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Abstract. This paper is concerned mainly with the deceptively simple integral equation4

u(x) −
1

π

∫ 1

−1

αu(y)

α2 + (x− y)2
dy = 1, −1 ≤ x ≤ 1,5

where α is a real non-zero parameter and u is the unknown function. This equation is classified6
as a Fredholm integral equation of the second kind with a continuous kernel. As such, it falls into7
a class of equations for which there is a well developed theory. The theory shows that there is8
exactly one continuous real solution u. Although this solution is not known in closed form, it can9
be computed numerically, using a variety of methods. All this would be a curiosity were it not for10
the fact that the integral equation arises in several contexts in classical and quantum physics. We11
review the literature on these applications, survey the main analytical and numerical tools available,12
and investigate methods for constructing approximate solutions. We also consider the same integral13
equation when the constant on the right-hand side is replaced by a given function.14
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1. Introduction. It is well known that one partial differential equation can17

appear in several models of disparate physical phenomena: one thinks immediately18

of the three classic examples, Laplace’s equation, the wave equation and the diffusion19

equation. Actually, it is the case for certain integral equations as well. In this review20

paper, we consider one such family of integral equations, usually associated with the21

names of E. R. Love and E. H. Lieb (although other names could stake a claim, as we22

shall see). The simplest Love–Lieb equation reads23

(L±1 ) u(x)± 1

π

∫ 1

−1

αu(y)

α2 + (x− y)2
dy = 1, −1 ≤ x ≤ 1,24

where α is a positive real parameter and u is the unknown function. Let us clarify our25

notation. The superscript ± in the label (L±1 ) refers to the sign before the integral,26

and the subscript 1 refers to the function on the right-hand side. Later, we shall27

encounter (L±g ) when the right-hand side is replaced by g(x) and, in particular, (L±x )28

when g(x) = x. As the solution u depends on the value of α, we shall write u(x;α)29

when that dependence matters.30

We could have written (L±1 ) as a single equation just by allowing α to be negative31

as well as positive. However, it turns out that the solution does not behave continu-32

ously as α passes through zero, and so for some purposes it is more convenient to be33

able to identify two distinct equations, (L+
1 ) and (L−1 ). These two integral equations34

also have distinct applications (see section 2). On the other hand, the distinction35

between (L+
1 ) and (L−1 ) is largely irrelevant when it comes to solvability (section 3)36

or choice of numerical method (section 4).37
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2 L. FARINA, G. LANG AND P. A. MARTIN

Let us outline two physical problems leading to (L±1 ). In his 1949 paper [77],38

Love derived (L±1 ) in the context of an electrostatic problem: determine the potential39

field about two identical charged coaxial circular discs. This structure is called a40

circular plate capacitor. The parameter α = d/R, where the discs have radius R41

and d is the distance between them. Equation (L+
1 ) is appropriate when the discs42

are equally charged, whereas (L−1 ) holds when the discs are oppositely charged. The43

solution u of (L±1 ) is an auxiliary function: the exact electrostatic potential field φ44

is given as a certain integral of u. In particular, the capacitance is proportional to45

C =
∫ 1

−1 u(x) dx. The problem of determining φ and C has a long history, stretching46

back to the middle of the 19th century; for historical remarks and references, see [113,47

section 8.1] and [65]. Love proved that each of (L±1 ) has exactly one solution u, which48

is an even, real-valued, continuous function on the interval [−1, 1]. However, the exact49

solution is not known in closed form. For more details, see subsection 2.1.1. Actually,50

in accord with Stigler’s Law of Eponymy, “Love’s equation” had already been derived51

in 1910 by Hafen [51, section 3, p. 529, Eq. (10)] for the same capacitor problem.52

The integral equations (L±1 ) also appear in condensed matter physics, more specif-53

ically, in the context of certain quantum integrable models. These models describe54

a one-dimensional gas of identical particles. In the Lieb–Liniger model, the particles55

are spinless bosons. For N bosons, their pseudo-momenta are solutions to a system of56

N discrete coupled equations called the Bethe ansatz equations [72]. In the thermo-57

dynamic limit (N → ∞), this set of equations reduces to three equations, one of58

them being (L−1 ) or (L+
1 ): the Lieb equation (L−1 ) is obtained for repulsive particles59

in their ground state [72, Eq. (3.18)], while an excited state of the attractive Bose60

gas known as the “super-Tonks–Girardeau gas” leads to (L+
1 ) [24, Eq. (8)]. In the61

Yang–Gaudin model [128, 42], the particles are spin- 12 fermions; their interaction can62

be repulsive [128] or attractive [42]. Both cases lead to coupled integral equations63

but, when the total spin is zero and the interaction is attractive, a single integral64

equation is obtained, namely (L+
1 ); we call this the Gaudin equation [41, Eq. (7)]. In65

both models, the parameter α is related to the strength of the two-body interaction,66

and the ground-state energy density can be calculated using certain integrals of u in67

the thermodynamic limit. For more details, see subsection 2.2. The observation that68

the Lieb and Gaudin integral equations are the same as those studied by Love [77]69

and Sneddon [113] was made by Gaudin in his 1968 thesis [42]; see also [43].70

In what follows, we shall also be concerned with a generalization of (L±1 ),71

(L±g ) u(x)± 1

π

∫ 1

−1

αu(y)

α2 + (x− y)2
dy = g(x), −1 ≤ x ≤ 1,72

where g(x) is a given function and, as before, α is a positive real constant. This is a73

Fredholm integral equation of the second kind with a continuous symmetric difference74

kernel, K(x−y), where K(x) = (α/π)(α2+x2)−1 is known as the Cauchy distribution75

or the Lorentzian function. When g(x) = 1 in (L±g ), we recover (L±1 ). Henceforth, we76

shall refer to (L±g ) as the generalized Love–Lieb equation. This formulation, with an77

arbitrary right-hand side function, allows us to account for variants of the Love–Lieb78

equation that emerge in a wide range of seemingly unrelated fields of physics and79

mathematics.80

Recalling Stigler’s Law again, we note that an early derivation of (L+
g ) was already81

given by Hulthén in his 1938 thesis on antiferromagnetic properties of crystals; see82

[55, Eq. (III, 58)]. His derivation led to (L+
g ) with g(x) = (α2 + 4x2)−1 (after some83

simple scaling).84
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LOVE–LIEB INTEGRAL EQUATIONS 3

Although the exact solution of the Love–Lieb equation (L±1 ) is not known in closed85

form, efforts to solve it have stimulated the development of many mathematical and86

numerical methods. Some of these will be discussed below. On the other hand, by87

inserting specific functions u (such as monomials or orthogonal polynomials) into the88

left-hand side of (L±g ), one can compute g; this trivial observation is useful when the89

aim is to test numerical methods; see subsection 4.3 for details.90

The structure of this paper is as follows. In section 2, we survey physics prob-91

lems involving the Love–Lieb equation or generalizations thereof. Two main contexts92

are outlined: classical physics problems involving coaxial circular discs, and quantum93

physics problems involving one-dimensional models. Other types of applications are94

briefly discussed too. Section 2 may be omitted by readers interested solely in mathe-95

matical aspects; these are the focus of the remainder of the paper. Section 3 contains96

a summary of theoretical results for the Love–Lieb equation, section 4 summarizes97

the main numerical methods that can be used to solve it, and section 5 is devoted to98

analytical approximations. Appendix A discusses (L±g ) over an infinite range,99

u(x)± 1

π

∫ ∞
−∞

αu(y)

α2 + (x− y)2
dy = g(x), −∞ < x <∞,100

an equation that can be treated (formally, at least) using Fourier transforms. We101

make some concluding remarks in section 6.102

2. Applications of Love–Lieb integral equations.103

2.1. Potential problems involving two coaxial discs. We consider axisym-104

metric boundary-value problems for a potential function φ(r, z), where r and z are105

cylindrical polar coordinates. There are two coaxial discs of radius 1, one in the plane106

z = 0 and one in the plane z = α. We solve Laplace’s equation in three dimen-107

sions, ∇2φ = 0, outside the discs together with a far-field condition, φ = O(R−1) as108

R =
√
r2 + z2 →∞, and boundary conditions on both discs.109

2.1.1. Circular plate capacitor. For electrostatic (capacitor) problems, φ is110

prescribed on each disc. We take φ = 1 on the lower disc (at z = 0) and φ = ±1 on111

the upper disc; the solution with φ = +1 (φ = −1) on the upper disc corresponds112

to the case of “equally charged discs” (“oppositely charged discs”). The solutions for113

these two problems are given in Sneddon’s book [113]. The basic physical quantity to114

be computed is the charge density σ. On the lower disc, we have115

σ(r) = − 1

4π

(
∂φ

∂z

∣∣∣∣
z=0+

− ∂φ

∂z

∣∣∣∣
z=0−

)
116

=
1

π2

∫ ∞
0

J0(kr)

∫ 1

0

u(t) k cos(kt) dtdk,(2.1)117
118

using [113, Eqs. (1.1.4), (8.1.12) and (8.1.14)], where J0 is a Bessel function and u119

solves (L±1 ). The inner integral is120

∫ 1

0

u(t)
d

dt
(sin(kt)) dt = u(1) sin(k)−

∫ 1

0

u′(t) sin(kt) dt.121
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4 L. FARINA, G. LANG AND P. A. MARTIN

Substituting in (2.1), we can change the order of integration followed by use of [113,122

Eq. (2.1.14)], giving σ(r) = 0 for r > 1 (as expected) and123

π2σ(r) =
u(1)√
1− r2

−
∫ 1

r

u′(t) dt√
t2 − r2

(2.2)124

= −1

r

d

dr

∫ 1

r

tu(t) dt√
t2 − r2

(2.3)125
126

for 0 ≤ r < 1. Inverting, using [113, Eq. (2.3.8)], yields127

(2.4) u(x) = 2π

∫ 1

x

rσ(r) dr√
r2 − x2

.128

This known formula [68, Eq. (1.9)], [121, Eq. (7)] is useful because it relates u to a129

physical quantity, σ, which has known properties. For example, σ(r) behaves as an130

inverse square-root as r → 1; see the first term on the right-hand side of (2.2). Also,131

as u(t) is even, (2.2) implies that σ is even too. These facts suggest expanding σ(r)132

using functions of the form (1−r2)−1/2ψn(r), where ψn(r) = ψn(−r) is a polynomial.133

