)$gives the approximation

$$
-\frac{1}{\pi} \alpha^{\nu+1} \not_{-1}^{1} \frac{u_{0}(y)}{(x-y)^{2}} \mathrm{~d} y=g(x), \quad-1<x<1
$$

whence $\nu=-1$ (assuming that g does not depend on α). The general solution of this hypersingular integral equation is known [82]. It consists of a particular solution (corresponding to the given g) together with the general solution of the homogeneous equation (put $g=0$), which is $(A+B x)\left(1-x^{2}\right)^{-1 / 2}$, where A and B are arbitrary constants. As we do not want solutions that are unbounded at $x= \pm 1$, we take $A=B=0$. In particular, for the Love-Lieb equation $\left(\mathrm{L}_{1}^{-}\right)$, we obtain $u(x)=$ $\alpha^{-1} u_{0}(x)=\alpha^{-1} \sqrt{1-x^{2}}$. This approximation to $u(x)$ is incorrect at the endpoints because it can be shown that $u(\pm 1)>1$; see (3.19) below.

Similar approximations can be obtained for $\left(\mathrm{L}_{x}^{ \pm}\right)$. For $\left(\mathrm{L}_{x}^{+}\right)$, we obtain $u \simeq x / 2$ for $|x|<1$, whereas for $\left(\mathrm{L}_{x}^{-}\right)$we obtain $u \simeq(2 \alpha)^{-1} x \sqrt{1-x^{2}}$ (in agreement with (5.14) below).

We shall return to analytical approximations of $u(x) \equiv u(x ; \alpha)$ in section 5 , where we also make comparisons with direct numerical solutions of the integral equation.
3.2. Solvability, iteration and Liouville-Neumann expansions. The general theory of Fredholm integral equations of the second kind such as (3.1) tells us to
examine the homogeneous version of (3.1); following Hilbert, it is convenient to insert a parameter λ, giving

$$
\begin{equation*}
\psi(x)-\lambda \int_{-1}^{1} K(x-y) \psi(y) \mathrm{d} y=0, \quad-1 \leq x \leq 1 \tag{3.7}
\end{equation*}
$$

We are especially interested in $\lambda=1$ and $\lambda=-1$, because these special cases correspond to $\left(\mathrm{L}_{g}^{-}\right)$and $\left(\mathrm{L}_{g}^{+}\right)$, respectively. As the kernel is symmetric, Hilbert-Schmidt theory [112, section 7.2], [26, section 7.2] states that there is at least one real value of λ for which (3.7) has a non-trivial solution ψ. Fortunately, such characteristic values include neither $\lambda=1$ nor $\lambda=-1$. This was proved by Love [77, Lemma 6], using simple iterated inequalities. For another proof, see below (3.8). For more information on eigenvalues (reciprocals of characteristic values) and eigenfunctions, see [8].

Before proceeding, let us denote the integral operator in (3.1) by K, so that

$$
(K u)(x)=\int_{-1}^{1} K(x-y) u(y) \mathrm{d} y, \quad-1 \leq x \leq 1
$$

where the positive function $K(x)$ is defined by (3.2). The maximum norm of the operator $K,\|K\|_{\infty}$, is defined by [64, section 2.3]

$$
\begin{equation*}
\|K\|_{\infty}=\max _{-1 \leq x \leq 1} \int_{-1}^{1} K(x-y) \mathrm{d} y=\max _{-1 \leq x \leq 1} \mathcal{K}(x ; \alpha)=\frac{2}{\pi} \arctan (1 / \alpha) \tag{3.8}
\end{equation*}
$$

where \mathcal{K} is defined by (3.4). Thus $\|K\|_{\infty}<1$ for all $\alpha>0$. Then, returning to (3.7), as any integrable solution is continuous, we obtain $\|\psi\|_{\infty} \leq|\lambda|\|K\|_{\infty}\|\psi\|_{\infty}$, where $\|\psi\|_{\infty}=\max _{|x| \leq 1}|\psi(x)|$. Hence $\psi(x)=0$ for $|\lambda| \leq 1$ and any $\alpha>0$.

Returning to (3.1), we can apply the Fredholm Alternative [112, Theorem 3.6.1], [26, section 3.6]: as the homogeneous version of (3.1) has no non-trivial solution, the inhomogeneous integral equation (3.1)) has exactly one solution for any right-hand side function g. This result can be stated in terms of continuous or square-integrable functions. Love [77, Lemma 7] gives this result for continuous solutions of ($\mathrm{L}_{1}^{ \pm}$). Lieb and Liniger obtain the same result for $\left(\mathrm{L}_{g}^{-}\right)$, exploiting the positivity of the kernel and the Liouville-Neumann expansion [72, Appendix B]. This expansion arises when any Fredholm integral equation of the second kind is solved iteratively. To see this, consider

$$
\begin{equation*}
u(x)-\lambda \int_{-1}^{1} K(x-y) u(y) \mathrm{d} y=g(x), \quad-1 \leq x \leq 1 \tag{3.9}
\end{equation*}
$$

The Liouville-Neumann expansion [112, section 2.5], [26, section 3.1] [64, section 2.4] for u is

$$
\begin{equation*}
u(x)=g(x)+\sum_{n=1}^{\infty} \lambda^{n} \int_{-1}^{1} K_{n}(x, y) g(y) \mathrm{d} y \tag{3.10}
\end{equation*}
$$

where the iterated kernels K_{n} are defined by $K_{1}=K$ and

$$
\begin{equation*}
K_{n}(x, y)=\int_{-1}^{1} K_{n-1}(x, s) K(s, y) \mathrm{d} y=\int_{-1}^{1} K(x, s) K_{n-1}(s, y) \mathrm{d} y \tag{3.11}
\end{equation*}
$$

for $n=2,3, \ldots$. The series (3.10) is convergent when $|\lambda|\|K\|_{\infty}<1$ [64, Theorem 2.14], a condition that is satisfied for $\left(\mathrm{L}_{g}^{ \pm}\right)$; see (3.8).

The expansion (3.10) can be recast as an iterative process; doing this for (3.9) gives

$$
\begin{equation*}
u_{n}(x)=g(x)+\lambda \int_{-1}^{1} K(x-y) u_{n-1}(y) \mathrm{d} y, \quad n=1,2, \ldots \tag{3.12}
\end{equation*}
$$

starting with $u_{0}=g$. This process is convergent, with $\left\|u_{n}-u\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$, where u solves (3.1) [64, Theorem 2.15]. Moreover, we have the bound

$$
\begin{equation*}
\left\|u-u_{n}\right\|_{\infty} \leq|\lambda|^{n+1}\|K\|_{\infty}^{n+1}\|u\|_{\infty} \tag{3.13}
\end{equation*}
$$

which follows from $u-u_{n}=\lambda K\left(u-u_{n-1}\right)$ and $u-u_{0}=u-g=\lambda K u$.
The convergence of the series (3.10) was proved by Love [77, Theorem 2] in the context of $\left(\mathrm{L}_{1}^{ \pm}\right)$; he found the condition $\|K\|_{\infty}<1$, which is satisfied for all $\alpha>0$. Hafen [51, p. 529] wrote down the series (3.10) for $\left(\mathrm{L}_{1}^{ \pm}\right)$, but did not go further. Love [77] also proved that the iterative process (3.12) is convergent.
3.3. Alternative formulations. Suppose that $u(x ; \alpha)$ solves $\left(\mathrm{L}_{g}^{ \pm}\right)$, an equation holding over a fixed interval with a kernel that depends on α. As an alternative, we can recast it as an equation over an interval that changes with α but with a kernel that does not depend on α. Thus put

$$
u(x ; \alpha)=U(X ; A) \quad \text { with } \quad x=X / A, \quad \alpha=1 / A
$$

and $y=Y / A$. In particular, $\left(\mathrm{L}_{1}^{ \pm}\right)$becomes

$$
\begin{equation*}
U(X ; A)+\int_{-A}^{A} \Theta(X-Y) U(Y ; A) \mathrm{d} Y=1, \quad-A \leq X \leq A \tag{3.14}
\end{equation*}
$$

where $\Theta(X)= \pm \pi^{-1}\left(X^{2}+1\right)^{-1}$ for $\left(\mathrm{L}_{1}^{ \pm}\right)$.
When $\alpha \ll 1, A \gg 1$ and then we might expect that solutions of (3.14) can be approximated by solutions of an integral equation over an infinite range (see Appendix A). For a rigorous analysis and many references, see [22].

If we regard the solution of $(3.14), U(X ; A)$, as being a function of two independent variables, X and A, then it can be shown that U satisfies a nonlinear second-order partial differential equation, namely

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial X^{2}}-\frac{\partial^{2} U}{\partial A^{2}}+2 \frac{U_{0}^{\prime}(A)}{U_{0}(A)} \frac{\partial U}{\partial A}=0 \tag{3.15}
\end{equation*}
$$

where $U_{0}(A)=U(A ; A)$ [97, Eq. (10)]. This can be proved by showing that the quantity on the left-hand side of (3.15) satisfies the homogeneous version of (3.14). The second and third terms in (3.15) can be combined to give

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial X^{2}}-U_{0}^{2} \frac{\partial}{\partial A}\left(U_{0}^{-2} \frac{\partial U}{\partial A}\right)=0 \tag{3.16}
\end{equation*}
$$

a nonlinear version of the one-dimensional wave equation.
Similarly, if $v(x ; \alpha)$ solves $\left(\mathrm{L}_{x}^{ \pm}\right)$, then $V(X ; A)=A v(x ; \alpha)$ solves

$$
\begin{equation*}
V(X ; A)+\int_{-A}^{A} \Theta(X-Y) V(Y ; A) \mathrm{d} Y=X, \quad-A \leq X \leq A \tag{3.17}
\end{equation*}
$$

Petković and Ristivojevic [97, Eq. (8)] gave a formula for $V(X ; A)$ in terms of $U(Y ; B)$,

$$
\begin{equation*}
V(X ; A)=-\frac{\partial}{\partial X} \int_{|X|}^{A} \frac{n(B)}{n^{\prime}(B)} U(X ; B) \mathrm{d} B, \quad-A \leq X \leq A \tag{3.18}
\end{equation*}
$$

with

$$
n(B)=\int_{-B}^{B} U(Y ; B) \mathrm{d} Y
$$

A direct verification of (3.18) can be given but we omit it here. The formula (3.18) can also be recast in terms of $v(x ; \alpha)$ and $u(y ; \beta)$.
3.4. Bounds. Consider (L_{1}^{-}). Putting $g=1$ and $\lambda=1$ in (3.10), and noting that all the iterated kernels are positive (because $K(x)>0$), we infer that

$$
\begin{equation*}
u(x ; \alpha)>1 \quad \text { for }-1 \leq x \leq 1 \text { and } \alpha>0 \tag{3.19}
\end{equation*}
$$

Other known bounds are on $|u|$. Thus Hutson [56, p. 214] proved the following bounds for $\left(\mathrm{L}_{g}^{-}\right)$but his proof extends to $\left(\mathrm{L}_{g}^{+}\right)$: assuming that $g(x)$ is a bounded continuous function, then

$$
\begin{align*}
& \max _{-1 \leq x \leq 1}|u(x ; \alpha)| \leq \max _{-1 \leq x \leq 1}\left\{|g(x)|[1-\mathcal{K}(x ; \alpha)]^{-1}\right\}, \tag{3.20}\\
& \max _{-1 \leq x \leq 1}|u(x ; \alpha)| \leq \max _{-1 \leq x \leq 1}\left\{\pi|g(x)| \frac{1-|x|+\alpha}{\alpha}\right\}, \tag{3.21}
\end{align*}
$$

with \mathcal{K} defined by (3.4). These bounds hold for both $\left(\mathrm{L}_{g}^{-}\right)$and $\left(\mathrm{L}_{g}^{+}\right)$. Alternatively, the integral equation (3.9) (with $\lambda= \pm 1$) gives

$$
\begin{equation*}
\|u\|_{\infty}=\max _{-1 \leq x \leq 1}|u(x ; \alpha)| \leq \frac{\|g\|_{\infty}}{1-\|K\|_{\infty}}=\frac{\pi\|g\|_{\infty}}{2 \arctan \alpha} \tag{3.22}
\end{equation*}
$$

using (3.8). In particular, when $g=1$, the right-hand side of (3.20) or (3.22) reduces to $\pi /(2 \arctan \alpha)$, a bound found earlier by Reich [105, p. 344].

