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Abstract

Potential problems for thin elliptical plates are solved exactly with emphasis on computation of the electro-
static energy. Expansions in terms of Jacobi polynomials are used.
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1. Introduction

Let Ω denote a thin flat plate lying in the plane z = 0, where Oxyz is a system of Cartesian coordinates.
The charge distribution on the plate is σ(x), where x = (x, y). The potential on the plate is

f(x′) =
1

4π

∫
Ω

σ(x)

|x− x′|
dx, x′ ∈ Ω. (1)

The electrostatic energy, I, is given by

I =

∫
Ω

f(x′)σ(x′) dx′ =
1

4π

∫
Ω

∫
Ω

σ(x′)σ(x)

|x− x′|
dx dx′,

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [1] showed how to
calculate I when Ω is an ellipse and σ(x, y) is a linear function of x and y. We generalize their result: we
allow arbitrary polynomials in x and y, and we incorporate a weight function to represent singular behaviour
near the edge of the plate.

2. An elliptical plate

When Ω is elliptical, it is convenient to introduce coordinates ρ and φ so that

x = aρ cosφ, y = bρ sinφ, 0 < b ≤ a. (2)

Then, Ω is defined by Ω = {(x, y, z) : 0 ≤ ρ < 1, −π ≤ φ < π, z = 0}. Thus, ρ = 1 gives the edge of the
plate Ω.

Equation (1) can be regarded as an integral equation for σ when f is given [2, 3, 4]. Alternatively, (1)
can be regarded as a formula for f when σ is given; this is the view adopted in [1].

When f is given, the function σ is infinite at ρ = 1, in general. In fact, there is a general result, known
as Galin’s theorem, asserting that if f(x, y) is a polynomial, then σ is a polynomial of the same degree
multiplied by (1− ρ2)−1/2. In particular, if f is a constant, then σ is a constant multiple of (1− ρ2)−1/2.
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3. Fourier transforms

We start with a standard Fourier integral representation,

1

|x− x′|
=

1

2π

∫ ∞
−∞

∫ ∞
−∞
|ξ|−1 exp {iξ · (x− x′)}dξ, (3)

where ξ = (ξ, η). Henceforth, we write
∫∫

when the integration limits are as in (3). Thus

f(x′) =
1

4π

∫∫
|ξ|−1U(ξ) exp (−iξ · x′) dξ (4)

and

I =
1

2

∫∫
|ξ|−1 |U(ξ)|2 dξ, (5)

where

U(ξ) =
1

2π

∫
Ω

σ(x) exp (iξ · x) dx. (6)

For an elliptical plate, we write the Fourier-transform variable ξ as

ξ = (λ/a) cosψ and η = (λ/b) sinψ.

Then, using (2), ξ · x = λρ cos (φ− ψ). Hence,

exp (iξ · x) =

∞∑
n=0

εn inJn(λρ) cosn(φ− ψ),

where Jn is a Bessel function, ε0 = 1 and εn = 2 for n ≥ 1.
In order to evaluate U(ξ), defined by (6), we suppose that σ has a Fourier expansion,

σ(x) =

∞∑
m=0

σm(ρ) cosmφ+

∞∑
m=1

σ̃m(ρ) sinmφ. (7)

Then, using dx = abρdρdφ and defining

Sn[gn;λ] =

∫ 1

0

gn(ρ)Jn(λρ) ρdρ, (8)

we obtain

U(ξ) = ab

∞∑
n=0

inSn[σn;λ] cosnψ + ab

∞∑
n=1

inSn[σ̃n;λ] sinnψ.

We have dξ = (ab)−1λ dλ dψ and |ξ| = (λ/b)(1−k2 cos2 ψ)1/2, where k2 = 1−(b/a)2; k is the eccentricity
of the ellipse.

From (4), we obtain

f(x) = f0(ρ) + 2

∞∑
n=1

{
fn(ρ) cosnφ+ f̃n(ρ) sinnφ

}
where

fn(ρ) =
b

2π

∞∑
m=0

Icmn(k)

∫ ∞
0

Jn(λρ)Sm[σm;λ] dλ, (9)

f̃n(ρ) =
b

2π

∞∑
m=1

Ismn(k)

∫ ∞
0

Jn(λρ)Sm[σ̃m;λ] dλ, (10)
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Icmn(k) = im(−i)n
∫ π

0

cosmψ cosnψ√
1− k2 cos2 ψ

dψ, (11)

Ismn(k) = im(−i)n
∫ π

0

sinmψ sinnψ√
1− k2 cos2 ψ

dψ (12)

and we have noticed that |ξ| is an even function of ψ. The integrals Icmn and Ismn can be reduced to
combinations of complete elliptic integrals, K(k) and E(k). They are zero unless m and n are both even or
both odd. (See [5, p. 276] for a discussion of similar integrals.) Explicit formulas for a few of these integrals
will be given later.