If we try ψn(r) = r2n, n = 0, 1, 2, . . . and substitute for σ in (2.4), some calculation134

shows that u(x) is a polynomial in x2 of degree n.135

A less obvious choice is ψn(r) = P2n(
√

1− r2 ), where Pm is a Legendre polyno-136

mial. These functions (which evaluate to polynomials in r2 of degree n) are useful137

for single-disc problems and they permit an explicit calculation of the corresponding138

function u(x) because of the formula [34, p. 357]139

2π

∫ 1

x

r P2n(
√

1− r2 )√
r2 − x2

√
1− r2

dr = π2P2n(0)P2n(x), 0 ≤ x ≤ 1.140

This motivates the use of Legendre polynomials to approximate u(x). We shall return141

to this topic in subsection 4.3.142

The total charge on the lower disc is143

(2.5)

∫ 1

0

∫ π

−π
σ(r) r dθ dr =

1

π
C(α) with C(α) =

∫ 1

−1
u(x;α) dx.144

Asymptotic approximations of C(α) for small gaps (α� 1) and for large gaps (α� 1)145

have been found using various methods. For surveys, see, for example, [113, sec-146

tion 8.1] and [65, 114, 107].147

The capacitor problem with discs of unequal radii leads to a pair of coupled148

integral equations of Love type [27, 94]. For several coaxial discs, see [35].149

2.1.2. Potential flow past rigid discs. For potential flow past rigid discs,150

∂φ/∂z is prescribed on each disc. There are two basic problems, both with ∂φ/∂z = 1151

on the lower disc. One problem has ∂φ/∂z = 1 on the upper disc, the other has152

∂φ/∂z = −1 there. The basic unknown is [φ](r), the jump in φ(r, z) across the lower153

disc, defined by154

[φ](r) = φ(r, 0+)− φ(r, 0−).155

It is shown in [83] that if we write156

(2.6) [φ](r) = − 4

π

∫ 1

r

u(t) dt√
t2 − r2

,157
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LOVE–LIEB INTEGRAL EQUATIONS 5

then u solves a special case of (L±g ), namely,158

(L±x ) u(x)± 1

π

∫ 1

−1

αu(y)

α2 + (x− y)2
dy = x, −1 ≤ x ≤ 1.159

The solution u of (L±x ) is odd, real, and continuous on the interval [−1, 1]. The160

integral equations (L±x ) can also be extracted from a paper by Collins [27]; this paper161

also derives coupled integral equations of Love–Lieb type for discs of unequal radii.162

Equation (2.6) can be inverted, using [113, Eq. (2.3.8)],163

u(x) =
1

2

d

dx

∫ 1

x

r[φ](r)√
r2 − x2

dr,164

and this could be used to generate expansions for u using known properties of [φ]; for165

example, [φ](r) has a square-root zero as r → 1.166

In the context of irrotational flow of an inviscid incompressible fluid, the force on167

the lower disc can be expressed in terms of the added mass [3, Eq. (6.2a)],168

A(α) = −2π

∫ 1

0

[φ](r) r dr = 8

∫ 1

0

u(x;α)x dx,169

where u is once again the solution of (L±x ). Analytical approximations of A(α) for170

α� 1 are obtained in [3].171

Cooke [28, p. 108] first derived (L±x ) in 1956 for the problem of two discs rotating172

slowly in a viscous fluid (Stokes flow), with equal, or equal and opposite, angular173

velocities; see also [29]. For an approximation to the torque on each disc when α� 1,174

see [57].175

Suppose next that z = 0 is the mean free surface of deep water. Small-amplitude176

water waves are generated by the vertical oscillations of a rigid disc submerged at a177

depth of α/2. The motion can be calculated by solving a generalization of (L±x ) [83],178

(2.7) u(x)− 1

π

∫ 1

−1

αu(y)

α2 + (x− y)2
dy− 2K

π

∫ 1

−1
u(y) Φ(x−y, α) dy = x, −1 ≤ x ≤ 1,179

where K = ω2/g is the wave number, ω is the frequency, g is the acceleration due to180

gravity, Φ is a two-dimensional wave-source potential given by181

Φ(X,Y ) =

∫ ∞
0

e−kY cos kX
dk

k −K
,182

and the integration path is indented below the pole of the integrand at k = K. As183

before, the discontinuity in φ across the disc, [φ], is given by (2.6). Approximations184

for α � 1 (meaning that the disc is very close to the free surface) are developed185

in [36].186

2.2. Quantum integrable models. Quantum integrable models are a class187

of one-dimensional models that are exactly solvable by the Bethe ansatz [16]. In188

the thermodynamic limit, the coupled Bethe ansatz equations that describe them189

reduce, in some cases, to a single Love–Lieb equation. This phenomenon occurs in190

the continuum (with the Lieb–Liniger and Yang–Gaudin models) and on the lattice191

(with the Heisenberg model).192
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6 L. FARINA, G. LANG AND P. A. MARTIN

2.2.1. The Lieb–Liniger model. The Lieb–Liniger model [72] describes a one-193

dimensional gas of identical spinless bosons interacting through a contact potential.194

Proposed in 1963 as a generalization of the Tonks–Girardeau gas of hard-core bosons195

[45], it is arguably the simplest (conceptually), as well as the most studied non-trivial196

quantum integrable model in the continuum. The quantity u(x;α)/(2π) denotes the197

distribution of pseudo-momenta (or rapidities) at zero temperature, x is the pseudo-198

momentum and α is related to the interaction strength.199

For repulsive interactions, u(x;α) is defined as the solution of (L−1 ), known as200

the Lieb equation in this context. It can be used to determine quantities of physical201

interest. For example, the dimensionless average ground-state energy per particle,202

e(γ), is determined by eliminating α between203

(2.8)
2πα

γ
=

∫ 1

−1
u(x;α) dx and e(γ) =

γ3

2πα3

∫ 1

−1
x2u(x;α) dx,204

where γ is the Lieb parameter, a dimensionless coupling constant [72]. For more205

information, see [62, Chapter 1], [20], [44, Chapter 4], [60, 121], [39, Chapter 2].206

Many ground-state observables can be computed from derivatives of e(γ); see, for207

example, [67] and references therein. Local correlation functions can be expressed as208

moments of u in certain approaches [23, 92]. In other approaches, these correlations209

are calculated from the solution of (L−g ) with g(x) = xn, n = 1, 2, . . . [63, 101]. This210

happens in a certain special case in which the function f defined in [63] is such that211

f(p) = 0 for |p| > B and f(p) = 1 for |p| < B, with B a constant.212

The Love–Lieb equation (L−1 ) is also involved in the calculation of the excitation213

spectrum, as is (L−x ) [103, 109], sometimes referred to as the second Lieb equation in214

this context. These equations are obtained by transforming (L−g ) with more compli-215

cated right-hand side functions g(x) introduced by Lieb himself [71], using a Green216

function (solution of (L−g ) with g replaced by a Dirac delta) [106]. The boundary217

energy is another quantity of interest [43, 14, 106], whose calculation also involves218

(L−1 ) and (L−x ) [106].219

Several generalizations of the Lieb–Liniger model also involve (L−g ). Equation220

(L−1 ) appears in an extension of the model to multicomponent bosons [69], and a221

generalized Love–Lieb equation yields its excitation energy [70]. Equation (L−1 ) also222

appears in an extension of the Lieb–Liniger model to anyonic statistics, but with α223

replaced by α sec (κ/2), where κ ∈ [0, 4π] is an anyonic phase parameter [13, 96].224

For another generalization, leading to (L−g ) with g(x) = (1 − βx/α)−2 and a certain225

parameter β, see [115].226

2.2.2. The Yang–Gaudin model. The Yang–Gaudin model is the two-compo-227

nent counterpart of the Lieb–Liniger model, with bosons replaced by spin- 12 fermions228

and an arbitrary total spin S compatible with the individual spins [128, 41]; see [49]229

for a review. It generalizes a model studied by McGuire [84, 85], where only one spin230

is flipped with respect to all the others.231

Interactions between these fermions can be repulsive [128, Eq. (26)], [49, Eq. (12)]232

or attractive [42, Eqs. (14.16) and (14.17)], [49, Eq. (13)]. In both cases, the result233

is a pair of coupled integral equations of Love–Lieb type. The attractive case reduces234

to a single integral equation, (L+
1 ), when S = 0 (the so-called “balanced case”). To235
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LOVE–LIEB INTEGRAL EQUATIONS 7

see this, start with Gaudin’s coupled equations [42], which we write in his notation:236

1 = f1(k) +
|V |
2π

∫ q0

−q0

f(q′) dq′

(k − q′)2 + V 2/4
, −k1 < k < k1,(2.9)237

1 =
1

2
f(q) +

|V |
2π

∫ q0

−q0

f(q′) dq′

(q − q′)2 + V 2
+
|V |
4π

∫ k1

−k1

f1(k) dk

(k − q)2 + V 2/4
,(2.10)238

239

for −q0 < q < q0. Here, 2V is the intensity of the two-body potential, with V < 0240

for attractive interactions, and k1 and q0 are Fermi pseudomomenta. In the thermo-241

dynamic limit, the wavenumbers k are dense on −k1 ≤ k ≤ k1 and the auxiliary242

parameters q are dense on −q0 ≤ q ≤ q0. Both unknown functions, f and f1, are243

positive; (2π)−1f1(k) and (2π)−1f(q) are densities. Moreover, when the total spin244