Consider the Love-Gaudin integral equation $\left(\mathrm{L}_{1}^{+}\right)$. The analysis in [22] (which is based on (3.14) and makes use of (A.5)) leads to the bound

$$
\begin{equation*}
\left|u(x ; \alpha)-\frac{1}{2}\right| \leq \frac{2 C \alpha(1+\alpha)}{(1+\alpha)^{2}-x^{2}}, \quad-1 \leq x \leq 1, \tag{3.23}
\end{equation*}
$$

where C is a constant that does not depend on α. This formula gives a rigorous error estimate for the simple approximation $u(x ; \alpha) \simeq \frac{1}{2}$ for $-1<x<1$ and small α, as noted below (3.3); see also (5.13).
3.5. Maclaurin expansions. We have seen that (3.9) is uniquely solvable for u, and so it is natural to ask if u has a Maclaurin expansion. For simplicity, consider $\left(\mathrm{L}_{1}^{ \pm}\right)$; take $g=1$ in (3.9). In this case, u is even, and its Maclaurin expansion takes the form

$$
\begin{equation*}
u(x ; \alpha)=\sum_{n=0}^{\infty} c_{n}(\alpha) x^{2 n}, \quad|x|<\ell(\alpha) \tag{3.24}
\end{equation*}
$$

where $\ell(\alpha)$ is the radius of convergence and the coefficients $c_{n}(\alpha)$ are uniquely determined. We are particularly interested in determining when $\ell(\alpha)>1$ because then the solution of $\left(\mathrm{L}_{1}^{ \pm}\right)$can be sought in the form (3.24).

Start by expanding the kernel $K(x-y),(3.2)$, using the binomial theorem. There are several options. One is to expand in powers of $(x-y)^{2} / \alpha^{2}$,

$$
\begin{equation*}
K(x-y)=\frac{1}{\pi \alpha} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\alpha^{2 n}}(x-y)^{2 n} \tag{3.25}
\end{equation*}
$$

This converges for all x with $|x|<1$ and for all y with $|y|<1$ if $\alpha>2$. The expansion (3.25) can be seen as an expansion in inverse powers of α. For this reason, it has been used to obtain approximations for $u(x ; \alpha)$ when $\alpha \gg 1$; see subsection 5.1.

For another option, use partial fractions and write K as

$$
\begin{equation*}
K(x-y)=\frac{\mathrm{i}}{2 \pi}\left(\frac{1}{x-y+\mathrm{i} \alpha}-\frac{1}{x-y-\mathrm{i} \alpha}\right) \tag{3.26}
\end{equation*}
$$

Expanding in powers of $y /(x \pm \mathrm{i} \alpha)$,

$$
\begin{equation*}
K(x-y)=\frac{\mathrm{i}}{2 \pi} \sum_{n=0}^{\infty} y^{n}\left(\frac{1}{(x+\mathrm{i} \alpha)^{n+1}}-\frac{1}{(x-\mathrm{i} \alpha)^{n+1}}\right) \tag{3.27}
\end{equation*}
$$

The series converges for $|y|<\sqrt{x^{2}+\alpha^{2}}$. Therefore it converges for all x with $|x|<1$ and for all y with $|y|<1$ if $\alpha>1$. To simplify (3.27), define real quantities X and φ by $x \pm \mathrm{i} \alpha=X \mathrm{e}^{ \pm \mathrm{i} \varphi}$ so that $X=\sqrt{x^{2}+\alpha^{2}}, \cos \varphi=x / X$ and $\sin \varphi=\alpha / X$. Then (3.27) becomes

$$
\begin{aligned}
K(x-y) & =\frac{\mathrm{i}}{2 \pi} \sum_{n=0}^{\infty} \frac{y^{n}}{X^{n+1}}\left(\mathrm{e}^{-\mathrm{i}(n+1) \varphi}-\mathrm{e}^{\mathrm{i}(n+1) \varphi}\right)=\frac{1}{\pi} \sum_{n=0}^{\infty} \frac{y^{n}}{X^{n+1}} \sin [(n+1) \varphi] \\
& =\frac{\alpha}{\pi} \sum_{n=0}^{\infty} \frac{y^{n}}{X^{n+2}} \frac{\sin [(n+1) \varphi]}{\sin \varphi}=\frac{\alpha}{\pi} \sum_{n=0}^{\infty} \frac{y^{n}}{X^{n+2}} U_{n}\left(\frac{x}{X}\right),
\end{aligned}
$$

where U_{n} is a Chebyshev polynomial of the second kind and we have used $x / X=\cos \varphi$. This expansion (but without the identification of the Chebyshev polynomials) was used by Wadati [125, Eq. (2.2)].

Interchanging x and y in (3.28) gives

$$
\begin{equation*}
K(x-y)=\frac{\alpha}{\pi} \sum_{n=0}^{\infty} \frac{x^{n}}{Y^{n+2}} U_{n}\left(\frac{y}{Y}\right) \tag{3.29}
\end{equation*}
$$

where $Y=\sqrt{y^{2}+\alpha^{2}}$. As before, (3.29) converges for all x with $|x|<1$ and for all y with $|y|<1$ if $\alpha>1$.

If we substitute (3.29) in (3.9) (with $g=1$), assuming that $\alpha>1$, we find

$$
u(x ; \alpha)=1+\frac{\lambda \alpha}{\pi} \sum_{n=0}^{\infty} x^{n} \int_{-1}^{1} \frac{1}{Y^{n+2}} U_{n}\left(\frac{y}{Y}\right) u(y ; \alpha) \mathrm{d} y
$$

The polynomial U_{n} is even when n is even and odd when n is odd. Then, as u is even, we obtain

$$
u(x ; \alpha)=1+\frac{\lambda \alpha}{\pi} \sum_{n=0}^{\infty} x^{2 n} \int_{-1}^{1} \frac{1}{Y^{2 n+2}} U_{2 n}\left(\frac{y}{Y}\right) u(y ; \alpha) \mathrm{d} y
$$

giving the following formulas for the coefficients in (3.24),

$$
\begin{align*}
& c_{0}(\alpha)=1+\frac{\lambda \alpha}{\pi} \int_{-1}^{1} \frac{u(y ; \alpha)}{y^{2}+\alpha^{2}} \mathrm{~d} y \tag{3.30}\\
& c_{n}(\alpha)=\frac{\lambda \alpha}{\pi} \int_{-1}^{1} \frac{u(y ; \alpha)}{\left(y^{2}+\alpha^{2}\right)^{n+1}} U_{2 n}\left(\frac{y}{\sqrt{y^{2}+\alpha^{2}}}\right) \mathrm{d} y, \quad n=1,2, \ldots \tag{3.31}
\end{align*}
$$

The expansion (3.29) can also be used in (3.11) to expand the iterated kernels for $\alpha>1$.

For $\alpha>1$, we may substitute (3.24) in the right-hand sides of (3.30) and (3.31), leading to an infinite linear system for the unknown coefficients. Truncating this system would lead to a numerical method; see (4.7) and (4.8).
3.6. Legendre expansions. Having discussed Maclaurin expansions, let us go on to consider expansions using Legendre polynomials, $P_{n}(x)$. As in subsection 3.5, we consider $\left(\mathrm{L}_{1}^{ \pm}\right)$. Then, as u is even, its Legendre expansion takes the form

$$
\begin{equation*}
u(x ; \alpha)=\sum_{n=0}^{\infty} a_{n}(\alpha) P_{2 n}(x) \tag{3.32}
\end{equation*}
$$

Such a series can be found in Love's paper [77, Eq. (16)], but it does not play a significant role in his analysis: "We need not consider in what sense the series (3.32) is to be understood if it is not convergent; for the results of the present formal work are rigorously verified later" [77, p. 436].

Legendre polynomials are orthogonal over $[-1,1]$. This implies, for example, that $C(\alpha)=2 a_{0}(\alpha)\left(\right.$ see (2.5)) and that $e(\gamma)$ can be determined from a_{0} and a_{1} (see (2.8)).

The expansion (3.32) has been used in some recent papers [109, 67, 107]. Here, we proceed differently, and expand the kernel $K(x-y)$ using Heine's series [47, 8.791.1],

$$
\begin{equation*}
\frac{1}{z-x}=\sum_{n=0}^{\infty}(2 n+1) P_{n}(x) Q_{n}(z), \quad-1 \leq x \leq 1 \tag{3.33}
\end{equation*}
$$

where $Q_{n}(z)$ is a Legendre function of the second kind; the series is uniformly convergent for any complex z, with z not on the real axis between -1 and 1 . Use (3.33) with $z=\mathrm{i} \alpha-y$ and replace x by $-x$, noting that $P_{n}(-x)=(-1)^{n} P_{n}(x)$; use (3.33) with $z=\mathrm{i} \alpha+y$; substitute the resulting expansions in (3.26), giving

$$
\begin{equation*}
K(x-y)=\frac{\mathrm{i}}{2 \pi} \sum_{n=0}^{\infty}(2 n+1) P_{n}(x) \mathbb{Q}_{n}(y ; \alpha), \tag{3.34}
\end{equation*}
$$

where $\mathbb{Q}_{n}(y ; \alpha)=Q_{n}(\mathrm{i} \alpha+y)+(-1)^{n} Q_{n}(\mathrm{i} \alpha-y)$. The series (3.34) converges for all x with $|x| \leq 1$, for all y with $|y| \leq 1$, and for any $\alpha>0$. Substitute (3.34) in (3.9) (with $g=1$). As $\mathbb{Q}_{n}(y ; \alpha)$ is an even function of y when n is even, and odd when n is odd, we find that, as u is even, it has the expansion (3.32) with

$$
\begin{align*}
& a_{0}(\alpha)=1+\frac{\mathrm{i} \lambda}{2 \pi} \int_{-1}^{1} \mathbb{Q}_{0}(y ; \alpha) u(y ; \alpha) \mathrm{d} y=1+\frac{\mathrm{i} \lambda}{\pi} \int_{-1}^{1} Q_{0}(\mathrm{i} \alpha-y) u(y ; \alpha) \mathrm{d} y, \tag{3.35}\\
& a_{n}(\alpha)=\frac{\mathrm{i} \lambda}{\pi}(4 n+1) \int_{-1}^{1} Q_{2 n}(\mathrm{i} \alpha-y) u(y ; \alpha) \mathrm{d} y, \quad n=1,2, \ldots, \tag{3.36}
\end{align*}
$$

using orthogonality. This system could be used in much the same way as (3.30) and (3.31). For example, if we substitute (3.32) in the right-hand sides of (3.35) and (3.36), we obtain an infinite linear system for the coefficients in (3.32). This system was first obtained by Nicholson (using a different approach to the capacitor problem) in 1924 [89, Eqs. (15) and (19)]; see also [77, Eqs. (N 15) and (N 19)].
4. Solving Love-Lieb integral equations: numerical methods. In October 1925, there was a meeting of the American Mathematical Society in Berkeley, California. The title and complete abstract of a contributed paper are as follows [15]:

> Professor Harry Bateman: Numerical solution of an integral equation. Hafen has shown that the distribution of electricity on the circular plates of a parallel plate condenser can be found by solving a linear integral equation of the second kind. In the present paper the author solves this equation numerically by a method of least squares, and discusses the method in a general way, remarking on the question of convergence.

Evidently, the abstract refers to the integral equation $\left(L_{1}^{ \pm}\right)$, and it may be the first ever attempt to tackle this problem numerically. Bateman did not publish a full paper on what he did (although he published many papers on integral equations). However, his abstract marks the beginning of almost a century of efforts to devise numerical methods to solve integral equations. These efforts are the focus for this section in the context of Love-Lieb equations.