For the energy, I, (5) gives

I =
1

2a

∫ ∞
0

∫ π

−π
|U(ξ)|2 dψ dλ√

1− k2 cos2 ψ

= ab2
∞∑
m=0

∞∑
n=0

Icmn(k)

∫ ∞
0

Sm[σm;λ]Sn[σn;λ] dλ

+ ab2
∞∑
m=1

∞∑
n=1

Ismn(k)

∫ ∞
0

Sm[σ̃m;λ]Sn[σ̃n;λ] dλ. (13)

4. Polynomial expansions

To make further progress, we must be able to evaluate Sn[gn;λ], defined by (8). We do this by expanding
gn(ρ) using the functions

G
(n,ν)
j (ρ) = ρn(1− ρ2)νP

(n,ν)
j (1− 2ρ2),

where P
(n,ν)
j is a Jacobi polynomial. The parameter ν controls the behaviour near the edge of the ellipse,

ρ = 1. Thus, when ν = 0, G
(n,0)
j (ρ) is a polynomial; this covers the case discussed in [1]. Setting ν = − 1

2
gives appropriate expansion functions when the goal is to solve (1) for σ. We note that Boyd [6, §18.5.1] has

advocated using the polynomials G
(n,0)
j (r) as radial basis functions in spectral methods for problems posed

on a disc, 0 ≤ r < 1.

The functions G
(n,ν)
j are orthogonal. To see this, note that Jacobi polynomials satisfy∫ 1

−1

(1− x)α(1 + x)βP
(α,β)
i (x)P

(α,β)
j (x) dx = hi(α, β)δij ,

where hi is known and δij is the Kronecker delta; see [7, §18.3]. Hence, the substitution x = 1− 2ρ2 gives∫ 1

0

G
(n,ν)
i (ρ)G

(n,ν)
j (ρ)

ρdρ

(1− ρ2)ν
= 2−n−ν−2hi(n, ν)δij . (14)

Next, we use Tranter’s integral [8, 9] to evaluate Sn[G
(n,ν)
j ;λ]:∫ 1

0

Jn(λρ)G
(n,ν)
j (ρ) ρdρ =

2ν

λν+1 j!
Γ(ν + j + 1)J2j+n+ν+1(λ).

Thus, if we write

σn(ρ) =
∑
j=0

j! snj
2νΓ(ν + j + 1)

G
(n,ν)
j (ρ), (15)

where snj are coefficients, we find that

Sn[σn;λ] =
∑
j=0

snj
λν+1

J2j+n+ν+1(λ). (16)
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We also expand σ̃n(ρ) as (15) but with coefficients s̃nj .
If we substitute (16) in (9), we encounter Weber–Schafheitlin integrals; these can be evaluated. We give

a simple example later.
If we substitute (16) in (13), we encounter integrals of the type∫ ∞

0

λ−2µJp+µ(λ)Jq+µ(λ) dλ (17)

where µ = ν + 1, and p and q are non-negative integers. The integral (17) is known as the critical case of
the Weber–Schafheitlin integral; its value is [7, eqn 10.22.57]

Γ( 1
2 [p+ q + 1]) Γ(2µ)

22µ Γ( 1
2 [2µ+ p− q + 1]) Γ( 1

2 [2µ+ q − p+ 1]) Γ( 1
2 [4µ+ p+ q + 1])

. (18)

5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter ν but, for simplicity,
we ignore any dependence on the angle φ. In the second example, we compare with some results of Roy and
Sabina [2] for ν = − 1

2 . In the third example, we assume that σ(x, y) is a general quadratic function of x
and y (so that ν = 0); this extends the calculations in [1], where σ was taken as a linear function.

5.1. Example: dependence on ν 1

For a very simple example, suppose that σ(x) = (1 − ρ2)ν for some ν > −1. Thus, as P
(n,ν)
0 = 1, (15)

gives s0
0 = 2νΓ(ν+1). All other coefficients snj and s̃nj are zero. Then, from (16), S0[σ0;λ] = s0

0λ
−ν−1Jν+1(λ).