S = 0, f1 must satisfy [42, Eq. (14.13)]
∫ k1
−k1 f1(k) dk = 0, which we enforce by letting245

k1 → 0 [59, p. 10]. In this limit, (2.9) becomes irrelevant whereas (2.10) reduces246

to (L+
1 ) with α = |V |/q0 and u(x) = 1

2f(q0x). In this context, we refer to (L+
1 )247

as Gaudin’s integral equation [41, Eq. (7)], [59, Eq. (2.35a)], [122, Eq. (3)]. Having248

solved (L+
1 ) for u(x;α), the dimensionless average ground-state energy per particle,249

e(γ), is determined by eliminating α between250

(2.11)
πα

2γ
=

∫ 1

−1
u(x;α) dx and e(γ) = −γ

2

4
+

2γ3

πα3

∫ 1

−1
x2u(x;α) dx;251

see [122, Eq. (4)], [79, Eqs.(6) and (7)]. The low-energy spin excitations can be252

calculated using (L+
g ) and a certain g [42, 130].253

The ground state of the balanced fermionic gas is described by (L+
1 ), as is the254

first excited state of the attractive Lieb–Liniger model [25], the so-called “super-255

Tonks–Girardeau gas” [12, 1]. This connection was anticipated by Gaudin [41]. In256

2004, a modified Yang–Gaudin model that bridges the Yang–Gaudin and Lieb–Liniger257

models was introduced [40, 120] as a toy model to study the crossover from a Bose–258

Einstein condensate to a Bardeen–Cooper–Schrieffer state (BEC–BCS crossover) in259

one dimension. Here, both signs of the Love–Lieb equation (L±1 ) are involved [40, 59].260

The generalization of the Yang–Gaudin model to fermions with arbitrary half-261

integer spin s [116, 118] is sometimes called the κ-component model, where κ = 2s+1262

[50]; the result is κ coupled integral equations. In the infinite-spin limit (κ → ∞),263

an exact mapping (infinite-spin bosonization) transforms the thermodynamics of the264

κ-component model with repulsive interactions into that of a single Lieb–Liniger gas265

[129, 76]. As a consequence, the Lieb–Liniger model described by (L−1 ) is a good266

approximation to multicomponent fermions with a high number of internal degrees of267

freedom.268

2.2.3. The Heisenberg model. The Heisenberg model (also known as the269

XXX spin chain) refers to an isotropic one-dimensional chain of quantum spins with270

nearest-neighbor interactions [54]. Its solution was provided by Bethe in 1931, making271

use of his ansatz technique [16]. As already mentioned above, it was in this context272

that Hulthén first obtained a generalized Love–Lieb equation [55, Eq. (III, 58)]; see273

also [48] for a more comprehensive study. In more detail, Hulthén [55] and Griffiths274

[48] derive (L+
g ) with g(x) = (α2 + 4x2)−1 = gH(x;α), say, after some rescaling. The275

type of order is antiferromagnetic here, and the spin s = 1
2 . Under these conditions,276

(L+
1 ) is satisfied by the dressed charge [18, Eq. (2.5)], (L+

g ) is satisfied by the dressed277

energy with g(x) = C − gH(x;α) (where C is a constant) [18, Eq. (2.7)], and (L+
gH ) is278
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8 L. FARINA, G. LANG AND P. A. MARTIN

satisfied by the inverse of the spinon velocity [52, Eq. (5)]. For s = −1 (this formal279

case with s < 0 can be viewed as an effective field theory of Quantum Chromody-280

namics), (L−1 ) is satisfied by the fractional charge and (L−g ) is satisfied by the density281

of particles [53].282

2.3. Miscellaneous applications. The integral equations (L±g ) appear in sev-283

eral other physical contexts. One of these is in the construction of solutions within284

little string theory, with g(x) = xn [75, Eq. (3.7)] and g(x) = 1− βx2 [75, Eq. (C.5)],285

where β is a positive constant. The same quadratic g arises with multicomponent286

bosons [69, Eq. (47)], in a super-Yang–Mills theory [74, Eq. (3.29)], [123, Eq. (3.8)],287

and in the zero-temperature limit of the Yang–Yang model [62, p. 36, Eq. (7.9)]. In288

the last two applications just mentioned [62, 74], the constant β is chosen so that289

u(1) = 0. For a similar mathematical problem, with a rational g and an application290

to spin chains, see [53, Eq. (4.21)].291

Further applications include evaluating statistical properties of a two-dimensional292

lattice of elastic lines in a random medium [33, Eq. (53)], and calculating the ground-293

state properties of the attractive two-component Hubbard model [81, Eq. (2.44)], in294

particular at half filling [117, Eq. (7)].295

There are also applications in probability theory. For instance, in 1953, Reich [105]296

showed that the Love–Lieb equation (L−1 ) applies to a specific one-dimensional random297

walk with absorbing barriers: “In addition to its theoretical interest, the random walk298

appears to provide a practical means for the calculation of the capacitance by a Monte299

Carlo technique”; for another application, see [58].300

3. Solving Love–Lieb integral equations: basic theory.301

3.1. Difficulties near the endpoints when α is small. Recall the generalized302

Love–Lieb equation (L±g ), which we write as303

(3.1) u(x)±
∫ 1

−1
K(x− y)u(y) dy = g(x), −1 ≤ x ≤ 1,304

where the kernel is given by305

(3.2) K(x) =
α

π(α2 + x2)
, α > 0.306

Equation (3.1) is classified as a Fredholm integral equation of the second kind with a307

continuous kernel. This is a textbook case [112, 26, 64]: standard theory applies (see308

subsection 3.2) and almost any sensible numerical method can be employed to solve309

it. However, difficulties are expected when α is small because K(x) is a well-known310

approximation to a Dirac delta: for continuous functions f ,311

(3.3) lim
α→0

∫ 1

−1
K(x− y) f(y) dy = f(x), −1 < x < 1.312

To see why these difficulties arise, start by considering the Love–Gaudin equation313

(L+
1 ). Using (3.3) in (L+

1 ) yields u(x) ' 1
2 for |x| < 1, whereas the integral equation314

itself gives315

u(1) = 1−
∫ 1

−1
K(1− y)u(y) dy ' 1− 1

2

∫ 1

−1
K(1− y) dy316

= 1− 1

2π
arctan

2

α
=

3

4
+

1

2π
arctan

α

2
,317

318
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hence u(1) ' 3
4 for α� 1. Here, we have used319

(3.4)

∫ 1

−1
K(x− y) dy =

1

π

[
arctan

(
1− x
α

)
+ arctan

(
1 + x

α

)]
≡ K(x;α),320

say. This argument (which is taken from [98, p. 26]) shows that rapid variations in321

u(x) near the endpoints are to be expected when α� 1.322

If we try to apply the same arguments to the Love–Lieb equation (L−1 ), we find323

that the two terms on the left-hand side cancel, so that we need a refined version of324

(3.3). From [36, Eq. (21)], we have, for twice-differentiable functions f ,325

(3.5)

∫ 1

−1
K(x− y) f(y) dy = f(x) +

α

π
×
∫ 1

−1

f(y)

(x− y)2
dy +O(α2) as α→ 0,326

where x is bounded away from ±1 and the cross on the integral denotes a hyper-327

singular (finite-part) integral; see (3.6). We are going to use (3.5) to approximate the328

left-hand side of (L−g ). Before doing that, we note that329

(3.6) ×
∫ 1

−1

f(y)

(x− y)2
dy = − f(1)

1− x
− f(−1)

1 + x
+ −
∫ 1

−1

f ′(y)

y − x
dy,330

where the integral on the right is a Cauchy principal value (CPV) integral. If this331

formula is used in (3.5) and it is assumed that f(1) = f(−1) = 0, we recover a formula332

used by Kac and Pollard [61, Lemma 5.1] and by others. The connection with CPV333

integrals is attractive (because they are more familiar) but the condition on f(±1) is334

not satisfied by solutions of (L−g ), in general.335

Now, solutions of (L±g ) depend on α; suppose that u(x;α) ∼ ανu0(x) as α → 0,336

where the parameter ν is to be determined. Then, returning to (L+
1 ), use of the337

leading approximation from (3.5) gives 2ανu0(x) = 1 whence ν = 0 and u(x) ' 1
2 as338

before. A similar procedure applied to (L−g ) gives the approximation339

− 1

π
αν+1 ×

∫ 1

−1

u0(y)

(x− y)2
dy = g(x), −1 < x < 1,340

whence ν = −1 (assuming that g does not depend on α). The general solution of341

this hypersingular integral equation is known [82]. It consists of a particular solution342

(corresponding to the given g) together with the general solution of the homogeneous343

equation (put g = 0), which is (A + Bx)(1 − x2)−1/2, where A and B are arbitrary344

constants. As we do not want solutions that are unbounded at x = ±1, we take345

A = B = 0. In particular, for the Love–Lieb equation (L−1 ), we obtain u(x) =346

α−1u0(x) = α−1
√

1− x2. This approximation to u(x) is incorrect at the endpoints347

because it can be shown that u(±1) > 1; see (3.19) below.348

Similar approximations can be obtained for (L±x ). For (L+
x ), we obtain u ' x/2349

for |x| < 1, whereas for (L−x ) we obtain u ' (2α)−1x
√

1− x2 (in agreement with350

(5.14) below).351

We shall return to analytical approximations of u(x) ≡ u(x;α) in section 5, where352

we also make comparisons with direct numerical solutions of the integral equation.353

3.2. Solvability, iteration and Liouville–Neumann expansions. The gen-354

eral theory of Fredholm integral equations of the second kind such as (3.1) tells us to355
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examine the homogeneous version of (3.1); following Hilbert, it is convenient to insert356

a parameter λ, giving357

(3.7) ψ(x)− λ
∫ 1

−1
K(x− y)ψ(y) dy = 0, −1 ≤ x ≤ 1.358

We are especially interested in λ = 1 and λ = −1, because these special cases corre-359

spond to (L−g ) and (L+
g ), respectively. As the kernel is symmetric, Hilbert–Schmidt360

theory [112, section 7.2], [26, section 7.2] states that there is at least one real value of361

λ for which (3.7) has a non-trivial solution ψ. Fortunately, such characteristic values362

include neither λ = 1 nor λ = −1. This was proved by Love [77, Lemma 6], using363

simple iterated inequalities. For another proof, see below (3.8). For more information364

on eigenvalues (reciprocals of characteristic values) and eigenfunctions, see [8].365