Most of the numerical methods described below have been analysed in detail; for an admirable survey, see Atkinson's book [6]. Convergence proofs and error estimates are available. Often, error estimates involve unspecified constants. It would be useful to investigate how these constants depend on the parameter α.
4.1. Nyström's method. Love's integral equation ($\mathrm{L}_{1}^{ \pm}$) is simple and it is related to physical problems, but its solution is not known in closed form. These facts made it attractive to numerical analysts who were developing methods for solving integral equations using computers. An early example is the paper by Fox and Goodwin [38]. They used a method that is known nowadays as the Nyström method [91], [6, Chapter 4]: approximate the integral using a quadrature rule and then collocate, leading to a linear algebraic system. Thus, using

$$
\begin{equation*}
\int_{-1}^{1} F(x) \mathrm{d} x \simeq \sum_{j=1}^{N} w_{j} F\left(x_{j}\right), \quad-1 \leq x_{1}<x_{2}<\cdots<x_{N} \leq 1 \tag{4.1}
\end{equation*}
$$

with weights w_{i} and nodes $x_{i}, i=1,2, \ldots, N,(3.9)$ gives

$$
\begin{equation*}
u(x) \simeq g(x)+\lambda \sum_{j=1}^{N} w_{j} u\left(x_{j}\right) K\left(x-x_{j}\right), \quad-1 \leq x \leq 1 \tag{4.2}
\end{equation*}
$$

Collocation at $x=x_{i}$ then gives the $N \times N$ linear system

$$
u_{i}-\lambda \sum_{j=1}^{N} w_{j} K\left(x_{i}-x_{j}\right) u_{j}=g\left(x_{i}\right), \quad i=1,2, \ldots, N,
$$

where $u_{i} \simeq u\left(x_{i}\right)$. Having computed $u_{1}, u_{2}, \ldots, u_{N}$, one can then use (4.2) to approximate $u(x)$ (the right-hand side of (4.2) is Nyström's interpolation formula), or one can interpolate through the N computed values of $u(x)$ at the nodes.

For $\left(\mathrm{L}_{1}^{ \pm}\right)$(with $g(x)=1$), we know that $u(x)$ is even, while for $\left(\mathrm{L}_{x}^{ \pm}\right)$(with $g(x) \equiv x), u(x)$ is odd. In both cases, the integral equation is easily converted into an equation that holds for $0 \leq x \leq 1$, and then the size of the linear system can be halved for the same accuracy.

Simple choices for the quadrature rule (4.1) work well, at least when α is not too small (otherwise u has sharp variations close to the endpoints, as mentioned before). In their 1953 paper, Fox and Goodwin [38] used the repeated trapezoidal rule and gave numerical results when $\alpha=1$. A few years later, Cooke [29] tried the same method to solve the capacitor problem with a small gap:

Finding difficulty in using their method for $\alpha=0.1$, I approached Dr. Fox, and he kindly consented to solve the problem for this α. Dr. J. Blake carried out the work and found that it was necessary to divide the range of integration into 50 parts and solve a system of 50 linear equations in 50 unknowns in order to obtain 4 -figure accuracy! Naturally use was made of high speed computing machinery.
Sixty years later, Prolhac [102] used the same method together with Richardson extrapolation with respect to N (and modern computer hardware), thus obtaining solutions of high accuracy.

Other quadrature rules have been used for $\left(\mathrm{L}_{1}^{ \pm}\right)$; these include Simpson [72], Clenshaw-Curtis [127] and Gauss-Legendre [93, 73]. For some comparisons (when $\alpha=1$), see [17]. Lin and Shi [73] used a preconditioned conjugate gradient method [21] for $\left(\mathrm{L}_{1}^{+}\right)$when α is small.

Another option is to use a quadrature rule that has been designed to handle the kernel (3.2). For applications of such product rules, see [87] and [37]; the paper [37, Example 5.1] gives some numerical results for $\left(\mathrm{L}_{g}^{+}\right)$.

In the 1970s, software became available for solving integral equations such as $\left(\mathrm{L}_{g}^{ \pm}\right)$ using the Nyström method. Atkinson [4] offered two FORTRAN programs, one using Simpson's rule (called IESIMP) and one using Gauss-Legendre quadrature (called IEGAUS). Both have been used to solve the Love-Lieb equation, (L_{1}^{-}); IEGAUS was used in [31] and IESIMP in [46]. More recently, Atkinson and Shampine [7] updated and extended IESIMP into a Matlab program called Fie. It has been used in [111] for $\left(\mathrm{L}_{g}^{-}\right)$, and we have used it for $\left(\mathrm{L}_{1}^{ \pm}\right)$and for $\left(\mathrm{L}_{x}^{-}\right)$; see subsection 5.3.

The kernel $K(x-y)$ has singularities at $y=x \pm \mathrm{i} \alpha$. These two points are not in the range of integration, but they become closer as α becomes smaller. Therefore, it can be helpful to use a regularization [127, 93], writing (3.9) as

$$
u(x)\left(1-\lambda \int_{-1}^{1} K(x-y) \mathrm{d} y\right)-\lambda \int_{-1}^{1} K(x-y)\{u(y)-u(x)\} \mathrm{d} y=g(x), \quad|x|<1
$$

for the first integral, see (3.4).
4.2. Iterative methods. The iterative process (3.12) can be used to solve ($\mathrm{L}_{1}^{ \pm}$) numerically, using a quadrature rule (4.1) to approximate the integrals. For a straightforward implementation, see [11].

Love [78] returned to (3.12) for $\left(\mathrm{L}_{1}^{ \pm}\right)$but he introduced an extra step. He took the numerical results obtained by Fox and Goodwin [38] for u when $\alpha=1$, interpolated using an even polynomial of degree 8 , and then took this as his initial guess for u_{0}. Richardson [108] used the same method, starting with $u_{0}=1$ and interpolating at each step of the iterative process.
4.3. Expansion methods. Another class of numerical methods starts by expanding u using a set of basis functions,

$$
\begin{equation*}
u(x) \simeq \sum_{n=0}^{N} c_{n}^{(N)} \Phi_{n}(x), \quad-1<x<1 \tag{4.3}
\end{equation*}
$$

with coefficients $c_{n}^{(N)}$ (that may depend on N) and basis functions $\Phi_{n}(x), n=$ $0,1,2, \ldots$ Substitution in (3.9) gives

$$
\begin{equation*}
\sum_{n=0}^{N} c_{n}^{(N)}\left(\Phi_{n}(x)-\lambda \int_{-1}^{1} K(x-y) \Phi_{n}(y) \mathrm{d} y\right) \simeq g(x), \quad-1<x<1 \tag{4.4}
\end{equation*}
$$

To proceed, one needs to (i) choose the functions Φ_{n} and then (ii) choose a way to determine $c_{n}^{(N)}$. Let us start with (ii). One possibility is to use a Galerkin method: multiply (4.4) by $\Phi_{m}(x)$ (with $m=0,1,2, \ldots, N$) and then integrate over the interval $-1<x<1$, giving a square linear algebraic system for the coefficients $c_{n}^{(N)}$.

A simpler choice is collocation: evaluate (4.4) at $M+1$ points in the interval $-1 \leq x \leq 1$ (with $M \geq N$), giving $M+1$ equations in the $N+1$ unknowns, $c_{0}^{(N)}, c_{1}^{(N)}, \ldots, c_{N}^{(N)}$; if $M=N$, we obtain a square system, whereas if $M>N$, the system is overdetermined and we may use least-squares to obtain an approximate solution (perhaps as Bateman did in 1925).

Let us now consider (i), the choice of the functions Φ_{n}. There are many options, such as trigonometric functions, monomials or orthogonal polynomials; we shall discuss each of these below.

For simplicity, let us assume that g is even so that u is also even. Then, one natural choice is to try

$$
\Phi_{n}(x)=\cos (n \pi x)
$$

since these functions are even and orthogonal over the interval $[-1,1]$. A Galerkin method (multiply (4.4) by $\cos (m \pi x)$ and integrate over $-1<x<1)$ then leads to an algebraic system for the coefficients $c_{n}^{(N)}$. This approach has been employed in [19] and [90]; in the latter paper, the relevant double integrals are evaluated analytically in terms of sine and cosine integrals.

Chebyshev polynomials were used by Elliott [32], with the choice

$$
\Phi_{n}(x)=T_{2 n}(x)
$$

for Love's equation. (Recall that $T_{2 n}(x)$ is an even function of x.) Piessens and Branders [99] showed how to compute the integrals

$$
\begin{equation*}
I_{n}(x)=\int_{-1}^{1} K(x-y) T_{n}(y) \mathrm{d} y \tag{4.5}
\end{equation*}
$$

recursively; see also [110]. For the use of certain close relatives of Chebyshev polynomials, see $[86,124]$. For Legendre polynomials $P_{2 n}(x)$, see [130]; see also subsection 3.6.

Instead of orthogonal polynomials, another option is to use simple monomials,

$$
\begin{equation*}
\Phi_{n}(x)=x^{2 n} \tag{4.6}
\end{equation*}
$$

giving a polynomial approximation to u by truncating the Maclaurin series thereby obtained. The relevant integrals (replace $T_{n}(y)$ by $y^{2 n}$ in (4.5)) can be evaluated
explicitly [35, Eq. (64)], [67, Appendix D]. This method has been implemented [92], [66, section B.3]. The integrals mentioned above can be used to construct $g(x)$ so that $u(x)=x^{2 n}$ solves $\left(\mathrm{L}_{g}^{ \pm}\right)$. Similar calculations can be made for other simple choices for u.

Another way of using monomials (4.6), already mentioned in subsection 3.5, combines (4.3) with (3.30) and (3.31) to give

$$
\begin{align*}
c_{0}^{(N)} & =1+\frac{\lambda \alpha}{\pi} \sum_{n=0}^{N} c_{n}^{(N)} \int_{-1}^{1} \frac{y^{2 n}}{y^{2}+\alpha^{2}} \mathrm{~d} y, \tag{4.7}\\
c_{m}^{(N)} & =\frac{\lambda \alpha}{\pi} \sum_{n=0}^{N} c_{n}^{(N)} \int_{-1}^{1} \frac{y^{2 n} U_{2 m}(\xi)}{\left(y^{2}+\alpha^{2}\right)^{m+1}} \mathrm{~d} y, \quad m=1,2, \ldots, N, \tag{4.8}
\end{align*}
$$

where U_{n} is a Chebyshev polynomial and $\xi(y)=y / \sqrt{y^{2}+\alpha^{2}}$. For each N, this is a system of $N+1$ equations for the $N+1$ coefficients $c_{n}^{(N)}, n=0,1, \ldots, N$.