Hence

f(x) = f0(ρ) =
bs0

0

2π
Ic00(k)

∫ ∞
0

λ−ν−1J0(λρ)Jν+1(λ) dλ, 0 ≤ ρ < 1. (19)

From (11), we obtain

Ic00 = 2

∫ π/2

0

dx

∆
= 2K(k), (20)

where ∆ = (1− k2 sin2 x)1/2. From [7, eqn 10.22.56], the integral in (19) evaluates to

√
π

2ν+1Γ(ν + 3
2 )
F ( 1

2 , −ν −
1
2 ; 1; ρ2),

where F is the Gauss hypergeometric function. Hence

f(x) =
b

2π
K(k)

√
π Γ(ν + 1)

Γ(ν + 3
2 )

F ( 1
2 , −ν −

1
2 ; 1; ρ2), 0 ≤ ρ < 1.

When ν = − 1
2 , F ( 1

2 , 0; 1; ρ2) = 1 and f(x) = 1
2bK(k), a constant, in accord with Galin’s theorem.

When ν = 0, we obtain f(x) = (2b/π2)K(k)E(ρ) for 0 ≤ ρ < 1, using [7, eqn 19.5.2]. Thus, for this
particular f , the solution of the integral equation (1) is σ = 1. Although this solution is bounded, we see
that adding a small constant to f adds a constant multiple of (1−ρ2)−1/2 to σ. In other words, the integral
equation (1) has bounded solutions for some f , but these solutions are not typical: singular behaviour
around the edge of Ω should be expected.

1There are errors in the published version of this Example; see Addendum
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5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider σ(x) = (1 − ρ2)−1/2g(x, y) when g(x, y) is a quadratic in x and y. As a
particular example, let us take g(x, y) = 4πx = 4πaρ cosφ. Thus, n = 1, ν = − 1

2 and j = 0 in (15), giving

s1
0 = 4πa

√
π/2; all other coefficients snj are zero. Then, from (16), S1[σ1;λ] = s1

0λ
−1/2J3/2(λ). Hence

f(x) = 2f1(ρ) cosφ =
bs1

0

π
Ic11(k) cosφ

∫ ∞
0

J1(λρ)J3/2(λ)
dλ√
λ
, 0 ≤ ρ < 1. (21)

It is shown in section 5.3 that Ic11(k) = 2(K − E)/k2. From [7, eqn 10.22.56], the integral in (21) evaluates
to 1

2ρ
√
π/2. Hence f(x) = πbxIc11, in agreement with [2, eqn (14b)].

5.3. Example: quadratic σ

Suppose that

σ(x) = α0 + α1(x/a) + α2(y/b) + 2α3(x/a)2 + 2α4(xy)/(ab) + 2α5(y/b)2

= {α0 + ρ2(α3 + α5)}+ α1ρ cosφ+ α2ρ sinφ+ (α3 − α5)ρ2 cos 2φ+ α4ρ
2 sin 2φ,

with constants αj ; Laurens and Tordeux [1] have α3 = α4 = α5 = 0. Then (7) gives

σ0(ρ) = α0 + (α3 + α5)ρ2, (22)

σ1 = α1ρ, σ̃1 = α2ρ, σ2 = (α3 − α5)ρ2 and σ̃2 = α4ρ
2. All other terms in (7) are absent.

Next, we use P
(n,ν)
0 = 1 and ν = 0. These give s1

0 = α1, s̃1
0 = α2, s2

0 = α3 − α5 and s̃2
0 = α4. For s0

j , we

use P
(0,0)
1 (x) = P1(x) = x, giving

σ0(ρ) = s0
0G

(0,0)
0 + s0

1G
(0,0)
1 = s0

0 + s0
1(1− 2ρ2).

Comparison with (22) gives α0 = s0
0 + s0

1 and α3 + α5 = −2s0
1; these determine s0

0 and s0
1. Apart from the

six mentioned, all other coefficients snj and s̃nj are zero.
Then, from (16), we obtain

λS0[σ0;λ] = s0
0J1(λ) + s0

1J3(λ),

λS1[σ1;λ] = s1
0J2(λ), λS1[σ̃1;λ] = s̃1

0J2(λ),

λS2[σ2;λ] = s2
0J3(λ), λS2[σ̃2;λ] = s̃2

0J3(λ).