Before proceeding, let us denote the integral operator in (3.1) by K, so that366

(Ku)(x) =

∫ 1

−1
K(x− y)u(y) dy, −1 ≤ x ≤ 1,367

where the positive function K(x) is defined by (3.2). The maximum norm of the368

operator K, ‖K‖∞, is defined by [64, section 2.3]369

(3.8) ‖K‖∞ = max
−1≤x≤1

∫ 1

−1
K(x− y) dy = max

−1≤x≤1
K(x;α) =

2

π
arctan (1/α),370

where K is defined by (3.4). Thus ‖K‖∞ < 1 for all α > 0. Then, returning to (3.7),371

as any integrable solution is continuous, we obtain ‖ψ‖∞ ≤ |λ|‖K‖∞‖ψ‖∞, where372

‖ψ‖∞ = max|x|≤1 |ψ(x)|. Hence ψ(x) = 0 for |λ| ≤ 1 and any α > 0.373

Returning to (3.1), we can apply the Fredholm Alternative [112, Theorem 3.6.1],374

[26, section 3.6]: as the homogeneous version of (3.1) has no non-trivial solution, the375

inhomogeneous integral equation (3.1)) has exactly one solution for any right-hand376

side function g. This result can be stated in terms of continuous or square-integrable377

functions. Love [77, Lemma 7] gives this result for continuous solutions of (L±1 ). Lieb378

and Liniger obtain the same result for (L−g ), exploiting the positivity of the kernel379

and the Liouville–Neumann expansion [72, Appendix B]. This expansion arises when380

any Fredholm integral equation of the second kind is solved iteratively. To see this,381

consider382

(3.9) u(x)− λ
∫ 1

−1
K(x− y)u(y) dy = g(x), −1 ≤ x ≤ 1.383

The Liouville–Neumann expansion [112, section 2.5], [26, section 3.1] [64, section 2.4]384

for u is385

(3.10) u(x) = g(x) +

∞∑
n=1

λn
∫ 1

−1
Kn(x, y) g(y) dy,386

where the iterated kernels Kn are defined by K1 = K and387

(3.11) Kn(x, y) =

∫ 1

−1
Kn−1(x, s)K(s, y) dy =

∫ 1

−1
K(x, s)Kn−1(s, y) dy388

for n = 2, 3, . . .. The series (3.10) is convergent when |λ|‖K‖∞ < 1 [64, Theorem 2.14],389

a condition that is satisfied for (L±g ); see (3.8).390
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The expansion (3.10) can be recast as an iterative process; doing this for (3.9)391

gives392

(3.12) un(x) = g(x) + λ

∫ 1

−1
K(x− y)un−1(y) dy, n = 1, 2, . . . ,393

starting with u0 = g. This process is convergent, with ‖un − u‖∞ → 0 as n → ∞,394

where u solves (3.1) [64, Theorem 2.15]. Moreover, we have the bound395

(3.13) ‖u− un‖∞ ≤ |λ|n+1‖K‖n+1
∞ ‖u‖∞,396

which follows from u− un = λK(u− un−1) and u− u0 = u− g = λKu.397

The convergence of the series (3.10) was proved by Love [77, Theorem 2] in the398

context of (L±1 ); he found the condition ‖K‖∞ < 1, which is satisfied for all α > 0.399

Hafen [51, p. 529] wrote down the series (3.10) for (L±1 ), but did not go further. Love400

[77] also proved that the iterative process (3.12) is convergent.401

3.3. Alternative formulations. Suppose that u(x;α) solves (L±g ), an equation402

holding over a fixed interval with a kernel that depends on α. As an alternative, we403

can recast it as an equation over an interval that changes with α but with a kernel404

that does not depend on α. Thus put405

u(x;α) = U(X;A) with x = X/A, α = 1/A406

and y = Y/A. In particular, (L±1 ) becomes407

(3.14) U(X;A) +

∫ A

−A
Θ(X − Y )U(Y ;A) dY = 1, −A ≤ X ≤ A,408

where Θ(X) = ±π−1(X2 + 1)−1 for (L±1 ).409

When α � 1, A � 1 and then we might expect that solutions of (3.14) can be410

approximated by solutions of an integral equation over an infinite range (see Appen-411

dix A). For a rigorous analysis and many references, see [22].412

If we regard the solution of (3.14), U(X;A), as being a function of two indepen-413

dent variables, X and A, then it can be shown that U satisfies a nonlinear second-order414

partial differential equation, namely415

(3.15)
∂2U

∂X2
− ∂2U

∂A2
+ 2

U ′0(A)

U0(A)

∂U

∂A
= 0,416

where U0(A) = U(A;A) [97, Eq. (10)]. This can be proved by showing that the417

quantity on the left-hand side of (3.15) satisfies the homogeneous version of (3.14).418

The second and third terms in (3.15) can be combined to give419

(3.16)
∂2U

∂X2
− U2

0

∂

∂A

(
U−20

∂U

∂A

)
= 0,420

a nonlinear version of the one-dimensional wave equation.421

Similarly, if v(x;α) solves (L±x ), then V (X;A) = Av(x;α) solves422

(3.17) V (X;A) +

∫ A

−A
Θ(X − Y )V (Y ;A) dY = X, −A ≤ X ≤ A.423

This manuscript is for review purposes only.



12 L. FARINA, G. LANG AND P. A. MARTIN

Petković and Ristivojevic [97, Eq. (8)] gave a formula for V (X;A) in terms of U(Y ;B),424

(3.18) V (X;A) = − ∂

∂X

∫ A

|X|

n(B)

n′(B)
U(X;B) dB, −A ≤ X ≤ A,425

with426

n(B) =

∫ B

−B
U(Y ;B) dY.427

A direct verification of (3.18) can be given but we omit it here. The formula (3.18)428

can also be recast in terms of v(x;α) and u(y;β).429

3.4. Bounds. Consider (L−1 ). Putting g = 1 and λ = 1 in (3.10), and noting430

that all the iterated kernels are positive (because K(x) > 0), we infer that431

(3.19) u(x;α) > 1 for −1 ≤ x ≤ 1 and α > 0.432

Other known bounds are on |u|. Thus Hutson [56, p. 214] proved the following bounds433

for (L−g ) but his proof extends to (L+
g ): assuming that g(x) is a bounded continuous434

function, then435

max
−1≤x≤1

|u(x;α)| ≤ max
−1≤x≤1

{
|g(x)| [1−K(x;α)]

−1
}
,(3.20)436

max
−1≤x≤1

|u(x;α)| ≤ max
−1≤x≤1

{
π |g(x)| 1− |x|+ α

α

}
,(3.21)437

438

with K defined by (3.4). These bounds hold for both (L−g ) and (L+
g ). Alternatively,439

the integral equation (3.9) (with λ = ±1) gives440

(3.22) ‖u‖∞ = max
−1≤x≤1

|u(x;α)| ≤ ‖g‖∞
1− ‖K‖∞

=
π‖g‖∞

2 arctanα
,441

using (3.8). In particular, when g = 1, the right-hand side of (3.20) or (3.22) reduces442

to π/(2 arctanα), a bound found earlier by Reich [105, p. 344].443

Consider the Love–Gaudin integral equation (L+
1 ). The analysis in [22] (which is444

based on (3.14) and makes use of (A.5)) leads to the bound445

(3.23)

∣∣∣∣u(x;α)− 1

2

∣∣∣∣ ≤ 2Cα(1 + α)

(1 + α)2 − x2
, −1 ≤ x ≤ 1,446

where C is a constant that does not depend on α. This formula gives a rigorous error447

estimate for the simple approximation u(x;α) ' 1
2 for −1 < x < 1 and small α, as448

noted below (3.3); see also (5.13).449

3.5. Maclaurin expansions. We have seen that (3.9) is uniquely solvable for450

u, and so it is natural to ask if u has a Maclaurin expansion. For simplicity, consider451

(L±1 ); take g = 1 in (3.9). In this case, u is even, and its Maclaurin expansion takes452

the form453

(3.24) u(x;α) =

∞∑
n=0

cn(α)x2n, |x| < `(α),454

where `(α) is the radius of convergence and the coefficients cn(α) are uniquely deter-455

mined. We are particularly interested in determining when `(α) > 1 because then the456

solution of (L±1 ) can be sought in the form (3.24).457
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Start by expanding the kernel K(x−y), (3.2), using the binomial theorem. There458

are several options. One is to expand in powers of (x− y)2/α2,459

(3.25) K(x− y) =
1

πα

∞∑
n=0

(−1)n

α2n
(x− y)2n.460

This converges for all x with |x| < 1 and for all y with |y| < 1 if α > 2. The expansion461

(3.25) can be seen as an expansion in inverse powers of α. For this reason, it has been462

used to obtain approximations for u(x;α) when α� 1; see subsection 5.1.463

For another option, use partial fractions and write K as464

(3.26) K(x− y) =
i

2π

(
1

x− y + iα
− 1

x− y − iα

)
.465

Expanding in powers of y/(x± iα),466

(3.27) K(x− y) =
i

2π

∞∑
n=0

yn
(

1

(x+ iα)n+1
− 1

(x− iα)n+1

)
.467

The series converges for |y| <
√
x2 + α2. Therefore it converges for all x with |x| < 1468

and for all y with |y| < 1 if α > 1. To simplify (3.27), define real quantities X and469

ϕ by x ± iα = X e±iϕ so that X =
√
x2 + α2, cosϕ = x/X and sinϕ = α/X. Then470

(3.27) becomes471

K(x− y) =
i

2π

∞∑
n=0

yn

Xn+1

(
e−i(n+1)ϕ − ei(n+1)ϕ

)
=

1

π

∞∑
n=0

yn

Xn+1
sin[(n+ 1)ϕ]472

=
α

π

∞∑
n=0

yn

Xn+2

sin[(n+ 1)ϕ]

sinϕ
=
α

π

∞∑
n=0

yn

Xn+2
Un

( x
X

)
,(3.28)473

474

where Un is a Chebyshev polynomial of the second kind and we have used x/X = cosϕ.475