For $N=0,(4.7)$ gives an equation for $c_{0}^{(0)}$,

$$
c_{0}^{(0)}=1+\frac{\lambda \alpha}{\pi} c_{0}^{(0)} \int_{-1}^{1} \frac{\mathrm{~d} y}{y^{2}+\alpha^{2}}=1+\lambda c_{0}^{(0)}\|K\|_{\infty}
$$

with $\|K\|_{\infty}=(2 / \pi) \arctan (1 / \alpha)$; see (3.8).
For $N \geq 1$, we encounter elementary integrals of the form

$$
\mathbb{I}_{n}(\alpha)=\frac{\alpha}{\pi} \int_{-1}^{1} \frac{\mathrm{~d} y}{\left(y^{2}+\alpha^{2}\right)^{n}} \quad \text { with } \quad \mathbb{I}_{1}=\|K\|_{\infty}
$$

An integration by parts gives the recurrence relation

$$
\begin{equation*}
2 n \alpha^{2} \mathbb{I}_{n+1}=(2 n-1) \mathbb{I}_{n}+2(\alpha / \pi)\left(\alpha^{2}+1\right)^{-n} \tag{4.9}
\end{equation*}
$$

Then, as a simple example, consider (4.7) and (4.8) with $N=1$. From (4.7),

$$
\begin{aligned}
c_{0}^{(1)} & =1+\frac{\lambda \alpha}{\pi} c_{0}^{(1)} \int_{-1}^{1} \frac{\mathrm{~d} y}{y^{2}+\alpha^{2}}+\frac{\lambda \alpha}{\pi} c_{1}^{(1)} \int_{-1}^{1} \frac{y^{2} \mathrm{~d} y}{y^{2}+\alpha^{2}} \\
& =1+\lambda c_{0}^{(1)} \mathbb{I}_{1}+\lambda c_{1}^{(1)}\left\{2(\alpha / \pi)-\alpha^{2} \mathbb{I}_{1}\right\} .
\end{aligned}
$$

Similarly, as $U_{2}(\xi)=4 \xi^{2}-1,(4.8)$ gives

$$
\begin{aligned}
c_{1}^{(1)} & =\frac{\lambda \alpha}{\pi} c_{0}^{(1)} \int_{-1}^{1} \frac{U_{2}(\xi) \mathrm{d} y}{\left(y^{2}+\alpha^{2}\right)^{2}}+\frac{\lambda \alpha}{\pi} c_{1}^{(1)} \int_{-1}^{1} \frac{y^{2} U_{2}(\xi) \mathrm{d} y}{\left(y^{2}+\alpha^{2}\right)^{2}} \\
& =\lambda c_{0}^{(1)}\left(3 \mathbb{I}_{2}-4 \alpha^{2} \mathbb{I}_{3}\right)+\lambda c_{1}^{(1)}\left(3 \mathbb{I}_{1}-7 \alpha^{2} \mathbb{I}_{2}+4 \alpha^{4} \mathbb{I}_{3}\right) \\
& =-2 \lambda c_{0}^{(1)}(\alpha / \pi)\left(\alpha^{2}+1\right)^{-2}+\lambda c_{1}^{(1)}\left\{\mathbb{I}_{1}-2(\alpha / \pi)\left(\alpha^{2}+2\right)\left(\alpha^{2}+1\right)^{-2}\right\},
\end{aligned}
$$

having made use of (4.9). These two equations can be solved for $c_{0}^{(1)}$ and $c_{1}^{(1)}$. Solutions for higher values of N can be found using symbolic software.

Splines were first used for Love's integral equation ($\mathrm{L}_{1}^{ \pm}$) by Phillips [98]. They have been used more recently in [10] for $\left(\mathrm{L}_{g}^{-}\right)$and in [9] for $\left(\mathrm{L}_{1}^{+}\right)$. Although splines can be attractive in other contexts, for Love-Lieb integral equations, it is unclear that they are competitive with other numerical methods such as the Nyström method.

$$
\begin{equation*}
u(x ; \alpha)=g(x)+\frac{\lambda}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\alpha^{2 n+1}} \int_{-1}^{1}(x-y)^{2 n} u(y ; \alpha) \mathrm{d} y, \quad-1<x<1, \quad \alpha>2 . \tag{5.2}
\end{equation*}
$$

To solve this equation, put

$$
\begin{align*}
u(x ; \alpha) & =\sum_{n=0}^{\infty} \frac{u_{n}(x)}{\alpha^{n}} \tag{5.3}\\
& =\sum_{q=0}^{\infty}\left(\frac{u_{2 q}(x)}{\alpha^{2 q}}+\frac{u_{2 q+1}(x)}{\alpha^{2 q+1}}\right) \tag{5.4}\\
& =u_{0}(x)+\sum_{m=0}^{\infty}\left(\frac{u_{2 m+1}(x)}{\alpha^{2 m+1}}+\frac{u_{2 m+2}(x)}{\alpha^{2 m+2}}\right) \tag{5.5}
\end{align*}
$$

and substitute (5.4) in the right-hand side of (5.2). We obtain

$$
u(x ; \alpha)=g(x)+\frac{\lambda}{\pi} \sum_{q=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\alpha^{2 n+2 q+1}} \int_{-1}^{1}(x-y)^{2 n}\left(u_{2 q}(y)+\frac{u_{2 q+1}(y)}{\alpha}\right) \mathrm{d} y
$$

In the double sum, put $n+q=m$ and then change the order of summation. Using (5.5) on the left-hand side, we obtain

$$
\begin{aligned}
u_{0}(x)+ & \sum_{m=0}^{\infty}\left(\frac{u_{2 m+1}(x)}{\alpha^{2 m+1}}+\frac{u_{2 m+2}(x)}{\alpha^{2 m+2}}\right) \\
= & g(x)+\frac{\lambda}{\pi} \sum_{m=0}^{\infty} \sum_{q=0}^{m} \frac{(-1)^{m+q}}{\alpha^{2 m+1}} \int_{-1}^{1}(x-y)^{2 m-2 q} u_{2 q}(y) \mathrm{d} y \\
& +\frac{\lambda}{\pi} \sum_{m=0}^{\infty} \sum_{q=0}^{m} \frac{(-1)^{m+q}}{\alpha^{2 m+2}} \int_{-1}^{1}(x-y)^{2 m-2 q} u_{2 q+1}(y) \mathrm{d} y .
\end{aligned}
$$

Matching powers of α then gives $u_{0}(x)=g(x)$,

$$
\begin{align*}
& u_{2 m+1}(x)=\frac{\lambda}{\pi} \sum_{q=0}^{m}(-1)^{m+q} \int_{-1}^{1}(x-y)^{2 m-2 q} u_{2 q}(y) \mathrm{d} y \tag{5.6}\\
& u_{2 m+2}(x)=\frac{\lambda}{\pi} \sum_{q=0}^{m}(-1)^{m+q} \int_{-1}^{1}(x-y)^{2 m-2 q} u_{2 q+1}(y) \mathrm{d} y \tag{5.7}
\end{align*}
$$

for $m=0,1,2, \ldots$ These formulas (which appear to be new) show that both $u_{2 m+1}(x)$ and $u_{2 m+2}(x)$ are polynomials in x of degree $2 m$. It turns out that the explicit expressions for u_{n} simplify considerably when g is even or odd. The method extends readily to the case where g depends on α, provided $g(x ; \alpha)$ can itself be expanded in inverse powers of α.

Let us calculate the first few terms. With the notation $g_{n}=\int_{-1}^{1} y^{n} g(y) \mathrm{d} y$ and $\chi=\lambda / \pi$, we find

$$
\begin{aligned}
& u_{0}(x)=g(x), \quad u_{1}=\chi g_{0}, \quad u_{2}=2 \chi^{2} g_{0} \\
& u_{3}(x)=\chi\left(4 \chi^{2} g_{0}-g_{2}\right)+2 x \chi g_{1}-x^{2} \chi g_{0} \\
& u_{4}(x)=2 \chi^{2}\left\{\left(4 \chi^{2}-2 / 3\right) g_{0}-g_{2}\right\}-2 x^{2} \chi^{2} g_{0}
\end{aligned}
$$

As an example, take $g(x)=1$ and $\lambda=1$, giving the Love-Lieb equation $\left(\mathrm{L}_{1}^{-}\right)$. Then
$u_{0}=1, \quad u_{1}=\frac{2}{\pi}, \quad u_{2}=\frac{4}{\pi^{2}}, \quad u_{3}(x)=\frac{8}{\pi^{3}}-\frac{2}{3 \pi}-\frac{2 x^{2}}{\pi}, \quad u_{4}(x)=\frac{16}{\pi^{4}}-\frac{4}{\pi^{2}}-\frac{4 x^{2}}{\pi^{2}}$.

These agree with [131, Eq. (2.3.53)] and [109, Eq. (15)]. Earlier, Wadati [125] found an approximation in the form $u(x ; \alpha) \simeq a_{0}(\alpha)+a_{2}(\alpha) x^{2}$; approximating his solutions for a_{0} and a_{2} [125, Eq. (3.3)] in powers of α^{-1} gives precise agreement with (5.8).

For Gaudin's equation, $\left(\mathrm{L}_{1}^{+}\right)$, take $g(x)=1$ and $\lambda=-1$. This change to the sign of λ has no effect on u_{0}, u_{2} and u_{4}, but it changes the sign of u_{1} and u_{3}.

Next, consider the second Lieb equation, $\left(\mathrm{L}_{x}^{-}\right)$: put $g(x)=x$ and $\lambda=1$. As $g_{0}=g_{2}=0$ and $g_{1}=\frac{2}{3}$, we obtain

$$
\begin{equation*}
u_{0}(x)=x, \quad u_{1}=u_{2}=0, \quad u_{3}(x)=\frac{4 x}{3 \pi}, \quad u_{4}=0 \tag{5.9}
\end{equation*}
$$

These agree with [109, Eq. (16)].
The polynomials $u_{n}(x)$ in (5.3) are given recursively by (5.6) and (5.7). As an alternative, we could seek the coefficients in the polynomials by direct substitution in the integral equation, much as was done with (5.1). But now, if we consider the Love-Lieb equation $\left(\mathrm{L}_{1}^{ \pm}\right)$, whose solution is even, and truncate (5.3), we find that (5.1) should be replaced by

$$
\begin{equation*}
u(x ; \alpha) \simeq \sum_{n=0}^{2 M+2} \frac{1}{\alpha^{n}} \sum_{m=0}^{p(n)} c_{m n} x^{2 m} \tag{5.10}
\end{equation*}
$$

where the upper limit in the inner sum is p when $n=2 p+1$ or $2 p+2$; the additional terms in (5.1) must all be zero.
5.2. Approximations for $\alpha \ll 1$: small gaps, weak coupling. This limit is more difficult to handle because of the near-singularity of the kernel. We have already seen that for $\left(\mathrm{L}_{1}^{+}\right), u(x) \simeq \frac{1}{2}$ for $-1<x<1$ but $u(\pm 1) \simeq \frac{3}{4}$. For $\left(\mathrm{L}_{1}^{-}\right)$, $u(x) \simeq \alpha^{-1} \sqrt{1-x^{2}}$ for $-1<x<1$ but $u(\pm 1)>1$; see (3.19). The errors in the approximations for $|x|<1$ close to the endpoints at $x= \pm 1$ suggest strongly using matched asymptotic expansions, and that is what we find in much of the literature.

Let us start with (L_{1}^{-}). The leading (outer) approximation, away from the endpoints, is

$$
\begin{equation*}
u(x ; \alpha) \simeq \alpha^{-1} \sqrt{1-x^{2}}, \quad-1<x<1 \tag{5.11}
\end{equation*}
$$

This "semi-circular law" can be found in the 1963 papers by Lieb and Liniger [72] (where it is a "guess") and Hutson [56] (where it is justified). Other derivations were given later [43], [125, Eq. (4.4)], [92]. A more accurate (outer) approximation is (5.12)
$u(x ; \alpha) \simeq \frac{\sqrt{1-x^{2}}}{\alpha}+\frac{1}{2 \pi \sqrt{1-x^{2}}}\left[x \log \left(\frac{1-x}{1+x}\right)+\log \left(\frac{16 \pi}{\alpha}\right)+1\right], \quad-1<x<1$.
For derivations, see [56, Eq. (4.7)] and [100, Eq. (1.13)].
Although the arguments used to derive small- α approximations such as (5.11) and (5.12) are plausible, and the approximations obtained are supported by numerical simulation, there is scope for further work to provide rigorous error estimates.

The two-term approximation (5.12) is integrable for $|x|<1$, and it can be used to obtain approximations for the capacitance (2.5) or the ground-state energy (2.8). Higher-order terms can be added to (5.12) but they are not integrable and so the associated inner approximations (near the endpoints) are required [107].

