Explicit energy calculation for a charged elliptical plate
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Abstract

Potential problems for thin elliptical plates are solved exactly with emphasis on computation of the electro-
static energy. Expansions in terms of Jacobi polynomials are used.
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1. Introduction

Let € denote a thin flat plate lying in the plane z = 0, where Ozyz is a system of Cartesian coordinates.
The charge distribution on the plate is o(x), where & = (x,y). The potential on the plate is

Fa) = /Mdm, z €. (1)

T dr Jo |z — 2|

The electrostatic energy, I, is given by

I:/Qf(a:’)a(w’)dw’:;T/Q/Qdedw’,

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [1] showed how to
calculate I when € is an ellipse and o(z,y) is a linear function of = and y. We generalize their result: we
allow arbitrary polynomials in x and y, and we incorporate a weight function to represent singular behaviour
near the edge of the plate.

2. An elliptical plate
When  is elliptical, it is convenient to introduce coordinates p and ¢ so that
xr=apcos¢p, y=bpsing, 0<b<a. (2)

Then, Q is defined by Q = {(z,y,2) : 0< p <1, -7 < ¢ <7, z = 0}. Thus, p = 1 gives the edge of the
plate Q.

Equation (1) can be regarded as an integral equation for o when f is given [2, 3, 4]. Alternatively, (1)
can be regarded as a formula for f when o is given; this is the view adopted in [1].

When f is given, the function o is infinite at p = 1, in general. In fact, there is a general result, known
as Galin’s theorem, asserting that if f(z,y) is a polynomial, then o is a polynomial of the same degree
multiplied by (1 — p?)~'/2. In particular, if f is a constant, then ¢ is a constant multiple of (1 — p?)~1/2.
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3. Fourier transforms

We start with a standard Fourier integral representation,

1 L= [ - , /
M—%/M/MIEI Pexp {i€ - (z — ')} d¢, (3)
where & = (£, 7). Henceforth, we write [ when the integration limits are as in (3). Thus
fe) = o= [ [ 167 0@ exp (-ig o) e (1
and
_1 -1 2
1= [[ 18 wer e o)
where
Ue) = % /Q o () exp (i€ - z) da. (6)

For an elliptical plate, we write the Fourier-transform variable £ as
&= (M a)cosyp and n = (\/b)sin.
Then, using (2), & - & = Apcos (¢ — ¢). Hence,

exp (i€ - x) = Z en 1" Jn(Ap) cosn(d — ),
n=0

where J,, is a Bessel function, ¢g = 1 and ¢, = 2 for n > 1.
In order to evaluate U(&), defined by (6), we suppose that o has a Fourier expansion,

o(x) = Z om(p) cosme + Z Tm(p) sinme. (7)
m=0

m=1

Then, using dx = abpdpd¢ and defining

1
Snlgn; A = /0 Gn(p)In(Ap) pdp, (8)

we obtain - -
U(&) =ab Z i"Splon; Al cosny + ab Z i"Sp[0n; Al sinn.
n=0 n=1

We have d¢ = (ab)~*AdAdep and |€] = (\/b)(1—k? cos? p)Y/? where k* = 1—(b/a)?; k is the eccentricity
of the ellipse.
From (4), we obtain

f@) = folp) +2 3 {Falp) cosno + fu(p) sinng |

where
Fulp) = 257 1o h) | 300 Suloms ax, 9)
2T = 0
Fa0) = o 3 13lh) [ ul00) Sl N (10)
2T = 0
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T cos m cosni

/1 —k2cos?vy
sin map sin ny

1—k2cos?vy

e (k) = i™(—i)" (11)

T

Ifn,n (k) = lm(il)n

(12)

and we have noticed that |£| is an even function of 4. The integrals I, and IZ, can be reduced to

combinations of complete elliptic integrals, K (k) and E(k). They are zero unless m and n are both even or
both odd. (See [5, p. 276] for a discussion of similar integrals.) Explicit formulas for a few of these integrals

will be given later.
/ / )2 _ dydx
" 2 - V1 —k2cos2ep

For the energy, I, (5) gives
= ab? Z Z / [T A Snlom; Al dA

m=0n=0

+ab2 / SnlGm; N SnlFn; A] dA. (13)

mlnl

4. Polynomial expansions

To make further progress, we must be able to evaluate S, [gn; A], defined by (8). We do this by expanding
gn(p) using the functions

(n’V) _n 2\v (’ﬂ’V) 2
G (p) =p" (1= p) P (1= 2p%),
where Pj("’y) is a Jacobi polynomial. The parameter v controls the behaviour near the edge of the ellipse,

p = 1. Thus, when v = 0, Gg-n"o)(p) is a polynomial; this covers the case discussed in [1]. Setting v = —1
gives appropriate expansion functions when the goal is to solve (1) for o. We note that Boyd [6, §18.5.1] has

advocated using the polynomials G§"’0)(r) as radial basis functions in spectral methods for problems posed
on a disc, 0 < r < 1.