This expansion (but without the identification of the Chebyshev polynomials) was476

used by Wadati [125, Eq. (2.2)].477

Interchanging x and y in (3.28) gives478

(3.29) K(x− y) =
α

π

∞∑
n=0

xn

Y n+2
Un

( y
Y

)
,479

where Y =
√
y2 + α2. As before, (3.29) converges for all x with |x| < 1 and for all y480

with |y| < 1 if α > 1.481

If we substitute (3.29) in (3.9) (with g = 1), assuming that α > 1, we find482

u(x;α) = 1 +
λα

π

∞∑
n=0

xn
∫ 1

−1

1

Y n+2
Un

( y
Y

)
u(y;α) dy.483

The polynomial Un is even when n is even and odd when n is odd. Then, as u is even,484

we obtain485

u(x;α) = 1 +
λα

π

∞∑
n=0

x2n
∫ 1

−1

1

Y 2n+2
U2n

( y
Y

)
u(y;α) dy,486
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giving the following formulas for the coefficients in (3.24),487

c0(α) = 1 +
λα

π

∫ 1

−1

u(y;α)

y2 + α2
dy,(3.30)488

cn(α) =
λα

π

∫ 1

−1

u(y;α)

(y2 + α2)n+1
U2n

(
y√

y2 + α2

)
dy, n = 1, 2, . . . .(3.31)489

490

The expansion (3.29) can also be used in (3.11) to expand the iterated kernels for491

α > 1.492

For α > 1, we may substitute (3.24) in the right-hand sides of (3.30) and (3.31),493

leading to an infinite linear system for the unknown coefficients. Truncating this494

system would lead to a numerical method; see (4.7) and (4.8).495

3.6. Legendre expansions. Having discussed Maclaurin expansions, let us go496

on to consider expansions using Legendre polynomials, Pn(x). As in subsection 3.5,497

we consider (L±1 ). Then, as u is even, its Legendre expansion takes the form498

(3.32) u(x;α) =

∞∑
n=0

an(α)P2n(x).499

Such a series can be found in Love’s paper [77, Eq. (16)], but it does not play a500

significant role in his analysis: “We need not consider in what sense the series (3.32)501

is to be understood if it is not convergent; for the results of the present formal work502

are rigorously verified later” [77, p. 436].503

Legendre polynomials are orthogonal over [−1, 1]. This implies, for example, that504

C(α) = 2a0(α) (see (2.5)) and that e(γ) can be determined from a0 and a1 (see (2.8)).505

The expansion (3.32) has been used in some recent papers [109, 67, 107]. Here, we506

proceed differently, and expand the kernel K(x− y) using Heine’s series [47, 8.791.1],507

(3.33)
1

z − x
=

∞∑
n=0

(2n+ 1)Pn(x)Qn(z), −1 ≤ x ≤ 1,508

where Qn(z) is a Legendre function of the second kind; the series is uniformly con-509

vergent for any complex z, with z not on the real axis between −1 and 1. Use (3.33)510

with z = iα − y and replace x by −x, noting that Pn(−x) = (−1)nPn(x); use (3.33)511

with z = iα+ y; substitute the resulting expansions in (3.26), giving512

(3.34) K(x− y) =
i

2π

∞∑
n=0

(2n+ 1)Pn(x)Qn(y;α),513

where Qn(y;α) = Qn(iα + y) + (−1)nQn(iα − y). The series (3.34) converges for all514

x with |x| ≤ 1, for all y with |y| ≤ 1, and for any α > 0. Substitute (3.34) in (3.9)515

(with g = 1). As Qn(y;α) is an even function of y when n is even, and odd when n516

is odd, we find that, as u is even, it has the expansion (3.32) with517

a0(α) = 1 +
iλ

2π

∫ 1

−1
Q0(y;α)u(y;α) dy = 1 +

iλ

π

∫ 1

−1
Q0(iα− y)u(y;α) dy,(3.35)518

an(α) =
iλ

π
(4n+ 1)

∫ 1

−1
Q2n(iα− y)u(y;α) dy, n = 1, 2, . . . ,(3.36)519

520
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using orthogonality. This system could be used in much the same way as (3.30) and521

(3.31). For example, if we substitute (3.32) in the right-hand sides of (3.35) and522

(3.36), we obtain an infinite linear system for the coefficients in (3.32). This system523

was first obtained by Nicholson (using a different approach to the capacitor problem)524

in 1924 [89, Eqs. (15) and (19)]; see also [77, Eqs. (N 15) and (N 19)].525

4. Solving Love–Lieb integral equations: numerical methods. In Octo-526

ber 1925, there was a meeting of the American Mathematical Society in Berkeley,527

California. The title and complete abstract of a contributed paper are as follows [15]:528

529

Professor Harry Bateman: Numerical solution of an integral equation.530

Hafen has shown that the distribution of electricity on the circular531

plates of a parallel plate condenser can be found by solving a linear532

integral equation of the second kind. In the present paper the author533

solves this equation numerically by a method of least squares, and534

discusses the method in a general way, remarking on the question of535

convergence.536

Evidently, the abstract refers to the integral equation (L±1 ), and it may be the first537

ever attempt to tackle this problem numerically. Bateman did not publish a full paper538

on what he did (although he published many papers on integral equations). However,539

his abstract marks the beginning of almost a century of efforts to devise numerical540

methods to solve integral equations. These efforts are the focus for this section in the541

context of Love–Lieb equations.542

Most of the numerical methods described below have been analysed in detail; for543

an admirable survey, see Atkinson’s book [6]. Convergence proofs and error estimates544

are available. Often, error estimates involve unspecified constants. It would be useful545

to investigate how these constants depend on the parameter α.546

4.1. Nyström’s method. Love’s integral equation (L±1 ) is simple and it is re-547

lated to physical problems, but its solution is not known in closed form. These facts548

made it attractive to numerical analysts who were developing methods for solving549

integral equations using computers. An early example is the paper by Fox and Good-550

win [38]. They used a method that is known nowadays as the Nyström method [91],551

[6, Chapter 4]: approximate the integral using a quadrature rule and then collocate,552

leading to a linear algebraic system. Thus, using553

(4.1)

∫ 1

−1
F (x) dx '

N∑
j=1

wjF (xj), −1 ≤ x1 < x2 < · · · < xN ≤ 1,554

with weights wi and nodes xi, i = 1, 2, . . . , N , (3.9) gives555

(4.2) u(x) ' g(x) + λ

N∑
j=1

wju(xj)K(x− xj), −1 ≤ x ≤ 1.556

Collocation at x = xi then gives the N ×N linear system557

ui − λ
N∑
j=1

wjK(xi − xj)uj = g(xi), i = 1, 2, . . . , N,558

where ui ' u(xi). Having computed u1, u2, . . . , uN , one can then use (4.2) to approx-559

imate u(x) (the right-hand side of (4.2) is Nyström’s interpolation formula), or one560

can interpolate through the N computed values of u(x) at the nodes.561
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For (L±1 ) (with g(x) = 1), we know that u(x) is even, while for (L±x ) (with562

g(x) ≡ x), u(x) is odd. In both cases, the integral equation is easily converted into563

an equation that holds for 0 ≤ x ≤ 1, and then the size of the linear system can be564

halved for the same accuracy.565

Simple choices for the quadrature rule (4.1) work well, at least when α is not too566

small (otherwise u has sharp variations close to the endpoints, as mentioned before).567

In their 1953 paper, Fox and Goodwin [38] used the repeated trapezoidal rule and568

gave numerical results when α = 1. A few years later, Cooke [29] tried the same569

method to solve the capacitor problem with a small gap:570

Finding difficulty in using their method for α = 0.1, I approached571

Dr. Fox, and he kindly consented to solve the problem for this α.572

Dr. J. Blake carried out the work and found that it was necessary to573

divide the range of integration into 50 parts and solve a system of 50574

linear equations in 50 unknowns in order to obtain 4-figure accuracy!575

Naturally use was made of high speed computing machinery.576

Sixty years later, Prolhac [102] used the same method together with Richardson ex-577

trapolation with respect to N (and modern computer hardware), thus obtaining so-578

lutions of high accuracy.579

Other quadrature rules have been used for (L±1 ); these include Simpson [72],580

Clenshaw–Curtis [127] and Gauss–Legendre [93, 73]. For some comparisons (when581

α = 1), see [17]. Lin and Shi [73] used a preconditioned conjugate gradient method582

[21] for (L+
1 ) when α is small.583

Another option is to use a quadrature rule that has been designed to handle the584

kernel (3.2). For applications of such product rules, see [87] and [37]; the paper [37,585

Example 5.1] gives some numerical results for (L+
g ).586

In the 1970s, software became available for solving integral equations such as (L±g )587

using the Nyström method. Atkinson [4] offered two FORTRAN programs, one using588

Simpson’s rule (called IESIMP) and one using Gauss–Legendre quadrature (called589

IEGAUS). Both have been used to solve the Love–Lieb equation, (L−1 ); IEGAUS was590

used in [31] and IESIMP in [46]. More recently, Atkinson and Shampine [7] updated591

and extended IESIMP into a Matlab program called Fie. It has been used in [111]592

for (L−g ), and we have used it for (L±1 ) and for (L−x ); see subsection 5.3.593

The kernel K(x− y) has singularities at y = x± iα. These two points are not in594

the range of integration, but they become closer as α becomes smaller. Therefore, it595

can be helpful to use a regularization [127, 93], writing (3.9) as596

u(x)

(
1− λ

∫ 1

−1
K(x− y) dy

)
− λ

∫ 1

−1
K(x− y) {u(y)− u(x)} dy = g(x), |x| < 1;597

for the first integral, see (3.4).598

4.2. Iterative methods. The iterative process (3.12) can be used to solve (L±1 )599

numerically, using a quadrature rule (4.1) to approximate the integrals. For a straight-600

forward implementation, see [11].601

Love [78] returned to (3.12) for (L±1 ) but he introduced an extra step. He took the602

numerical results obtained by Fox and Goodwin [38] for u when α = 1, interpolated603

using an even polynomial of degree 8, and then took this as his initial guess for u0.604