For $\left(\mathrm{L}_{1}^{+}\right)$, the two-term approximation is

$$
\begin{equation*}
u(x ; \alpha) \simeq \frac{1}{2}+\frac{\alpha}{2 \pi\left(1-x^{2}\right)}, \quad-1<x<1 . \tag{5.13}
\end{equation*}
$$

For derivations, see [42, Eq. (15.23)], [2, Eq. (3.7)] and [59, Eq. (3.82)]. Evidently, the approximation (5.13) is not integrable for $|x|<1$, so that inner approximations are needed. An ansatz for the solution of $\left(\mathrm{L}_{1}^{+}\right)$was given in [80]. Some of its coefficients can be fixed by a rather complicated procedure that matches inner and outer approximations. In particular, an outer approximation for u is obtained [80, Eq. (3.29)] that contains more terms than (5.13); its third term is found to be

$$
\frac{\alpha^{2}}{2 \pi}\left\{\frac{1+\log (\pi / \alpha)}{2\left(1-x^{2}\right)}-\frac{\log (\pi / \alpha)}{\left(1-x^{2}\right)^{2}}-\frac{x}{\left(1-x^{2}\right)^{2}} \log \left(\frac{1-x}{1+x}\right)\right\}
$$

For $\left(\mathrm{L}_{x}^{-}\right)$, the second Lieb equation, we are aware of two attempts, both leading to approximations in the form

$$
\begin{align*}
& u(x ; \alpha) \simeq \frac{x}{2 \alpha} \sqrt{1-x^{2}} \tag{5.14}\\
& +\frac{\mathcal{A}(x)}{4 \pi \sqrt{1-x^{2}}}\left[1+\log \left(\frac{16 \pi}{\alpha}\right)\right]-\frac{\mathcal{B}(x)}{4 \pi} \log \left(\frac{1+x}{2}\right)+\frac{\mathcal{B}(-x)}{4 \pi} \log \left(\frac{1-x}{2}\right)
\end{align*}
$$

for $-1<x<1$. We know that $u(x ; \alpha)$ is an odd function of x, so that $\mathcal{A}(x)$ must also be odd, but $\mathcal{B}(x)$ is unrestricted. Hutson [57], extending his analysis for $\left(\mathrm{L}_{1}^{-}\right)$ [56], obtained (5.14) with

$$
\begin{equation*}
\mathcal{A}(x)=\sqrt{\frac{1+x}{2}}-\sqrt{\frac{1-x}{2}} \quad \text { and } \quad \mathcal{B}(x)=\frac{1}{\sqrt{2(1+x)}} \tag{5.15}
\end{equation*}
$$

More recently, Reichert et al. [106, Eq. (S8)] obtained (5.14) but with different expressions for \mathcal{A} and \mathcal{B},

$$
\begin{equation*}
\mathcal{A}(x)=x \quad \text { and } \quad \mathcal{B}(x)=\frac{2 x^{2}-1}{\sqrt{1-x^{2}}} \tag{5.16}
\end{equation*}
$$

These authors used Popov's method [100], which starts with an assumed ansatz; implicit in their choice is that $\mathcal{B}(x)$ is an even function of x, which does not accord with Hutson's result (5.15).
5.3. Numerical results. We have given small- α approximations for the solutions of $\left(\mathrm{L}_{1}^{ \pm}\right)$. Here, we compare them with direct numerical solutions of the integral equations, using Nyström's method (subsection 4.1), and the Matlab program Fie [7]. (The code was retrieved from [5].)

In Figure 1, the numerical solution of the Love-Lieb equation (L_{1}^{-}) is plotted together with the approximation (5.12) for $\alpha=0.1$. The number of nodes used in Simpson's rule is 128. Similarly, in Figure 2, the numerical solution of Gaudin's equation $\left(\mathrm{L}_{1}^{+}\right)$is plotted together with the approximation (5.13) for $\alpha=0.1$. The number of nodes used in the quadrature is 64 . In both Fie results shown in these figures, the absolute and relative error tolerances are 10^{-6} and 10^{-3}, respectively.

We see from the numerical results that the endpoint behavior, at $x= \pm 1$, is not well captured by the outer approximations, as expected. See also the remarks in

Fig. 1. The solution of the Love-Lieb equation $\left(\mathrm{L}_{1}^{-}\right)$for $\alpha=0.1$. The solid line represents the results obtained by the Fie Matlab code and the dashed line shows the approximation (5.12).

Fig. 2. The solution of the Gaudin equation $\left(\mathrm{L}_{1}^{+}\right)$for $\alpha=0.1$. The solid line represents the results obtained by the Fie MATLAB code and the dashed line shows the approximation (5.13)

Fig. 3. The solution of $\left(\mathrm{L}_{1}^{-}\right)$at $x=1$ as a function of α in the domain $[0.05,0.8]$. The solid line represents the results obtained by the Fie Matlab code and the dashed line shows the fitting curve $1.063 \alpha^{-0.5289}+0.5602$, with a root mean square error of 0.0059 .
subsection 3.1. We are not aware of any analytical approximations for $u(1 ; \alpha)$ as a function of α. Instead, as motivation for further study, we have fit a curve by least squares to the numerical solutions by Fie. We have done that for $\left(\mathrm{L}_{1}^{-}\right)$; the result is shown in Figure 3. Among several approximating functions in the Matlab Curve Fitting Toolbox ${ }^{\mathrm{TM}}$, the two-term power curve provided the smallest root mean square error.

Numerical solutions of the second Lieb equation $\left(\mathrm{L}_{x}^{-}\right)$are plotted in Figure 4, together with the approximations given by (5.15) and (5.16). It appears that (5.16) is a better approximation, although further work is needed to resolve the discrepancies.
6. Concluding remarks. We have reviewed 110 years of the literature on a very simple integral equation usually associated with the names of E. R. Love and E. H. Lieb. This equation has many applications in classical and quantum physics, as do some of its generalizations. Despite its simplicity, no closed-form solution is known. The study of this equation has inspired the developments of numerical and analytical methods, some of which exploit the size of α, which is the only parameter appearing in the integral equation. Further developments can be expected.

Acknowledgments. The authors thank several people for comments and pointers to the literature: Vanja Dunjko (for enlightening discussions on [4] and [31]), Etienne Granet (for [48], which drew our attention to [55]), Vladimir Korepin (for [53] and the appearance of a generalized Love-Lieb equation in the spin chain context), Anna Minguzzi, and Zoran Ristivojevic (for [97], which led to the discussion in subsection 3.3). Two anonymous reviewers also provided many constructive com-

Fig. 4. The solution of $\left(\mathrm{L}_{x}^{-}\right)$at $\alpha=0.1$ as a function of x. The solid line represents the results obtained by the Fie Matlab code, the dashed line shows the approximation given by (5.15) and the dashed-dotted line (5.16)
ments on an earlier version of the paper. In particular, one reviewer provided analysis leading to (3.13), (3.22), and (3.23).

Appendix A. Love-Lieb integral equations on an infinite interval.
Consider the convolution integral equations
$\left(\mathrm{I}_{g}^{ \pm}\right)$

$$
u(x) \pm \int_{-\infty}^{\infty} K(x-y) u(y) \mathrm{d} y=g(x), \quad-\infty<x<\infty
$$

where $K(x)=(\alpha / \pi)\left(x^{2}+\alpha^{2}\right)^{-1}$ and $0<\alpha<\infty$. Formally, at least, we can solve ($I_{g}^{ \pm}$) using Fourier transforms; see, for example, [119, section 11.1], [88, section 8.5], [26, section 18.1]. Define

$$
\tilde{u}(k)=\int_{-\infty}^{\infty} u(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x
$$

Then, using the convolution theorem, the Fourier transform of $\left(\mathrm{I}_{g}^{ \pm}\right)$is

$$
\Delta_{ \pm}(k) \tilde{u}(k)=\tilde{g}(k)
$$

with $\Delta_{ \pm}(k)=1 \pm \widetilde{K}(k)$ and $\widetilde{K}(k)=\mathrm{e}^{-\alpha|k|}$. Hence

$$
\begin{equation*}
\tilde{u}(k)=\frac{\tilde{g}(k)}{1 \pm \mathrm{e}^{-\alpha|k|}} . \tag{A.1}
\end{equation*}
$$

Rearranging (as the denominator $\rightarrow 1$ as $|k| \rightarrow \infty$),

$$
\begin{equation*}
\tilde{u}(k)=\tilde{g}(k) \mp \widetilde{M}_{ \pm}(k) \tilde{g}(k) \quad \text { with } \quad \widetilde{M}_{ \pm}(k)=\frac{\mathrm{e}^{-\alpha|k|}}{1 \pm \mathrm{e}^{-\alpha|k|}} \tag{A.2}
\end{equation*}
$$

Inverting, using the convolution theorem again,

$$
\begin{equation*}
u(x)=g(x) \mp \int_{-\infty}^{\infty} M_{ \pm}(x-y) g(y) \mathrm{d} y . \tag{A.3}
\end{equation*}
$$

At this stage, all these calculations are formal, of course. For example, although $M_{+}(x)$ can be evaluated (see (A.14)), the inversion integral defining $M_{-}(x)$ is divergent (see Appendix A.2).

It is known [26, Theorem 18.1-1] that $\left(\mathrm{I}_{g}^{ \pm}\right)$has a unique integrable solution u for arbitrary integrable g if and only if $\Delta_{ \pm}(k) \neq 0$ for $-\infty<k<\infty$. Moreover, when this condition is satisfied, the solution is given by the formula (A.3).

In our case, we have

$$
\begin{equation*}
\widetilde{K}(0)=\int_{-\infty}^{\infty} K(x) \mathrm{d} x=1 \tag{A.4}
\end{equation*}
$$

which means $\Delta_{-}(0)=0$. Hence, we must distinguish (I_{g}^{+}) (the "normal" case) and $\left(\mathrm{I}_{g}^{-}\right)$(the "non-normal case"). We start with the uniquely-solvable equation, (I_{g}^{+}), in Appendix A.1, and then discuss (I_{g}^{-}) in Appendix A.2.
A.1. Equation (I_{g}^{+}). Start with the formula (A.4). It shows that

$$
\begin{equation*}
u(x)=\frac{1}{2} \text { solves }\left(\mathrm{I}_{g}^{+}\right) \text {when } g(x)=1, \text { for any finite } \alpha>0 \tag{A.5}
\end{equation*}
$$

Note that this g and the solution u do not have Fourier transforms.
A.1.1. Three examples. We give three examples, with simple Fourier-transformable g.

Example A.1. Motivated by (A.5), suppose g is a piecewise-constant even function defined by

$$
g(x)= \begin{cases}1, & |x|<L \tag{A.6}\\ 0, & |x|>L\end{cases}
$$

for some $L>0$. Then $\tilde{g}(k)=(2 / k) \sin (k L)$ and, inverting (A.1),

$$
\begin{aligned}
u(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \sin (k L)}{k\left(1+\mathrm{e}^{-\alpha|k|}\right)} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (k L) \cos (k x)}{k\left(1+\mathrm{e}^{-\alpha k}\right)} \mathrm{d} k=S([L+x] / \alpha)+S([L-x] / \alpha)
\end{aligned}
$$

say, where

$$
S(X)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (k X)}{k\left(1+\mathrm{e}^{-k}\right)} \mathrm{d} k
$$

Although we can evaluate $S(X)$ explicitly (see below), let us start by finding an asymptotic approximation as $X \rightarrow \infty$. As $1+\mathrm{e}^{-k} \sim 2$ as $k \rightarrow 0$, write

$$
\begin{aligned}
S(X) & =\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (k X)}{2 k} \mathrm{~d} k+\frac{1}{\pi} \int_{0}^{\infty} \frac{\left(1-\mathrm{e}^{-k}\right) \sin (k X)}{2 k\left(1+\mathrm{e}^{-k}\right)} \mathrm{d} k \\
& =\frac{1}{4}+\frac{1}{2 \pi} \operatorname{Im} \int_{0}^{\infty} \Phi(k) \mathrm{e}^{\mathrm{i} k X} \mathrm{~d} k,
\end{aligned}
$$

with $\Phi(k)=k^{-1} \tanh (k / 2)$. We have $\Phi(k) \rightarrow \frac{1}{2}$ as $k \rightarrow 0$ and $\Phi(k) \rightarrow 0$ as $k \rightarrow \infty$. Then a standard argument for estimating Fourier integrals [30, section 10] (essentially using integration by parts) gives

$$
S(X) \sim \frac{1}{4}+\frac{1}{4 \pi X} \quad \text { as } X \rightarrow \infty
$$

Hence

$$
u(x) \sim \frac{1}{2}+\frac{\alpha}{2 \pi L} \quad \text { as } L \rightarrow \infty, \text { for fixed } x
$$

Thus, we recover the known solution for $g(x)=1$, (A.5), as $L \rightarrow \infty$; see (A.6).
For a closed-form expression for $S(X)$, start with

$$
\begin{equation*}
S(X)=\frac{1}{2}-\frac{1}{\pi} \int_{0}^{\infty} \frac{\mathrm{e}^{-k} \sin (k X)}{k\left(1+\mathrm{e}^{-k}\right)} \mathrm{d} k \tag{A.7}
\end{equation*}
$$