The functions G;n”') are orthogonal. To see this, note that Jacobi polynomials satisfy
1
/,10 —2)*(L+2)° PP (@) P () de = hi(a, B)55,

where h; is known and §;; is the Kronecker delta; see [7, §18.3]. Hence, the substitution z = 1 — 2p? gives

n, u n, l/ d —n—v—
/ G ( (P) ﬁ =2 th(n, l/)(sij. (14)

Next, we use Tranter’s integral [8, 9] to evaluate S, [G;n’u); Al:

v

1
/0 Jn(Ap)G§n7y)(P) pdp = WF(V + 5+ D J2jtntv+1(A).

Thus, if we write

j Sn n,v
on(p) = Z m G( )(P)a (15)
j=
where s are coefficients, we find that
sh
Splon; A] = /\V{i-l J2jantv+1(A). (16)
§j=0
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We also expand &, (p) as (15) but with coefficients 57'.

If we substitute (16) in (9), we encounter Weber—Schatheitlin integrals; these can be evaluated. We give
a simple example later.

If we substitute (16) in (13), we encounter integrals of the type

RS ANEEAENER (1)
0

where = v+ 1, and p and ¢ are non-negative integers. The integral (17) is known as the critical case of
the Weber—Schafheitlin integral; its value is [7, eqn 10.22.57]

L(ilp+q+1])T(2u)
20T(i2u+p—q+ 1) TE20+qg—p+ )T (A +p+q+1])

(18)

5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter v but, for simplicity,
we ignore any dependence on the angle ¢. In the second example, we compare with some results of Roy and
Sabina [2] for ¥ = —1. In the third example, we assume that o(z,y) is a general quadratic function of x
and y (so that v = 0); this extends the calculations in [1], where o was taken as a linear function.

5.1. Example: dependence on v

For a very simple example, suppose that o(z) = (1 — p?)” for some v > —1. Thus, as Po(n’y) =1, (15)
gives 50 = 2"T'(v+1). All other coefficients s7 and 57 are zero. Then, from (16), Soloo; \] = sgA™" 1T, 11(N).
Hence

bs) .. R
£(@) = folp) = 52T(0) [ XTIV dA 0<p <L (19)
0
From (11), we obtain
/2 dx
=2 T =2k, (20)
0

where A = (1 — k?sin® 2)'/2. From [7, eqn 10.22.56], the integral in (19) evaluates to

LF(A —v—1:1; p?)
2V+1I“(V_|_%) 2 2 L P
where F' is the Gauss hypergeometric function. Hence

fle) = 3o DR, - g1, 0<p<

When v = —1, F(1,0;1;p%) =1 and f(z) = $bK(k), a constant, in accord with Galin’s theorem.

When v = 0, we obtain f(z) = (2b/7?)K (k)E(p) for 0 < p < 1, using [7, eqn 19.5.2]. Thus, for this
particular f, the solution of the integral equation (1) is ¢ = 1. Although this solution is bounded, we see
that adding a small constant to f adds a constant multiple of (1 — p?)~'/2 to o. In other words, the integral
equation (1) has bounded solutions for some f, but these solutions are not typical: singular behaviour

around the edge of €2 should be expected.

IThere are errors in the published version of this Example; see Addendum



5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider o(x) = (1 — p?)~'/2g(z,y) when g(z,y) is a quadratic inz and y. As a
particular example, let us take g(z,y) = 4wz = dmapcos¢. Thus, n =1, v = —3 and j =0in (15), giving
sb = 4may/7/2; all other coefficients s? are zero. Then, from (16), S1[o1; A] = 50)\ 1/275/5(\). Hence

1 e’}
(@) = 2A(p) cos6 = I By cosd [ ) IyaN) Sz 0<p <. (21)

It is shown in section 5.3 that I, (k) = 2(K — E)/k*. From [7, eqn 10.22.56], the integral in (21) evaluates
to 2p\/m/2. Hence f(x) = nbzIf;, in agreement with [2, eqn (14b)].

5.8. Example: quadratic o
Suppose that

o(x) = ag + a1 (z/a) + as(y/b) + 2a3(x/a)® + 2a4(xy) /(ab) + 2a5(y/b)?
= {ao + p* (a3 + a5)} + arpcos ¢ + agpsin g + (a3 — as)p? cos 2¢ + asp? sin 29,
with constants «;; Laurens and Tordeux [1] have a3 = ay = a5 = 0. Then (7) gives
a0(p) = ao + (a3 + a5)p?, (22)

o1 =aip, 51 = azp, 03 = (a3 — as)p? and &3 = ayp?. All other terms in (7) are absent.

