Explicit energy calculation for a charged elliptical plate

P. A. Martin
Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401-1887, USA

Abstract

Potential problems for thin elliptical plates are solved exactly with emphasis on computation of the electrostatic energy. Expansions in terms of Jacobi polynomials are used.

Keywords: Charged elliptical plate, Jacobi polynomials

1. Introduction

Let Ω denote a thin flat plate lying in the plane $z=0$, where $O x y z$ is a system of Cartesian coordinates. The charge distribution on the plate is $\sigma(\boldsymbol{x})$, where $\boldsymbol{x}=(x, y)$. The potential on the plate is

$$
\begin{equation*}
f\left(\boldsymbol{x}^{\prime}\right)=\frac{1}{4 \pi} \int_{\Omega} \frac{\sigma(\boldsymbol{x})}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{x}^{\prime} \in \Omega \tag{1}
\end{equation*}
$$

The electrostatic energy, I, is given by

$$
I=\int_{\Omega} f\left(\boldsymbol{x}^{\prime}\right) \overline{\sigma\left(\boldsymbol{x}^{\prime}\right)} \mathrm{d} \boldsymbol{x}^{\prime}=\frac{1}{4 \pi} \int_{\Omega} \int_{\Omega} \frac{\overline{\sigma\left(\boldsymbol{x}^{\prime}\right)} \sigma(\boldsymbol{x})}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{x}^{\prime}
$$

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [1] showed how to calculate I when Ω is an ellipse and $\sigma(x, y)$ is a linear function of x and y. We generalize their result: we allow arbitrary polynomials in x and y, and we incorporate a weight function to represent singular behaviour near the edge of the plate.

2. An elliptical plate

When Ω is elliptical, it is convenient to introduce coordinates ρ and ϕ so that

$$
\begin{equation*}
x=a \rho \cos \phi, \quad y=b \rho \sin \phi, \quad 0<b \leq a . \tag{2}
\end{equation*}
$$

Then, Ω is defined by $\Omega=\{(x, y, z): 0 \leq \rho<1,-\pi \leq \phi<\pi, z=0\}$. Thus, $\rho=1$ gives the edge of the plate Ω.

Equation (1) can be regarded as an integral equation for σ when f is given [2, 3, 4]. Alternatively, (1) can be regarded as a formula for f when σ is given; this is the view adopted in [1].

When f is given, the function σ is infinite at $\rho=1$, in general. In fact, there is a general result, known as Galin's theorem, asserting that if $f(x, y)$ is a polynomial, then σ is a polynomial of the same degree multiplied by $\left(1-\rho^{2}\right)^{-1 / 2}$. In particular, if f is a constant, then σ is a constant multiple of $\left(1-\rho^{2}\right)^{-1 / 2}$.

[^0]
3. Fourier transforms

We start with a standard Fourier integral representation,

$$
\begin{equation*}
\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\boldsymbol{\xi}|^{-1} \exp \left\{\mathrm{i} \boldsymbol{\xi} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right\} \mathrm{d} \boldsymbol{\xi}, \tag{3}
\end{equation*}
$$

where $\boldsymbol{\xi}=(\xi, \eta)$. Henceforth, we write \iint when the integration limits are as in (3). Thus

$$
\begin{equation*}
f\left(\boldsymbol{x}^{\prime}\right)=\frac{1}{4 \pi} \iint|\boldsymbol{\xi}|^{-1} U(\boldsymbol{\xi}) \exp \left(-\mathrm{i} \boldsymbol{\xi} \cdot \boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{\xi} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\frac{1}{2} \iint|\boldsymbol{\xi}|^{-1}|U(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
U(\boldsymbol{\xi})=\frac{1}{2 \pi} \int_{\Omega} \sigma(\boldsymbol{x}) \exp (\mathrm{i} \boldsymbol{\xi} \cdot \boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{6}
\end{equation*}
$$

For an elliptical plate, we write the Fourier-transform variable $\boldsymbol{\xi}$ as

$$
\xi=(\lambda / a) \cos \psi \quad \text { and } \quad \eta=(\lambda / b) \sin \psi .
$$

Then, using (2), $\boldsymbol{\xi} \cdot \boldsymbol{x}=\lambda \rho \cos (\phi-\psi)$. Hence,

$$
\exp (\mathrm{i} \boldsymbol{\xi} \cdot \boldsymbol{x})=\sum_{n=0}^{\infty} \epsilon_{n} \mathrm{i}^{n} J_{n}(\lambda \rho) \cos n(\phi-\psi),
$$

where J_{n} is a Bessel function, $\epsilon_{0}=1$ and $\epsilon_{n}=2$ for $n \geq 1$.
In order to evaluate $U(\boldsymbol{\xi})$, defined by (6), we suppose that σ has a Fourier expansion,

$$
\begin{equation*}
\sigma(\boldsymbol{x})=\sum_{m=0}^{\infty} \sigma_{m}(\rho) \cos m \phi+\sum_{m=1}^{\infty} \tilde{\sigma}_{m}(\rho) \sin m \phi \tag{7}
\end{equation*}
$$