Now, from [47, 8.341.3], we have the formula

$$
\log \frac{\Gamma(a-\mathrm{i} x)}{\Gamma(a+\mathrm{i} x)}=2 \mathrm{i} \int_{0}^{\infty}\left(\frac{\mathrm{e}^{-2 a k}}{1-\mathrm{e}^{-2 k}} \sin (2 x k)-x \mathrm{e}^{-2 k}\right) \frac{\mathrm{d} k}{k}
$$

with $a>0$ and x real. (Here, Γ is the gamma function.) Write down this formula with $a=\frac{1}{2}$ and subtract the corresponding formula with $a=1$ to give

$$
\log \left(\frac{\Gamma\left(\frac{1}{2}-\mathrm{i} x\right) \Gamma(1+\mathrm{i} x)}{\Gamma\left(\frac{1}{2}+\mathrm{i} x\right) \Gamma(1-\mathrm{i} x)}\right)=2 \mathrm{i} \int_{0}^{\infty} \frac{\mathrm{e}^{-k}-\mathrm{e}^{-2 k}}{1-\mathrm{e}^{-2 k}} \sin (2 x k) \frac{\mathrm{d} k}{k}
$$

which is the integral in (A.7) after putting $x=X / 2$.
Example A.2. Suppose g is a smooth odd function defined by

$$
\begin{equation*}
g(x)=\frac{x}{x^{2}+\kappa^{2}} \quad \text { with } \quad \tilde{g}(k)=\pi \mathrm{i}^{-\kappa|k|} \operatorname{sgn}(k) \tag{A.8}
\end{equation*}
$$

where $\kappa>0$. Inverting (A.1),

$$
\begin{align*}
u(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\pi \mathrm{i} \mathrm{e}^{-\kappa|k|} \operatorname{sgn}(k)}{1+\mathrm{e}^{-\alpha|k|}} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k=\int_{0}^{\infty} \frac{\mathrm{e}^{-\kappa k} \sin (k x)}{1+\mathrm{e}^{-\alpha k}} \mathrm{~d} k \tag{A.9}\\
& =\frac{1}{\alpha} \operatorname{Im} \int_{0}^{\infty} \frac{\mathrm{e}^{-Z y} \mathrm{~d} y}{1+\mathrm{e}^{-y}}=\frac{1}{\alpha} \operatorname{Im}\{\beta(Z)\} \tag{A.10}
\end{align*}
$$

using [47, 8.371.2], where $Z=(\kappa-\mathrm{i} x) / \alpha$,

$$
\begin{equation*}
\beta(z)=\frac{1}{2}\left\{\psi\left(\frac{z+1}{2}\right)-\psi\left(\frac{z}{2}\right)\right\} \quad \text { and } \quad \psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)} \tag{A.11}
\end{equation*}
$$

When $\alpha=\kappa$, the integral (A.9) can be evaluated explicitly [47, 3.911.1]:

$$
u(x)=\frac{1}{2 x}-\frac{\pi}{2 \alpha \sinh (\pi x / \alpha)}, \quad x>0
$$

with $u(x)=-u(-x)$ for $x<0$. Note that, although this solution for u is Fouriertransformable, it is not absolutely integrable. (There is a similar example for $\left(\mathrm{I}_{g}^{-}\right)$in [119]; see (A.15) below.)

Example A.3. Consider an even version of (A.8),

$$
\begin{equation*}
g(x)=\frac{\kappa}{x^{2}+\kappa^{2}} \quad \text { with } \quad \tilde{g}(k)=\pi \mathrm{e}^{-\kappa|k|} \tag{A.12}
\end{equation*}
$$

where $\kappa>0$. Hence, proceeding as with (A.8),

$$
\begin{equation*}
u(x)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\kappa k} \cos (k x)}{1+\mathrm{e}^{-\alpha k}} \mathrm{~d} k=\frac{1}{\alpha} \operatorname{Re}\{\beta(Z)\} \tag{A.13}
\end{equation*}
$$

When $\alpha=2 \kappa$, the integral (A.13) can be evaluated explicitly [47, 3.981.3]:

$$
u(x)=\frac{\pi}{2 \alpha} \operatorname{sech}\left(\frac{\pi x}{\alpha}\right) .
$$

In particular, when $\alpha=2(\kappa=1)$, we recover a solution of (I_{g}^{+}) found by Hulthén [55, Eq. (III, 56)]; see also [48, Eq. (19)].
A.1.2. The resolvent kernel M_{+}. Next, let us return to (A.3) and evaluate the resolvent kernel $M_{+}(x)$. We have

$$
\begin{align*}
M_{+}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\alpha|k|}}{1+\mathrm{e}^{-\alpha|k|}} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k=\frac{1}{\pi} \int_{0}^{\infty} \frac{\mathrm{e}^{-\alpha k} \cos (k x)}{1+\mathrm{e}^{-\alpha k}} \mathrm{~d} k \tag{A.14}\\
& =\frac{1}{\pi \alpha} \operatorname{Re} \int_{0}^{\infty} \frac{\mathrm{e}^{-\mu y} \mathrm{~d} y}{1+\mathrm{e}^{-y}}=\frac{1}{\pi \alpha} \operatorname{Re}\{\beta(\mu)\} \quad \text { with } \quad \mu=1+\frac{\mathrm{i} x}{\alpha}
\end{align*}
$$

where $\beta(z)$ is defined by (A.11).
A.2. Equation (I_{g}^{-}). The formula (A.4) implies that the homogeneous form of ($\left.\mathrm{I}_{g}^{-}\right)$is satisfied by $u(x)=1$, so that we do not have uniqueness. We could restore uniqueness by insisting that u be integrable. Alternatively, when g is odd we could insist that the solution u be odd.

Example A.4. As an example with an odd g, take (A.8). Then (A.1) gives

$$
u(x)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\kappa k} \sin (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k
$$

We see that both numerator and denominator are zero at $k=0$ with a finite ratio, and so the integral is well defined. Indeed, from [47, 3.911.6], we have

$$
u(x)=-\frac{1}{\alpha} \operatorname{Im}\{\psi(Z)\}
$$

where $Z=(\kappa-\mathrm{i} x) / \alpha$ (as before). In the special case $\alpha=\kappa$, we have [47, 3.911.2]

$$
\begin{equation*}
u(x)=\frac{\pi}{2 \alpha} \operatorname{coth}\left(\frac{\pi x}{\alpha}\right)-\frac{1}{2 x}, \tag{A.15}
\end{equation*}
$$

in agreement with an example in Titchmarsh's book [119, p. 309].
Example A.5. For an even example, take (A.12). Inverting (A.1) gives

$$
u(x)=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\kappa|k|} \mathrm{e}^{-\mathrm{i} k x}}{1-\mathrm{e}^{-\alpha|k|}} \mathrm{d} k=\int_{0}^{\infty} \frac{\mathrm{e}^{-\kappa k} \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k
$$

The integrand has a non-integrable singularity at $k=0$. We take the finite part, and define

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-\kappa k} \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k=\lim _{\varepsilon \rightarrow 0}\left\{\int_{\varepsilon}^{\infty} \frac{\mathrm{e}^{-\kappa k} \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k+\frac{1}{\alpha} \log \varepsilon\right\}
$$

More generally, define

$$
\int_{0}^{A} \frac{G(k) \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k=\lim _{\varepsilon \rightarrow 0}\left\{\int_{\varepsilon}^{A} \frac{G(k) \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k+\frac{G(0)}{\alpha} \log \varepsilon\right\}
$$

Notice that the second term on the right-hand side of this formula does not depend on x. However, we are not interested in additive constants because we already know that $u=1$ solves the homogeneous version of $\left(\mathrm{I}_{g}^{-}\right)$.

Let us write

$$
\tilde{g}(k)=\tilde{g}_{\mathrm{e}}(k)+\tilde{g}_{\mathrm{o}}(k)
$$

where $\tilde{g}_{\mathrm{e}}(-k)=\tilde{g}_{\mathrm{e}}(k)$ and $\tilde{g}_{\mathrm{o}}(-k)=-\tilde{g}_{\mathrm{o}}(k)$. Then

$$
u(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\tilde{g}_{\mathrm{e}}(k) \cos (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k-\frac{\mathrm{i}}{\pi} \int_{0}^{\infty} \frac{\tilde{g}_{\mathrm{o}}(k) \sin (k x)}{1-\mathrm{e}^{-\alpha k}} \mathrm{~d} k
$$

is a particular solution of $\left(\mathrm{I}_{g}^{-}\right)$.