Richardson [108] used the same method, starting with u0 = 1 and interpolating at605

each step of the iterative process.606
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4.3. Expansion methods. Another class of numerical methods starts by ex-607

panding u using a set of basis functions,608

(4.3) u(x) '
N∑
n=0

c(N)
n Φn(x), −1 < x < 1,609

with coefficients c
(N)
n (that may depend on N) and basis functions Φn(x), n =610

0, 1, 2, . . .. Substitution in (3.9) gives611

(4.4)

N∑
n=0

c(N)
n

(
Φn(x)− λ

∫ 1

−1
K(x− y) Φn(y) dy

)
' g(x), −1 < x < 1.612

To proceed, one needs to (i) choose the functions Φn and then (ii) choose a way to613

determine c
(N)
n . Let us start with (ii). One possibility is to use a Galerkin method:614

multiply (4.4) by Φm(x) (with m = 0, 1, 2, . . . , N) and then integrate over the interval615

−1 < x < 1, giving a square linear algebraic system for the coefficients c
(N)
n .616

A simpler choice is collocation: evaluate (4.4) at M + 1 points in the interval617

−1 ≤ x ≤ 1 (with M ≥ N), giving M + 1 equations in the N + 1 unknowns,618

c
(N)
0 , c

(N)
1 , . . . , c

(N)
N ; if M = N , we obtain a square system, whereas if M > N , the619

system is overdetermined and we may use least-squares to obtain an approximate620

solution (perhaps as Bateman did in 1925).621

Let us now consider (i), the choice of the functions Φn. There are many options,622

such as trigonometric functions, monomials or orthogonal polynomials; we shall dis-623

cuss each of these below.624

For simplicity, let us assume that g is even so that u is also even. Then, one625

natural choice is to try626

Φn(x) = cos (nπx),627

since these functions are even and orthogonal over the interval [−1, 1]. A Galerkin628

method (multiply (4.4) by cos (mπx) and integrate over −1 < x < 1) then leads to an629

algebraic system for the coefficients c
(N)
n . This approach has been employed in [19]630

and [90]; in the latter paper, the relevant double integrals are evaluated analytically631

in terms of sine and cosine integrals.632

Chebyshev polynomials were used by Elliott [32], with the choice633

Φn(x) = T2n(x)634

for Love’s equation. (Recall that T2n(x) is an even function of x.) Piessens and635

Branders [99] showed how to compute the integrals636

(4.5) In(x) =

∫ 1

−1
K(x− y)Tn(y) dy637

recursively; see also [110]. For the use of certain close relatives of Chebyshev polynomi-638

als, see [86, 124]. For Legendre polynomials P2n(x), see [130]; see also subsection 3.6.639

Instead of orthogonal polynomials, another option is to use simple monomials,640

(4.6) Φn(x) = x2n,641

giving a polynomial approximation to u by truncating the Maclaurin series thereby642

obtained. The relevant integrals (replace Tn(y) by y2n in (4.5)) can be evaluated643
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18 L. FARINA, G. LANG AND P. A. MARTIN

explicitly [35, Eq. (64)], [67, Appendix D]. This method has been implemented [92],644

[66, section B.3]. The integrals mentioned above can be used to construct g(x) so that645

u(x) = x2n solves (L±g ). Similar calculations can be made for other simple choices646

for u.647

Another way of using monomials (4.6), already mentioned in subsection 3.5, com-648

bines (4.3) with (3.30) and (3.31) to give649

c
(N)
0 = 1 +

λα

π

N∑
n=0

c(N)
n

∫ 1

−1

y2n

y2 + α2
dy,(4.7)650

c(N)
m =

λα

π

N∑
n=0

c(N)
n

∫ 1

−1

y2n U2m(ξ)

(y2 + α2)m+1
dy, m = 1, 2, . . . , N,(4.8)651

652

where Un is a Chebyshev polynomial and ξ(y) = y/
√
y2 + α2. For each N , this is a653

system of N + 1 equations for the N + 1 coefficients c
(N)
n , n = 0, 1, . . . , N .654

For N = 0, (4.7) gives an equation for c
(0)
0 ,655

c
(0)
0 = 1 +

λα

π
c
(0)
0

∫ 1

−1

dy

y2 + α2
= 1 + λ c

(0)
0 ‖K‖∞,656

with ‖K‖∞ = (2/π) arctan (1/α); see (3.8).657

For N ≥ 1, we encounter elementary integrals of the form658

In(α) =
α

π

∫ 1

−1

dy

(y2 + α2)n
with I1 = ‖K‖∞.659

An integration by parts gives the recurrence relation660

(4.9) 2nα2In+1 = (2n− 1)In + 2(α/π)(α2 + 1)−n.661

Then, as a simple example, consider (4.7) and (4.8) with N = 1. From (4.7),662

c
(1)
0 = 1 +

λα

π
c
(1)
0

∫ 1

−1

dy

y2 + α2
+
λα

π
c
(1)
1

∫ 1

−1

y2 dy

y2 + α2
663

= 1 + λc
(1)
0 I1 + λc

(1)
1 {2(α/π)− α2I1}.664665

Similarly, as U2(ξ) = 4ξ2 − 1, (4.8) gives666

c
(1)
1 =

λα

π
c
(1)
0

∫ 1

−1

U2(ξ) dy

(y2 + α2)2
+
λα

π
c
(1)
1

∫ 1

−1

y2U2(ξ) dy

(y2 + α2)2
667

= λc
(1)
0

(
3I2 − 4α2I3

)
+ λc

(1)
1

(
3I1 − 7α2I2 + 4α4I3

)
668

= −2λc
(1)
0 (α/π)(α2 + 1)−2 + λc

(1)
1 {I1 − 2(α/π)(α2 + 2)(α2 + 1)−2},669670

having made use of (4.9). These two equations can be solved for c
(1)
0 and c

(1)
1 . Solu-671

tions for higher values of N can be found using symbolic software.672

Splines were first used for Love’s integral equation (L±1 ) by Phillips [98]. They673

have been used more recently in [10] for (L−g ) and in [9] for (L+
1 ). Although splines674

can be attractive in other contexts, for Love–Lieb integral equations, it is unclear that675

they are competitive with other numerical methods such as the Nyström method.676
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4.4. Element methods. Partition the interval [−1, 1] into N subintervals using677

−1 = x0 < x1 < · · · < xN−1 < xN = 1, so that xn−1 < x < xn is the nth subinterval678

(element), En, n = 1, 2, . . . , N . Then we can write (3.9), exactly, as679

(4.10) u(x)− λ
N∑
j=1

∫
Ej

K(x− y)u(y) dy = g(x), −1 < x < 1.680

If we evaluate (4.10) for x ∈ Ei, i = 1, 2, . . . , N , we obtain a coupled system of integral681

equations for u on each element.682

Approximating u(x) ' ui, a constant, for x ∈ Ei, and then collocating (4.10)683

at x = 1
2 (xi−1 + xi), the midpoint of the ith element, the result is a linear system684

for the numbers ui, i = 1, 2, . . . , N ; the integrals encountered are similar to (3.4).685

This method was used by Wintle [126]. For a numerical analysis, see [22, section 3].686

Pastore [95] has used a more elaborate version of this method for (L+
1 ).687

5. Solving Love–Lieb integral equations: approximations. In this section,688

we discuss approximations to u(x;α) for small or large values of the parameter α.689

Much of the physical literature is aimed at approximating integrated quantities, such690

as the capacitance of the circular plate capacitor (2.5) or the ground-state energy of691

the Lieb–Liniger model (2.8). Here, we limit ourselves to approximating u(x;α) itself.692

5.1. Approximations for α � 1: large gaps, strong coupling. Consider693

the Love–Lieb equation, (L−1 ), with α � 1. The solution is even, so look for the694

solution in the form [109]695

(5.1) u(x;α) '
2M+2∑
n=0

1

αn

M∑
m=0

cmn x
2m,696

with coefficients cmn that do not depend on M . The first terms beyond the Tonks–697

Girardeau limit (c00 = 1) [45] were explicitly obtained in [125, 131, 104]. An algorith-698

mic method to find cmn in a systematic way was developed by Ristivojevic [109]. (In699

fact, he starts with (3.32).) His method steps forward in M , results for lower values700

of M being used for higher values of M ; systems of linear algebraic equations have701

to be solved at each step. This algorithm was implemented up to M = 3 in [109],702

recovering the results of [104]. It was then implemented up to M = 8 in [67], where703

the main properties of the algorithm have been discussed. The coefficients cmn are704

found to be polynomials in 1/π with rational coefficients; for an example, see (5.8)705

below.706

A similar procedure yields the large-α approximation to the solution of the second707

Lieb equation (L−x ) (an odd function of x) [109], [67, Appendix F].708

The method developed by Ristivojevic is quite complicated. Let us now outline709

a simpler method, which is applicable to (L±g ). It starts by noting that if α > 2, then710

the kernel K(x − y) can be expanded using the binomial theorem, (3.25). If g does711

not depend on α, the integral equation for u, (3.9), can then be used to show that712

u(x;α) has an expansion in powers of α−1:713

(5.2) u(x;α) = g(x) +
λ

π

∞∑
n=0

(−1)n

α2n+1

∫ 1

−1
(x− y)2n u(y;α) dy, −1 < x < 1, α > 2.714
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To solve this equation, put715

u(x;α) =

∞∑
n=0

un(x)

αn
(5.3)716

=

∞∑
q=0

(
u2q(x)

α2q
+
u2q+1(x)

α2q+1

)
(5.4)717

= u0(x) +

∞∑
m=0

(
u2m+1(x)

α2m+1
+
u2m+2(x)

α2m+2

)
(5.5)718

719

and substitute (5.4) in the right-hand side of (5.2). We obtain720

u(x;α) = g(x) +
λ

π

∞∑
q=0

∞∑
n=0

(−1)n

α2n+2q+1

∫ 1

−1
(x− y)2n

(
u2q(y) +

u2q+1(y)

α

)
dy.721

In the double sum, put n + q = m and then change the order of summation. Using722

(5.5) on the left-hand side, we obtain723

u0(x) +

∞∑
m=0

(
u2m+1(x)