We use these to compute the energy, I, given by (13). We will need the integrals (see (18))

Jpq =

∫ ∞
0

1

λ2
Jp+1(λ)Jq+1(λ) dλ

=
Γ( 1

2 [p+ q + 1])

4 Γ( 1
2 [3 + p− q]) Γ( 1

2 [3 + q − p]) Γ(1
2 [5 + p+ q])

. (23)

Thus

I

ab2
= Ic00

∫ ∞
0

|S0[σ0;λ]|2 dλ+ Ic11

∫ ∞
0

|S1[σ1;λ]|2 dλ

+ Ic22

∫ ∞
0

|S2[σ2;λ]|2 dλ+ 2Ic02 Re

∫ ∞
0

S0[σ0;λ]S2[σ2;λ] dλ

+ Is11

∫ ∞
0

|S1[σ̃1;λ]|2 dλ+ Is22

∫ ∞
0

|S2[σ̃2;λ]|2 dλ

= Ic00

{∣∣s0
0

∣∣2 J00 + 2 Re
(
s0

0 s
0
1

)
J02 +

∣∣s0
1

∣∣2 J22

}
+ Ic11

∣∣s1
0

∣∣2 J11

+ Ic22

∣∣s2
0

∣∣2 J22 + 2Ic02 Re
(
s0

0s
2
0J02 + s0

1s
2
0J22

)
+ Is11

∣∣s̃1
0

∣∣2 J11 + Is22

∣∣s̃2
0

∣∣2 J22. (24)
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From (23), we obtain

J00 =
4

3π
, J11 =

4

15π
, J22 =

4

35π
, J02 =

4

45π
.

For Icmn and Ismn, we have Ic00 = 2K(k) (see (20)), Icmm + Ismm = Ic00,

Is11 − Ic11 = Ic02 = 2

∫ π/2

0

cos 2x

∆
dx =

2

k2
(k2 − 2)K(k) +

4

k2
E(k),

Ic22 − Is22 = 2

∫ π/2

0

cos 4x

∆
dx =

32k′
2

3k4
K + 2K +

16

3k4
(k2 − 2)E,

where k′
2

= 1− k2 = (b/a)2. Thus

Ic11 = 2(K − E)/k2, Is11 = 2(E − k′2K)/k2,

Ic22 = 2{(3k4 + 8k′
2
)K + 4(k2 − 2)E}/(3k4),

Is22 = 8{(2− k2)E − 2k′
2
K}/(3k4).

One can check that these all have the correct limiting values as k → 0.
This completes the computation of all the quantities required in (24). In the special case considered by

Laurens and Tordeux [1], we have s0
0 = α0, s1

0 = α1, s̃1
0 = α2 and s0

1 = s2
0 = s̃2

0 = 0, whence

I/(ab2) = |α0|2Ic00J00 + |α1|2Ic11J11 + |α2|2Is11J11

=
8

15π

{
5|α0|2K + |α1|2

K − E
k2

+ |α2|2
E − k′2K

k2
,

}
in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) arises when Laplace’s equation holds in the three-dimensional
region exterior to a thin flat plate Ω with Dirichlet boundary conditions on both sides of Ω. There are
analogous (hypersingular) integral equations when a Neumann boundary condition is imposed. Explicit
formulas for σ in terms of f are known when Ω is circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have
a long history. The author’s 1986 paper [5] gives references for Neumann problems, in the context of crack
problems. For Dirichlet problems, see [2, 3, 4]. Similar expansion methods have been used recently for the
problem of internal wave generation in a continuously stratified fluid by an oscillating elliptical plate [11].
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Addendum: corrections to Example 5.1

The formula for f0(ρ), (19), is correct but other Fourier components of f(x) are also non-zero, in general.
Thus, it is easy to see that f2m+1 and f̃n are all zero, leaving

f(x) = f0(ρ) + 2

∞∑
m=1

f2m(ρ) cos 2mφ

with f2m given by (9),

f2m(ρ) =
bs0

0

2π
Ic0,2m(k)

∫ ∞
0

λ−ν−1J2m(λρ)Jν+1(λ) dλ, 0 ≤ ρ < 1. (25)

From [7, eqn 10.22.56], the integral in (25) evaluates to

ρ2mΓ(m+ 1
2 )

2ν+1(2m)! Γ(ν −m+ 3
2 )
F (m+ 1

2 , m− ν −
1
2 ; 2m+ 1; ρ2) = Iνm(ρ), (26)

say. This gives the stated result when m = 0.

When ν = − 1
2 , I−1/2

m (ρ) = 0 for m = 1, 2, 3, . . . (because of the Γ function in the denominator). Then,
f(x) = f0(ρ) = 1

2bK(k), a constant, in accord with Galin’s theorem.
When ν = 0, I0

0 (ρ) = (2/π)E(ρ) for 0 ≤ ρ < 1, using [7, eqn 19.5.2]. For m ≥ 1, I0
m(ρ) is given by (26)

but the hypergeometric function does not seem to simplify. However, we find that

lim
ρ→1−

I0
m(ρ) = (2/π)(−1)m/(1− 4m2),

implying that f(x) is bounded around the edge of Ω. Having constructed f is this way, the last three
sentences of Example 5.1 remain valid.
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