REFERENCES

[1] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Beyond the TonksGirardeau gas: strongly correlated regime in quasi-one-dimensional Bose gases, Phys. Rev. Lett., 95 (2005), art. 190407, https://doi.org/10.1103/PhysRevLett.95.190407.
[2] C. Atkinson and F. G. Leppington, The asymptotic solution of some integral equations, IMA J. Appl. Math., 31 (1983), pp. 169-182, https://doi.org/10.1093/imamat/31.3.169.
[3] C. Atkinson and J. D. Sherwood, Added mass of a pair of disks at small separation, Euro. J. Appl. Math., 28 (2017), pp. 687-706, https://doi.org/10.1017/S0956792516000486.
[4] K. Atkinson, An automatic program for linear Fredholm integral equations of the second kind, ACM Trans. Math. Softw., 2 (1976), pp. 154-171, https://doi.org/10.1145/355681. 355686.
[5] K. Atkinson, Fredholm integral equations, (https://www.mathworks.com/matlabcentral/ fileexchange/19456-fredholm-integral-equations), MATLAB Central File Exchange. Retrieved August 7, 2020.
[6] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, 1997.
[7] K. E. Atkinson and L. F. Shampine, Algorithm 876: Solving Fredholm integral equations of the second kind in Matlab, ACM Trans. Math. Softw., 34 (2008), art. 21, https://doi.org/10.1145/1377596.1377601.
[8] L. Baratchart, J. Leblond, and D. Ponomarev, Solution of a homogeneous version of Love type integral equation in different asymptotic regimes, in Integral Methods in Science and Engineering, Birkhäuser, Cham, 2019, pp. 67-79, https://doi.org/10.1007/978-3-030-16077-7_6.
[9] D. Barrera, F. El Mokhtari, M. J. Ibáñez, and D. Sbibih, A quasi-interpolation product integration based method for solving Love's integral equation with a very small parameter, Math. \& Computers in Simulation, 172 (2020), pp. 213-223, https://doi.org/10.1016/ j.matcom.2019.12.008.
[10] D. Barrera, F. Elmokhtari, and D. Sbibin, Two methods based on bivariate spline quasiinterpolants for solving Fredholm integral equations, Appl. Numer. Math., 127 (2018), pp. 78-94, https://doi.org/10.1016/j.apnum.2017.12.016.
[11] D. F. Bartlett and T. R. Corle, The circular parallel plate capacitor: a numerical solution for the potential, J. Phys. A: Math. Gen., 18 (1985), pp. 1337-1342, https://doi.org/10.1088/0305-4470/18/9/017.
[12] M. T. Batchelor, M. Bortz, X.-W. Guan, and N. Oelkers, Evidence for the super Tonks-Girardeau gas, J. Stat. Mech., (2005), art. L10001, https://doi.org/10.1088/17425468/2005/10/L10001.
[13] M. T. Batchelor, X.-W. Guan, and N. Oelkers, One-dimensional interacting anyon gas: low-energy properties and Haldane exclusion statistics, Phys. Rev. Lett., 96 (2006), art. 210402, https://doi.org/10.1103/PhysRevLett.96.210402.
[14] M. T. Batchelor, X. W. Guan, N. Oelkers, and C. Lee, The 1D interacting Bose gas in a hard wall box, J. Phys. A: Math. Gen., 38 (2005), pp. 7787-7806, https://doi.org/ 10.1088/0305-4470/38/36/001.
[15] H. Bateman, Numerical solution of an integral equation, Bull. Amer. Math. Soc., 31 (1925), p. 111.
[16] H. Bethe, Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Zeit. für Physik, 71 (1931), pp. 205-226, https://doi.org/10.1007/BF01341708.
[17] W. R. Boland, The numerical solution of Fredholm integral equations using product type quadrature formulas, BIT, 12 (1972), pp. 5-16, https://doi.org/10.1007/BF01932669.
[18] D. C. Cabra, A. Honecker, and P. Pujol, Magnetization plateaux in N-leg spin ladders, Phys. Rev. B, 58 (1998), pp. 6241-6257, https://doi.org/10.1103/PhysRevB.58.6241.
[19] G. T. Carlson and B. L. Illman, The circular disk parallel plate capacitor, Amer. J. Phys., 62 (1994), pp. 1099-1105, https://doi.org/10.1119/1.17668.
[20] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: from condensed matter systems to ultracold gases, Rev. Mod. Phys., 83 (2011), pp. 1405-1466, https://doi.org/10.1103/RevModPhys.83.1405.
[21] R. H. Chan and M. K. NG, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), pp. 427-482. https://doi.org/10.1137/S0036144594276474.
[22] S. N. Chandler-Wilde, M. Rahman, and C. R. Ross, A fast two-grid and finite section method for a class of integral equations on the real line with application to an acoustic scattering problem in the half-plane, Numer. Math., 93 (2002), pp. 1-51, https://doi.org/10.1007/BF02679436.
[23] V. V. Cheianov, H. Smith, and M. B. Zvonarev, Exact results for three-body correlations in a degenerate one-dimensional Bose gas, Phys. Rev. A, 73 (2006), art. 051604(R), https://doi.org/10.1103/PhysRevA.73.051604.
[24] S. Chen, L. Guan, X. Yin, Y. Hao, and X.-W. Guan, Transition from a Tonks-Girardeau gas to a super-Tonks-Girardeau gas as an exact many-body dynamics problem, Phys. Rev. A, 81 (2010), art. 031608(R), https://doi.org/10.1103/PhysRevA.81.031609.
[25] S. Chen, X.-W. Guan, X. Yin, L. Guan, and M. T. Batchelor, Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases, Phys. Rev. A, 81 (2010), art. 031608(R), https://doi.org/10.1103/PhysRevA.81.031608.
[26] J. A. Cochran, The Analysis of Linear Integral Equations, McGraw-Hill, 1972.
[27] W. D. Collins, On the solution of some axisymmetric boundary value problems by means of integral equations: V. Some scalar diffraction problems for circular disks, Quart. J. Mech. Appl. Math., 14 (1961), pp. 101-117, https://doi.org/10.1093/qjmam/14.1.101.
[28] J. C. Cooke, A solution of Tranter's dual integral equations problem, Quart. J. Mech. Appl. Math., 9 (1956), pp. 103-110, https://doi.org/10.1093/qjmam/9.1.103.
[29] J. C. Cooke, The coaxial circular disc problem, Zeit. für Angewandte Math. Mech., 38 (1958), pp. 349-356, https://doi.org/10.1002/zamm. 19580380904.
[30] E. T. Copson, Asymptotic Expansions, Cambridge University Press, 1965.
[31] V. Dunjko, V. Lorent, and M. Olshanii, Bosons in cigar-shaped traps: Thomas-Fermi regime, Tonks-Girardeau regime, and in between, Phys. Rev. Lett., 86 (2001), pp. 54135416, https://doi.org/10.1103/PhysRevLett.86.5413.
[32] D. Elliott, A Chebyshev series method for the numerical solution of Fredholm integral equations, The Computer J., 6 (1963), pp. 102-112, https://doi.org/10.1093/comjnl/6.1.102.
[33] T. Emig and M. Kardar, Probability distributions of line lattices in random media from the 1D Bose gas, Nuclear Phys. B, 604 (2001), pp. 479-510, https://doi.org/10.1016/S0550-3213(01)00102-X.
[34] A. H. England, Love's integral and other relations between solutions to mixed boundary-value problems in potential theory, J. Australian Math. Soc., Ser. B, 22 (1981), pp. 353-367, https://doi.org/10.1017/S0334270000002691.
[35] V. I. FAbrikant, Electrostatic problem of several arbitrarily charged unequal coaxial disks, J. Comp. Appl. Math., 18 (1987), pp. 129-147, https://doi.org/10.1016/0377-0427(87) 90012-4.
[36] L. Farina, Water wave radiation by a heaving submerged horizontal disk very near the free surface, Phys. Fluids 22 (2010), art. 057102, https://doi.org/10.1063/1.3403478.
[37] L. Fermo, M. G. Russo, and G. Serafini, Numerical treatment of the generalized Love integral equation, Numerical Algorithms, 86 (2021), pp. 1769-1789, https://doi.org/10.1007/ s11075-020-00953-2.
[38] L. Fox and E. T. Goodwin, The numerical solution of non-singular linear integral equations, Phil. Trans. Roy. Soc. A, 245 (1953), pp. 501-534, https://doi.org/10.1098/rsta.1953.0005.
[39] F. Franchini, An Introduction to Integrable Techniques for One-Dimensional Quantum Systems, Springer, 2017. Lecture Notes in Physics 940.
[40] J. N. Fuchs, A. Recati, and W. Zwerger, Exactly solvable model of the BCS-BEC crossover, Phys. Rev. Lett., 93 (2004), art. 090408, https://doi.org/10.1103/PhysRevLett. 93. 090408.
[41] M. Gaudin, Un systeme a une dimension de fermions en interaction, Phys. Lett. A, 24 (1967), pp. 55-56, https://doi.org/10.1016/0375-9601(67)90193-4.
[42] M. Gaudin, Étude d'un modèle à une dimension pour un système de fermions en interaction, PhD thesis, Université de Paris, 1968.
[43] M. Gaudin, Boundary energy of a Bose gas in one dimension, Phys. Rev. A, 4 (1971), pp. 386-394, https://doi.org/10.1103/PhysRevA.4.386.
[44] M. Gaudin, The Bethe Wavefunction, Cambridge University Press, 2014.
[45] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys., 1 (1960), pp. 516-523, https://doi.org/10.1063/1.1703687.
[46] M. D. Girardeau, Dynamics of Lieb-Liniger gases, Phys. Rev. Lett., 91 (2003), art. 040401, https://doi.org/10.1103/PhysRevLett.91.040401.
[47] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th edn., Academic Press, 1994.
[48] R. B. Griffiths, Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain, Phys. Rev., 133 (1964), pp. A768-A775, https://doi.org/10.1103/ PhysRev.133.A768.
[49] X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: from Bethe ansatz to experiments, Rev. Mod. Phys., 85 (2013), pp. 1633-1691, https://doi.org/ 10.1103/RevModPhys.85.1633.
[50] X.-W. Guan, Z.-Q. Ma, and B. Wilson, One-dimensional multicomponent fermions with δ function interaction in strong- and weak-coupling limits: κ-component Fermi gas, Phys. Rev. A, 85 (2012), art. 033633, https://doi.org/10.1103/PhysRevA.85.033633.
[51] M. Hafen, Studien über einige Probleme der Potentialtheorie, Mathematische Annalen, 69 (1910), pp. 517-537, https://doi.org/10.1007/BF01457640.
[52] P. R. Hammar, M. B. Stone, D. H. Reich, C. Broholm, P. J. Gibson, M. M. Turnbull, C. P. Landee, and M. Oshikawa, Characterization of a quasi-one-dimensional spin-1/2 magnet which is gapless and paramagnetic for $g \mu_{B} H \lesssim J$ and $k_{B} T \ll J$, Phys. Rev. B, 59 (1999), pp. 1008-1015, https://doi.org/10.1103/PhysRevB.59.1008.
[53] K. Hao, D. Kharzeev, and V. Korepin, Bethe ansatz for XXX chain with negative spin, Int. J. Mod. Phys. A, 34 (2019), art. 1950197, https://doi.org/10.1142/S0217751X19501975.
[54] W. Heisenberg, Zur Theorie des Ferromagnetismus, Zeit. für Physik, 49 (1928), pp. 619-636, https://doi.org/10.1007/BF01328601.
[55] L. Hulthén, Über das Austauschproblem eines Kristalles, Arkiv för matematik, astronomi och fysik, 26A, No. 11 (1938), pp. 1-106.
[56] V. Hutson, The circular plate condenser at small separations, Proc. Camb. Phil. Soc., 59 (1963), pp. 211-225, https://doi.org/10.1017/S0305004100002152.
[57] V. Hutson, The coaxial disc viscometer, Zeit. für Angewandte Math. Mech., 44 (1964), pp. 365-370, https://doi.org/10.1002/zamm. 19640440805.
[58] C.-O. Hwang and J. A. Given, Last-passage Monte Carlo algorithm for mutual capacitance, Phys. Rev. E, 74 (2006), art. 027701, https://doi.org/10.1103/PhysRevE.74.027701.
[59] T. Iida and M. Wadati, Exact analysis of a δ-function spin-1/2 attractive Fermi gas with arbitrary polarization, J. Stat. Mech., (2007), art. P06011, https://doi.org/10.1088/17425468/2007/06/p06011.
[60] Y.-Z. JIang, Y.-Y. Chen, and X.-W. Guan, Understanding many-body physics in one dimension from the Lieb-Liniger model, Chinese Physics B, 24 (2015), art. 050311, http://dx.doi.org/10.1088/1674-1056/24/5/050311.
[61] M. Kac and H. Pollard, The distribution of the maximum of partial sums of independent random variables, Canadian J. Math., 2 (1950), pp. 375-384, https://doi.org/10.4153/ CJM-1950-034-9.
[62] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, 1993.
[63] M. Kormos, Y.-Z. Chou, and A. Imambekov, Exact three-body local correlations for excited
states of the $1 D$ Bose gas, Phys. Rev. Lett., 107 (2011), 230405, https://doi.org/10.1103/ PhysRevLett.107.230405
[64] R. Kress, Linear Integral Equations, 3rd edn., Springer, 2014.
[65] E. F. KUESTER, Explicit approximations for the static capacitance of a microstrip patch of arbitrary shape, J. Electromagn. Waves Appl., 2 (1988), pp. 103-135, https://doi.org/ 10.1163/156939387X00289.
[66] G. Lang, Correlations in Low-Dimensional Quantum Gases, Springer Nature, 2018, https:// doi.org/10.1007/978-3-030-05285-0.
[67] G. Lang, F. Hekking, and A. Minguzzi, Ground-state energy and excitation spectrum of the Lieb-Liniger model: accurate analytical results and conjectures about the exact solution, SciPost Phys., 3 (2017), art. 003, https://doi.org/10.21468/SciPostPhys.3.1.003.