α2m+1
+
u2m+2(x)

α2m+2

)
724

= g(x) +
λ

π

∞∑
m=0

m∑
q=0

(−1)m+q

α2m+1

∫ 1

−1
(x− y)2m−2q u2q(y) dy725

+
λ

π

∞∑
m=0

m∑
q=0

(−1)m+q

α2m+2

∫ 1

−1
(x− y)2m−2q u2q+1(y) dy.726

727

Matching powers of α then gives u0(x) = g(x),728

u2m+1(x) =
λ

π

m∑
q=0

(−1)m+q

∫ 1

−1
(x− y)2m−2q u2q(y) dy,(5.6)729

u2m+2(x) =
λ

π

m∑
q=0

(−1)m+q

∫ 1

−1
(x− y)2m−2q u2q+1(y) dy,(5.7)730

731

for m = 0, 1, 2, . . .. These formulas (which appear to be new) show that both u2m+1(x)732

and u2m+2(x) are polynomials in x of degree 2m. It turns out that the explicit733

expressions for un simplify considerably when g is even or odd. The method extends734

readily to the case where g depends on α, provided g(x;α) can itself be expanded in735

inverse powers of α.736

Let us calculate the first few terms. With the notation gn =
∫ 1

−1 y
n g(y) dy and737

χ = λ/π, we find738

u0(x) = g(x), u1 = χg0, u2 = 2χ2g0,739

u3(x) = χ(4χ2g0 − g2) + 2xχg1 − x2χg0,740

u4(x) = 2χ2{(4χ2 − 2/3)g0 − g2} − 2x2χ2g0.741742

As an example, take g(x) = 1 and λ = 1, giving the Love–Lieb equation (L−1 ). Then743

(5.8)

u0 = 1, u1 =
2

π
, u2 =

4

π2
, u3(x) =

8

π3
− 2

3π
− 2x2

π
, u4(x) =

16

π4
− 4

π2
− 4x2

π2
.744
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These agree with [131, Eq. (2.3.53)] and [109, Eq. (15)]. Earlier, Wadati [125] found745

an approximation in the form u(x;α) ' a0(α) + a2(α)x2; approximating his solutions746

for a0 and a2 [125, Eq. (3.3)] in powers of α−1 gives precise agreement with (5.8).747

For Gaudin’s equation, (L+
1 ), take g(x) = 1 and λ = −1. This change to the sign748

of λ has no effect on u0, u2 and u4, but it changes the sign of u1 and u3.749

Next, consider the second Lieb equation, (L−x ): put g(x) = x and λ = 1. As750

g0 = g2 = 0 and g1 = 2
3 , we obtain751

(5.9) u0(x) = x, u1 = u2 = 0, u3(x) =
4x

3π
, u4 = 0.752

These agree with [109, Eq. (16)].753

The polynomials un(x) in (5.3) are given recursively by (5.6) and (5.7). As an754

alternative, we could seek the coefficients in the polynomials by direct substitution755

in the integral equation, much as was done with (5.1). But now, if we consider the756

Love–Lieb equation (L±1 ), whose solution is even, and truncate (5.3), we find that757

(5.1) should be replaced by758

(5.10) u(x;α) '
2M+2∑
n=0

1

αn

p(n)∑
m=0

cmn x
2m,759

where the upper limit in the inner sum is p when n = 2p+ 1 or 2p+ 2; the additional760

terms in (5.1) must all be zero.761

5.2. Approximations for α � 1: small gaps, weak coupling. This limit762

is more difficult to handle because of the near-singularity of the kernel. We have763

already seen that for (L+
1 ), u(x) ' 1

2 for −1 < x < 1 but u(±1) ' 3
4 . For (L−1 ),764

u(x) ' α−1
√

1− x2 for −1 < x < 1 but u(±1) > 1; see (3.19). The errors in the765

approximations for |x| < 1 close to the endpoints at x = ±1 suggest strongly using766

matched asymptotic expansions, and that is what we find in much of the literature.767

Let us start with (L−1 ). The leading (outer) approximation, away from the end-768

points, is769

(5.11) u(x;α) ' α−1
√

1− x2, −1 < x < 1.770

This “semi-circular law” can be found in the 1963 papers by Lieb and Liniger [72]771

(where it is a “guess”) and Hutson [56] (where it is justified). Other derivations were772

given later [43], [125, Eq. (4.4)], [92]. A more accurate (outer) approximation is773

(5.12)

u(x;α) '
√

1− x2
α

+
1

2π
√

1− x2

[
x log

(
1− x
1 + x

)
+ log

(
16π

α

)
+ 1

]
, −1 < x < 1.774

For derivations, see [56, Eq. (4.7)] and [100, Eq. (1.13)].775

Although the arguments used to derive small-α approximations such as (5.11)776

and (5.12) are plausible, and the approximations obtained are supported by numerical777

simulation, there is scope for further work to provide rigorous error estimates.778

The two-term approximation (5.12) is integrable for |x| < 1, and it can be used779

to obtain approximations for the capacitance (2.5) or the ground-state energy (2.8).780

Higher-order terms can be added to (5.12) but they are not integrable and so the781

associated inner approximations (near the endpoints) are required [107].782
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For (L+
1 ), the two-term approximation is783

(5.13) u(x;α) ' 1

2
+

α

2π(1− x2)
, −1 < x < 1.784

For derivations, see [42, Eq. (15.23)], [2, Eq. (3.7)] and [59, Eq. (3.82)]. Evidently, the785

approximation (5.13) is not integrable for |x| < 1, so that inner approximations are786

needed. An ansatz for the solution of (L+
1 ) was given in [80]. Some of its coefficients787

can be fixed by a rather complicated procedure that matches inner and outer approx-788

imations. In particular, an outer approximation for u is obtained [80, Eq. (3.29)] that789

contains more terms than (5.13); its third term is found to be790

α2

2π

{
1 + log (π/α)

2(1− x2)
− log (π/α)

(1− x2)2
− x

(1− x2)2
log

(
1− x
1 + x

)}
.791

For (L−x ), the second Lieb equation, we are aware of two attempts, both leading792

to approximations in the form793

u(x;α) ' x

2α

√
1− x2(5.14)794

+
A(x)

4π
√

1− x2

[
1 + log

(
16π

α

)]
− B(x)

4π
log

(
1 + x

2

)
+
B(−x)

4π
log

(
1− x

2

)
795
796

for −1 < x < 1. We know that u(x;α) is an odd function of x, so that A(x) must797

also be odd, but B(x) is unrestricted. Hutson [57], extending his analysis for (L−1 )798

[56], obtained (5.14) with799

(5.15) A(x) =

√
1 + x

2
−
√

1− x
2

and B(x) =
1√

2(1 + x)
.800

More recently, Reichert et al. [106, Eq. (S8)] obtained (5.14) but with different ex-801

pressions for A and B,802

(5.16) A(x) = x and B(x) =
2x2 − 1√

1− x2
.803

These authors used Popov’s method [100], which starts with an assumed ansatz;804

implicit in their choice is that B(x) is an even function of x, which does not accord805

with Hutson’s result (5.15).806

5.3. Numerical results. We have given small-α approximations for the solu-807

tions of (L±1 ). Here, we compare them with direct numerical solutions of the integral808

equations, using Nyström’s method (subsection 4.1), and the Matlab program Fie809

[7]. (The code was retrieved from [5].)810

In Figure 1, the numerical solution of the Love–Lieb equation (L−1 ) is plotted811

together with the approximation (5.12) for α = 0.1. The number of nodes used in812

Simpson’s rule is 128. Similarly, in Figure 2, the numerical solution of Gaudin’s813

equation (L+
1 ) is plotted together with the approximation (5.13) for α = 0.1. The814

number of nodes used in the quadrature is 64. In both Fie results shown in these815

figures, the absolute and relative error tolerances are 10−6 and 10−3, respectively.816

We see from the numerical results that the endpoint behavior, at x = ±1, is817

not well captured by the outer approximations, as expected. See also the remarks in818
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Fig. 1. The solution of the Love–Lieb equation (L−1 ) for α = 0.1. The solid line represents the
results obtained by the Fie Matlab code and the dashed line shows the approximation (5.12).

Fig. 2. The solution of the Gaudin equation (L+
1 ) for α = 0.1. The solid line represents the

results obtained by the Fie Matlab code and the dashed line shows the approximation (5.13)
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Fig. 3. The solution of (L−1 ) at x = 1 as a function of α in the domain [0.05, 0.8]. The solid
line represents the results obtained by the Fie Matlab code and the dashed line shows the fitting
curve 1.063α−0.5289 + 0.5602, with a root mean square error of 0.0059.

subsection 3.1. We are not aware of any analytical approximations for u(1;α) as a819

function of α. Instead, as motivation for further study, we have fit a curve by least820

squares to the numerical solutions by Fie. We have done that for (L−1 ); the result821

is shown in Figure 3. Among several approximating functions in the Matlab Curve822

Fitting ToolboxTM, the two-term power curve provided the smallest root mean square823

error.824

Numerical solutions of the second Lieb equation (L−x ) are plotted in Figure 4,825

together with the approximations given by (5.15) and (5.16). It appears that (5.16) is826

a better approximation, although further work is needed to resolve the discrepancies.827

6. Concluding remarks. We have reviewed 110 years of the literature on a828

very simple integral equation usually associated with the names of E. R. Love and829

E. H. Lieb. This equation has many applications in classical and quantum physics,830

as do some of its generalizations. Despite its simplicity, no closed-form solution is831

known. The study of this equation has inspired the developments of numerical and832

analytical methods, some of which exploit the size of α, which is the only parameter833

appearing in the integral equation. Further developments can be expected.834
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Fig. 4. The solution of (L−x ) at α = 0.1 as a function of x. The solid line represents the results
obtained by the Fie Matlab code, the dashed line shows the approximation given by (5.15) and the
dashed-dotted line (5.16)

ments on an earlier version of the paper. In particular, one reviewer provided analysis841

leading to (3.13), (3.22), and (3.23).842

Appendix A. Love–Lieb integral equations on an infinite interval.843

Consider the convolution integral equations844

(I±g ) u(x)±
∫ ∞
−∞

K(x− y)u(y) dy = g(x), −∞ < x <∞,845

where K(x) = (α/π)(x2 + α2)−1 and 0 < α < ∞. Formally, at least, we can solve846

(I±g ) using Fourier transforms; see, for example, [119, section 11.1], [88, section 8.5],847