R |

Next, we use =1 and v = 0. These give s5 = ay, 5(1) = Qo, 8(2) = a3 — as and s0 = ay. For s , we

use P(0 O)( ) = Pi(z) = z, giving
oo(p )—50G00)+ OG(OO =50+ s(1 —2p?).

Comparison with (22) gives g = s + s§ and a3 + a5 = —2sY; these determine s} and s. Apart from the
six mentioned, all other coefficients s} and §} are zero.
Then, from (16), we obtain

ASoloo; Al = 5011 (A) + s7J5(N),
ASi[o1; A = spJo(N),  AS1[61;A] = 85J2(N),
ASa[o9; ] = s2J3(N),  AS2[Fa; A = 52J3(N).
We use these to compute the energy, I, given by (13). We will need the integrals (see (18))

<1
Tpq :/0 ﬁ']p+1(/\)Jq+1(/\) dA

_ M +a+1) o
AT(3B+p—d)TEB+a—p)T(3B+p+4q)

Thus

o0

I C o C
ﬁzzoo/o \So[ao;)\]fd)\—i—lll/o 1S A2 dA
+1§2/ |Sg[02;)\]|2d)\+2152Re/ Solo0; A Sa[o2; A dA
0 0

- o
+I‘f1/0 |31[51;A]|2dA+152/0 185525 Al dA
*100{130’ j00+2Re(sosl>J02+|sl| J22}+I11|so| Ju1

+ 15 |S§| J22 + 215, Re (é’g%fm + 89%722)

I3 [385]7 Tin + I35 |82]7 T (24)
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From (23), we obtain

4 4 4 4
joofga .711—5, ‘722—%, joz—m
For I¢,, and I3, , we have I§, = 2K (k) (see (20)), IS, + L5, = IS,
/2 cos 2z 2 4
I I8 =15 = 2/0 A do= ﬁ(kQ - 2)K (k) + ﬁE(k),

/2 cosdx 32k 16
IS, — I3, =2 de = ——K+2K + — (k> = 2)E
22 — 129 /0 TN + +3k4( )E,

where k' =1 — k% = (b/a)?. Thus

It = 2K - B)/k?, I} =2(B - K*K)/k?,
IS, = 2{(3k* + 8K'*)K + 4(k> — 2) E}/(3kY),
I3, = 8{(2 — k)E — 2k° K}/ (3k™).

One can check that these all have the correct limiting values as k£ — 0.

This completes the computation of all the quantities required in (24). In the special case considered by

Laurens and Tordeux [1], we have s} = ag, s§ = a1, §} = a2 and s{ = s2 = 32 = 0, whence

I/(ab®) = |aol*I5oToo + lea|* 1T Jix + |l * 15 Jia
L E—k*K

8 K-F
— 1o 4 5laolPK + o S o+ e S

157

in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) arises when Laplace’s equation holds in the three-dimensional

region exterior to a thin flat plate 2 with Dirichlet boundary conditions on both sides of €). There are
analogous (hypersingular) integral equations when a Neumann boundary condition is imposed. Explicit
formulas for o in terms of f are known when € is circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have

a long history. The author’s 1986 paper [5] gives references for Neumann problems, in the context of crack
problems. For Dirichlet problems, see [2, 3, 4]. Similar expansion methods have been used recently for the
problem of internal wave generation in a continuously stratified fluid by an oscillating elliptical plate [11].
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Addendum: corrections to Example 5.1

The formula for fo(p), (19), is correct but other Fourier components of f(x) are also non-zero, in general.
Thus, it is easy to see that fo,,+1 and f,, are all zero, leaving

f@) = folp) +2 S fam(p) cos2me

with fa,, given by (9),

bs

0 e’}
Fon(0) = 520 ) [ A Ol (NN, 0 p< L (25)
0

From [7, eqn 10.22.56], the integral in (25) evaluates to

pPL(m + 5)
271 2m)I T (v —m + 3)

Fm+ 4, m—v—3%;2m+1; p*) =T} (p), (26)

say. This gives the stated result when m = 0.

When v = f%, IT?Ll/Z(p) =0 for m=1,2,3,... (because of the I' function in the denominator). Then,
f(x) = fo(p) = 2bK(k), a constant, in accord with Galin’s theorem.

When v =0, Z{(p) = (2/m)E(p) for 0 < p < 1, using [7, eqn 19.5.2]. For m > 1, Z2 (p) is given by (26)
but the hypergeometric function does not seem to simplify. However, we find that

lim 77, (p) = (2/m)(=1)" /(1 — 4m?),

p—1—

implying that f(x) is bounded around the edge of Q. Having constructed f is this way, the last three
sentences of Example 5.1 remain valid.
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