[68] F. Leppington and H. Levine, On the capacity of the circular disc condenser at small separation, Proc. Camb. Phil. Soc., 68 (1970), pp. 235-254, https://doi.org/10.1017/ S0305004100001274.
[69] Y.-Q. Li, S.-J. Gu and Z.-J. Ying, One-dimensional $S U(3)$ bosons with δ-function interaction, J. Phys. A: Math. Gen., 36 (2003), pp. 2821-2838, https://doi.org/10.1088/03054470/36/11/312.
[70] Y.-Q. Li, S.-J. Gu, Z.-J. Ying and U. Eckern, Exact results of the ground state and excitation properties of a two-component interacting Bose system, Europhys. Lett., 61 (2003), pp. 368-374, https://doi.org/10.1209/epl/i2003-00183-2.
[71] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev., 130 (1963), pp. 1616-1624, https://doi.org/10.1103/PhysRev.130.1616.
[72] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev., 130 (1963), pp. 1605-1616, https://doi.org/10.1103/ PhysRev.130.1605.
[73] F.-R. Lin and Y.-J. Shi, Preconditioned conjugate gradient methods for the solution of Love's integral equation with very small parameter, J. Comp. Appl. Math., 327 (2018), pp. 295305, https://doi.org/10.1016/j.cam.2017.06.020.
[74] H. Lin, Instantons, supersymmetric vacua, and emergent geometries, Phys. Rev. D, 74 (2006), art. 125013, https://doi.org/10.1103/PhysRevD.74.125013.
[75] H. Ling, A. R. Mohazab, H.-H. Shieh, G. van Anders, and M. Van Raamsdonk, Little string theory from a double-scaled matrix model, J. High Energy Phys., 10 (2006), art. 018, https://doi.org/10.1088/1126-6708/2006/10/018.
[76] X.-J. Liu and H. Hu, Collective mode evidence of high-spin bosonization in a trapped onedimensional atomic Fermi gas with tunable spin, Annals of Phys., 350 (2014), pp. 84-94, https://doi.org/10.1016/j.aop.2014.07.004.
[77] E. R. Love, The electrostatic field of two equal circular co-axial conducting disks, Quart. J. Mech. Appl. Math., 2 (1949), pp. 428-451, https://doi.org/10.1093/qjmam/2.4.428.
[78] E. R. Love, The potential due to a circular parallel plate condenser, Mathematika, 37 (1990), pp. 217-231, https://doi.org/10.1112/S0025579300012936.
[79] M. Mariño and T. Reis, Exact perturbative results for the Lieb-Liniger and Gaudin-Yang models, J. Stat. Phys., 177 (2019), pp. 1148-1156, https://doi.org/10.1007/s10955-019-02413-1.
[80] M. Mariño and T. Reis, Resurgence for superconductors, J. Stat. Mech., 2019 (2019), art. 123102, https://doi.org/10.1088/1742-5468/ab4802.
[81] M. Mariño and T. Reis, Resurgence and renormalons in the one-dimensional Hubbard model, arXiv:2006.05131v1 (2020).
[82] P. A. Martin, Exact solution of a simple hypersingular integral equation, J. Integral Eqns \& Appl., 4 (1992), pp. 197-204, https://doi.org/10.1216/jiea/1181075681. Addendum: 5 (1993), p. 297.
[83] P. A. Martin and L. Farina, Radiation of water waves by a heaving submerged horizontal disc, J. Fluid Mech., 337 (1997), pp. 365-379, https://doi.org/10.1017/ S0022112097004989.
[84] J. B. McGuire, Interacting fermions in one dimension. I. Repulsive potential, J. Math. Phys., 6 (1965), pp. 432-439, https://doi.org/10.1063/1.1704291.
[85] J. B. McGuire, Interacting fermions in one dimension. II. Attractive potential, J. Math. Phys., 7 (1966), pp. 123-132, https://doi.org/10.1063/1.1704798.
[86] G. V. Milovanović and D. Joksimović, Properties of Boubaker polynomials and an application to Love's integral equation, Appl. Math. Comp., 224 (2013), pp. 74-87, https://doi.org/10.1016/j.amc.2013.08.055.
[87] G. Monegato and A. P. Orsi, Product formulas for Fredholm integral equations with rational kernel functions, in Numerical Integration III, Birkhäuser, Basel, 1988, pp. 140-156,
https://doi.org/10.1007/978-3-0348-6398-8_14.
[88] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.
[89] J. W. Nicholson, The electrification of two parallel circular discs, Phil. Trans. Roy. Soc. A, 224 (1924), pp. 303-369, http://doi.org/10.1098/rsta.1924.0008
[90] M. Norgren and B. L. G. Jonsson, The capacitance of the circular parallel plate capacitor obtained by solving the Love integral equation using an analytic expansion of the kernel, Progr. In Electromagnetics Res., 97 (2009), pp. 357-372, https:/doi.org/10.2528/ PIER09092503.
[91] E. J. Nyström, Über die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben, Acta Mathematica, 54 (1930), pp. 185-204, https://doi.org/ 10.1007/BF02547521.
[92] M. Olshanii, V. Dunjko, A. Minguzzi, and G. Lang, Connection between nonlocal onebody and local three-body correlations of the Lieb-Liniger model, Phys. Rev. A, 96 (2017), art. 033624, https://doi.org/10.1103/PhysRevA.96.033624.
[93] G. Paffuti, Numerical and analytical results for the two discs capacitor problem, Proc. Roy. Soc. A, 473 (2017), art. 20160792, https://doi.org/10.1098/rspa.2016.0792.
[94] G. Paffuti, E. Cataldo, A. Di Lieto, and F. Maccarrone, Circular plate capacitor with different discs, Proc. Roy. Soc. A, 472 (2016), art. 20160574, https://doi.org/10.1098/ rspa.2016.0574.
[95] P. Pastore, The numerical treatment of Love's integral equation having very small parameter, J. Comp. Appl. Math., 236 (2011), pp. 1267-1281, https://doi.org/10.1016/j.cam. 2011.08.011.
[96] O. I. PÂŢu, V. E. Korepin, and D. V. Averin, Correlation functions of one-dimensional Lieb-Liniger anyons, J. Phys. A, 40 (2007), pp. 14963-14984, https://doi.org/10.1088/ 1751-8113/40/50/004.
[97] A. Petković and Z. Ristivojevic, Spectrum of elementary excitations in Galilean-invariant integrable models, Phys. Rev. Lett., 120 (2018), art. 165302, https://doi.org/10.1103/ PhysRevLett.120.165302.
[98] J. L. Phillips, The use of collocation as a projection method for solving linear operator equations, SIAM J. Numer. Anal., 9 (1972), pp. 14-28, https://doi.org/10.1137/0709003.
[99] R. Piessens and M. Branders, Numerical solution of integral equations of mathematical physics, using Chebyshev polynomials, J. Comp. Phys., 21 (1976), pp. 178-196, https://doi.org/10.1016/0021-9991(76)90010-3.
[100] V. N. Popov, Theory of one-dimensional Bose gas with point interaction, Theor. \& Math. Phys., 30 (1977), pp. 222-226, https://doi.org/10.1007/BF01036714.
[101] B. PozsGay, Local correlations in the $1 D$ Bose gas from a scaling limit of the XXZ chain, J. Stat. Mech. (2011) P11017, https://doi.org/10.1088/1742-5468/2011/11/P11017.
[102] S. Prolhac, Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation, J. Phys. A: Math. Theor., 50 (2017), art. 144001, https://doi.org/10.1088/ 1751-8121/aa5e00.
[103] M. Pustilnik and K. A. Matveev, Low-energy excitations of a one-dimensional Bose gas with weak contact repulsion, Phys. Rev. B, 89 (2014), art. 100504, https://doi.org/ 10.1103/PhysRevB.89.100504.
[104] T. V. RaO, Capacity of the circular plate condenser: analytical solutions for large gaps between the plates, J. Phys. A: Math. Gen., 38 (2005), pp. 10037-10056, https://doi.org/ 10.1088/0305-4470/38/46/010.
[105] E. Reich, A random walk related to the capacitance of the circular plate condenser, Quart. Appl. Math., 11 (1953), pp. 341-345, https://doi.org/10.1090/qam/57625.
[106] B. Reichert, G. E. Astrakharchik, A. Petković, and Z. Ristivojevic, Exact results for the boundary energy of one-dimensional bosons, Phys. Rev. Lett., 123 (2019), art. 250602, https://doi.org/10.1103/PhysRevLett.123.250602.
[107] B. Reichert and Z. Ristivojevic, Analytical results for the capacitance of a circular plate capacitor, Phys. Rev. Research, 2 (2020), art. 013289, https://doi.org/10.1103/ PhysRevResearch.2.013289.
[108] S. Richardson, Integral equations, The Mathematica J., 9 (2004), pp. 460-482.
[109] Z. Ristivojevic, Excitation spectrum of the Lieb-Liniger model, Phys. Rev. Lett., 113 (2014), art. 015301, https://doi.org/10.1103/PhysRevLett.113.015301.
[110] Z. Ristivojevic, Conjectures about the ground-state energy of the Lieb-Liniger model at weak repulsion, Phys. Rev. B, 100 (2019), art. 081110(R), https://doi.org/10.1103/ PhysRevB.100.081110.
[111] S. S Shamailov and J. Brand, Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions, New J. Phys., 18 (2016), art. 075004, https://doi.org/
10.1088/1367-2630/18/7/075004.
[112] F. Smithies, Integral Equations, Cambridge University Press, 1958.
[113] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, 1966.
[114] Y. Soibelman, Asymptotics of a condenser capacity and invariants of Riemannian submanifolds, Selecta Mathematica, 2 (1996), pp. 653-667, https://doi.org/10.1007/BF02433453.
[115] E. Stouten, P. W. Claeys, M. Zvonarev, J.-S. Caux, and V. Gritsev, Something interacting and solvable in $1 D$, J. Phys. A: Math. Theor., 51 (2018), art. 485204, https://doi.org/10.1088/1751-8121/aae8bb.
[116] B. Sutherland, Further results for the many-body problem in one dimension, Phys. Rev. Lett., 20 (1968), pp. 98-100, https://doi.org/10.1103/PhysRevLett.20.98.
[117] M. Takahashi, Magnetization curve for the half-filled Hubbard model, Prog. Theoretical Phys., 42 (1969), pp. 1098-1105, https://doi.org/10.1143/PTP.42.1098.
[118] M. Takahashi, Many-body problem of attractive fermions with arbitrary spin in one dimension, Prog. Theoretical Phys., 44 (1970), pp. 899-904, https://doi.org/10.1143/ PTP.44.899.
[119] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edn., Oxford University Press, 1948.
[120] I. V. Tokatly, Dilute Fermi gas in quasi-one-dimensional traps: from weakly interacting fermions via hard core bosons to a weakly interacting Bose gas, Phys. Rev. Lett., 93 (2004), art. 090405, https://doi.org/10.1103/PhysRevLett.93.090405.
[121] C. A. Tracy and H. Widom, On the ground state energy of the δ-function Bose gas, J. Phys. A: Math. Theor., 49 (2016), art. 294001, https://doi.org/10.1088/1751-8113/49/29/ 294001.
[122] C. A. Tracy and H. Widom, On the ground state energy of the delta-function Fermi gas, J. Math. Phys., 57 (2016), art. 103301, https://doi.org/10.1063/1.4964252.
[123] G. van Anders, General Lin-Maldacena solutions and PWMM instantons from supergravity, J. High Energy Phys., 2007 (2007), art. 028, https://doi.org/10.1088/11266708/2007/03/028.
[124] P. Vellucci and A. M. Bersani, Orthogonal polynomials and Riesz bases applied to the solution of Love's equation, Math. \& Mech. of Complex Systems, 4 (2016), pp. 55-66, https://doi.org/10.2140/memocs.2016.4.55.
[125] M. Wadati, Solutions of the Lieb-Liniger integral equation, J. Phys. Soc. Japan, 71 (2002), pp. 2657-2662, https://doi.org/10.1143/jpsj.71.2657.
[126] H. J. Wintle, Capacitor edge corrections, IEEE Trans. Electrical Insulation, EI-21 (1986), pp. 361-363, https://doi.org/10.1109/TEI.1986.349077.
[127] H. J. Wintle and S. Kurylowicz, Edge corrections for strip and disc capacitors, IEEE Trans. Instrumentation \& Measurement, IM-34 (1985), pp. 41-47, https://doi.org/ 10.1109/TIM.1985.4315253.
[128] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett., 19 (1967), pp. 1312-1315, https://doi.org/ 10.1103/PhysRevLett.19.1312.
[129] C. N. Yang and Y.-Z. You, One-dimensional w-component fermions and bosons with repulsive delta function interaction, Chin. Phys. Lett., 28 (2011), art. 020503, https://doi.org/ 10.1088/0256-307X/28/2/020503.
[130] L. Zhou, C.-Y. Xu, and Y.-L. Ma, Exact studies of ground and excited states of onedimensional δ-interacting Fermi gases in the BCS-BEC crossover, J. Stat. Mech., (2012), art. L03002, https://doi.org/10.1088/1742-5468/2012/03/L03002.
[131] M. Zvonarev, Correlations in $1 D$ boson and fermion systems: exact results, PhD thesis, Copenhagen University, Denmark, 2005.

[^0]: *Submitted to the editors 1 October 2020.
 ${ }^{\dagger}$ Institute of Mathematics and Statistics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (farina@mat.ufrgs.br).
 ${ }^{\ddagger}$ CNRS, LPMMC, F-38000 Grenoble, France (guillaume.lang@ens-paris-saclay.fr).
 ${ }^{\S}$ Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401, USA (pamartin@mines.edu).