[26, section 18.1]. Define848

ũ(k) =

∫ ∞
−∞

u(x) eikx dx.849

Then, using the convolution theorem, the Fourier transform of (I±g ) is850

∆±(k) ũ(k) = g̃(k)851

with ∆±(k) = 1± K̃(k) and K̃(k) = e−α|k|. Hence852

(A.1) ũ(k) =
g̃(k)

1± e−α|k|
.853

Rearranging (as the denominator → 1 as |k| → ∞),854

(A.2) ũ(k) = g̃(k)∓ M̃±(k) g̃(k) with M̃±(k) =
e−α|k|

1± e−α|k|
.855
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Inverting, using the convolution theorem again,856

(A.3) u(x) = g(x)∓
∫ ∞
−∞

M±(x− y) g(y) dy.857

At this stage, all these calculations are formal, of course. For example, although858

M+(x) can be evaluated (see (A.14)), the inversion integral defining M−(x) is diver-859

gent (see Appendix A.2).860

It is known [26, Theorem 18.1-1] that (I±g ) has a unique integrable solution u for861

arbitrary integrable g if and only if ∆±(k) 6= 0 for −∞ < k < ∞. Moreover, when862

this condition is satisfied, the solution is given by the formula (A.3).863

In our case, we have864

(A.4) K̃(0) =

∫ ∞
−∞

K(x) dx = 1,865

which means ∆−(0) = 0. Hence, we must distinguish (I+g ) (the “normal” case) and866

(I−g ) (the “non-normal case”). We start with the uniquely-solvable equation, (I+g ), in867

Appendix A.1, and then discuss (I−g ) in Appendix A.2.868

A.1. Equation (I+g ). Start with the formula (A.4). It shows that869

(A.5) u(x) = 1
2 solves (I+g ) when g(x) = 1, for any finite α > 0.870

Note that this g and the solution u do not have Fourier transforms.871

A.1.1. Three examples. We give three examples, with simple Fourier-trans-872

formable g.873

Example A.1. Motivated by (A.5), suppose g is a piecewise-constant even func-874

tion defined by875

(A.6) g(x) =

{
1, |x| < L,
0, |x| > L,

876

for some L > 0. Then g̃(k) = (2/k) sin(kL) and, inverting (A.1),877

u(x) =
1

2π

∫ ∞
−∞

2 sin(kL)

k(1 + e−α|k|)
e−ikx dk878

=
2

π

∫ ∞
0

sin(kL) cos(kx)

k(1 + e−αk)
dk = S([L+ x]/α) + S([L− x]/α),879

880

say, where881

S(X) =
1

π

∫ ∞
0

sin(kX)

k(1 + e−k)
dk.882

Although we can evaluate S(X) explicitly (see below), let us start by finding an883

asymptotic approximation as X →∞. As 1 + e−k ∼ 2 as k → 0, write884

S(X) =
1

π

∫ ∞
0

sin(kX)

2k
dk +

1

π

∫ ∞
0

(1− e−k) sin(kX)

2k(1 + e−k)
dk885

=
1

4
+

1

2π
Im

∫ ∞
0

Φ(k) eikX dk,886
887
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with Φ(k) = k−1 tanh (k/2). We have Φ(k) → 1
2 as k → 0 and Φ(k) → 0 as k → ∞.888

Then a standard argument for estimating Fourier integrals [30, section 10] (essentially889

using integration by parts) gives890

S(X) ∼ 1

4
+

1

4πX
as X →∞.891

Hence892

u(x) ∼ 1

2
+

α

2πL
as L→∞, for fixed x.893

Thus, we recover the known solution for g(x) = 1, (A.5), as L→∞; see (A.6).894

For a closed-form expression for S(X), start with895

(A.7) S(X) =
1

2
− 1

π

∫ ∞
0

e−k sin(kX)

k(1 + e−k)
dk.896

Now, from [47, 8.341.3], we have the formula897

log
Γ(a− ix)

Γ(a+ ix)
= 2i

∫ ∞
0

(
e−2ak

1− e−2k
sin (2xk)− x e−2k

)
dk

k
,898

with a > 0 and x real. (Here, Γ is the gamma function.) Write down this formula899

with a = 1
2 and subtract the corresponding formula with a = 1 to give900

log

(
Γ( 1

2 − ix)Γ(1 + ix)

Γ( 1
2 + ix)Γ(1− ix)

)
= 2i

∫ ∞
0

e−k − e−2k

1− e−2k
sin (2xk)

dk

k
,901

which is the integral in (A.7) after putting x = X/2.902

Example A.2. Suppose g is a smooth odd function defined by903

(A.8) g(x) =
x

x2 + κ2
with g̃(k) = πi e−κ|k| sgn (k),904

where κ > 0. Inverting (A.1),905

u(x) =
1

2π

∫ ∞
−∞

πi e−κ|k| sgn (k)

1 + e−α|k|
e−ikx dk =

∫ ∞
0

e−κk sin(kx)

1 + e−αk
dk(A.9)906

=
1

α
Im

∫ ∞
0

e−Zy dy

1 + e−y
=

1

α
Im {β(Z)} ,(A.10)907

908

using [47, 8.371.2], where Z = (κ− ix)/α,909

(A.11) β(z) =
1

2

{
ψ

(
z + 1

2

)
− ψ

(z
2

)}
and ψ(z) =

Γ′(z)

Γ(z)
.910

When α = κ, the integral (A.9) can be evaluated explicitly [47, 3.911.1]:911

u(x) =
1

2x
− π

2α sinh (πx/α)
, x > 0,912

with u(x) = −u(−x) for x < 0. Note that, although this solution for u is Fourier-913

transformable, it is not absolutely integrable. (There is a similar example for (I−g ) in914

[119]; see (A.15) below.)915
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Example A.3. Consider an even version of (A.8),916

(A.12) g(x) =
κ

x2 + κ2
with g̃(k) = π e−κ|k|,917

where κ > 0. Hence, proceeding as with (A.8),918

(A.13) u(x) =

∫ ∞
0

e−κk cos(kx)

1 + e−αk
dk =

1

α
Re {β(Z)} .919

When α = 2κ, the integral (A.13) can be evaluated explicitly [47, 3.981.3]:920

u(x) =
π

2α
sech

(πx
α

)
.921

In particular, when α = 2 (κ = 1), we recover a solution of (I+g ) found by Hulthén922

[55, Eq. (III, 56)]; see also [48, Eq. (19)].923

A.1.2. The resolvent kernel M+. Next, let us return to (A.3) and evaluate924

the resolvent kernel M+(x). We have925

M+(x) =
1

2π

∫ ∞
−∞

e−α|k|

1 + e−α|k|
e−ikx dk =

1

π

∫ ∞
0

e−αk cos(kx)

1 + e−αk
dk(A.14)926

=
1

πα
Re

∫ ∞
0

e−µy dy

1 + e−y
=

1

πα
Re {β(µ)} with µ = 1 +

ix

α
,927

928

where β(z) is defined by (A.11).929

A.2. Equation (I−g ). The formula (A.4) implies that the homogeneous form of930

(I−g ) is satisfied by u(x) = 1, so that we do not have uniqueness. We could restore931

uniqueness by insisting that u be integrable. Alternatively, when g is odd we could932

insist that the solution u be odd.933

Example A.4. As an example with an odd g, take (A.8). Then (A.1) gives934

u(x) =

∫ ∞
0

e−κk sin(kx)

1− e−αk
dk.935

We see that both numerator and denominator are zero at k = 0 with a finite ratio,936

and so the integral is well defined. Indeed, from [47, 3.911.6], we have937

u(x) = − 1

α
Im {ψ(Z)} ,938

where Z = (κ− ix)/α (as before). In the special case α = κ, we have [47, 3.911.2]939

(A.15) u(x) =
π

2α
coth

(πx
α

)
− 1

2x
,940

in agreement with an example in Titchmarsh’s book [119, p. 309].941

Example A.5. For an even example, take (A.12). Inverting (A.1) gives942

u(x) =
1

2

∫ ∞
−∞

e−κ|k| e−ikx

1− e−α|k|
dk =

∫ ∞
0

e−κk cos(kx)

1− e−αk
dk.943
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The integrand has a non-integrable singularity at k = 0. We take the finite part, and944

define945

→
∫ ∞
0

e−κk cos(kx)

1− e−αk
dk = lim

ε→0

{∫ ∞
ε

e−κk cos(kx)

1− e−αk
dk +

1

α
log ε

}
.946

More generally, define947

→
∫ A

0

G(k) cos(kx)

1− e−αk
dk = lim

ε→0

{∫ A

ε

G(k) cos(kx)

1− e−αk
dk +

G(0)

α
log ε

}
.948

Notice that the second term on the right-hand side of this formula does not depend949

on x. However, we are not interested in additive constants because we already know950

that u = 1 solves the homogeneous version of (I−g ).951

Let us write952

g̃(k) = g̃e(k) + g̃o(k)953

where g̃e(−k) = g̃e(k) and g̃o(−k) = −g̃o(k). Then954

u(x) =
1

π
→
∫ ∞
0

g̃e(k) cos(kx)

1− e−αk
dk − i

π

∫ ∞
0

g̃o(k) sin(kx)

1− e−αk
dk955

is a particular solution of (I−g ).956
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[86] G. V. Milovanović and D. Joksimović, Properties of Boubaker polynomials and an1171
application to Love’s integral equation, Appl. Math. Comp., 224 (2013), pp. 74–87,1172
https://doi.org/10.1016/j.amc.2013.08.055.1173

[87] G. Monegato and A. P. Orsi, Product formulas for Fredholm integral equations with rational1174
kernel functions, in Numerical Integration III, Birkhäuser, Basel, 1988, pp. 140–156,1175
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