Then, using $\mathrm{d} \boldsymbol{x}=a b \rho \mathrm{~d} \rho \mathrm{~d} \phi$ and defining

$$
\begin{equation*}
\mathcal{S}_{n}\left[g_{n} ; \lambda\right]=\int_{0}^{1} g_{n}(\rho) J_{n}(\lambda \rho) \rho \mathrm{d} \rho, \tag{8}
\end{equation*}
$$

we obtain

$$
U(\boldsymbol{\xi})=a b \sum_{n=0}^{\infty} \mathrm{i}^{n} \mathcal{S}_{n}\left[\sigma_{n} ; \lambda\right] \cos n \psi+a b \sum_{n=1}^{\infty} \mathrm{i}^{n} \mathcal{S}_{n}\left[\tilde{\sigma}_{n} ; \lambda\right] \sin n \psi .
$$

We have $\mathrm{d} \boldsymbol{\xi}=(a b)^{-1} \lambda \mathrm{~d} \lambda \mathrm{~d} \psi$ and $|\boldsymbol{\xi}|=(\lambda / b)\left(1-k^{2} \cos ^{2} \psi\right)^{1 / 2}$, where $k^{2}=1-(b / a)^{2} ; k$ is the eccentricity of the ellipse.

From (4), we obtain

$$
f(\boldsymbol{x})=f_{0}(\rho)+2 \sum_{n=1}^{\infty}\left\{f_{n}(\rho) \cos n \phi+\tilde{f}_{n}(\rho) \sin n \phi\right\}
$$

where

$$
\begin{align*}
& f_{n}(\rho)=\frac{b}{2 \pi} \sum_{m=0}^{\infty} I_{m n}^{c}(k) \int_{0}^{\infty} J_{n}(\lambda \rho) \mathcal{S}_{m}\left[\sigma_{m} ; \lambda\right] \mathrm{d} \lambda, \tag{9}\\
& \tilde{f}_{n}(\rho)=\frac{b}{2 \pi} \sum_{m=1}^{\infty} I_{m n}^{s}(k) \int_{0}^{\infty} J_{n}(\lambda \rho) \mathcal{S}_{m}\left[\tilde{\sigma}_{m} ; \lambda\right] \mathrm{d} \lambda \tag{10}
\end{align*}
$$

$$
\begin{align*}
& I_{m n}^{c}(k)=\mathrm{i}^{m}(-\mathrm{i})^{n} \int_{0}^{\pi} \frac{\cos m \psi \cos n \psi}{\sqrt{1-k^{2} \cos ^{2} \psi}} \mathrm{~d} \psi, \tag{11}\\
& I_{m n}^{s}(k)=\mathrm{i}^{m}(-\mathrm{i})^{n} \int_{0}^{\pi} \frac{\sin m \psi \sin n \psi}{\sqrt{1-k^{2} \cos ^{2} \psi}} \mathrm{~d} \psi \tag{12}
\end{align*}
$$

and we have noticed that $|\boldsymbol{\xi}|$ is an even function of ψ. The integrals $I_{m n}^{c}$ and $I_{m n}^{s}$ can be reduced to combinations of complete elliptic integrals, $K(k)$ and $E(k)$. They are zero unless m and n are both even or both odd. (See [5, p. 276] for a discussion of similar integrals.) Explicit formulas for a few of these integrals will be given later.

For the energy, I, (5) gives

$$
\begin{align*}
I= & \frac{1}{2 a} \int_{0}^{\infty} \int_{-\pi}^{\pi}|U(\boldsymbol{\xi})|^{2} \frac{\mathrm{~d} \psi \mathrm{~d} \lambda}{\sqrt{1-k^{2} \cos ^{2} \psi}} \\
= & a b^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} I_{m n}^{c}(k) \int_{0}^{\infty} \mathcal{S}_{m}\left[\sigma_{m} ; \lambda\right] \overline{\mathcal{S}_{n}\left[\sigma_{n} ; \lambda\right]} \mathrm{d} \lambda \\
& +a b^{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} I_{m n}^{s}(k) \int_{0}^{\infty} \mathcal{S}_{m}\left[\tilde{\sigma}_{m} ; \lambda\right] \overline{\mathcal{S}_{n}\left[\tilde{\sigma}_{n} ; \lambda\right]} \mathrm{d} \lambda . \tag{13}
\end{align*}
$$

4. Polynomial expansions

To make further progress, we must be able to evaluate $\mathcal{S}_{n}\left[g_{n} ; \lambda\right]$, defined by (8). We do this by expanding $g_{n}(\rho)$ using the functions

$$
G_{j}^{(n, \nu)}(\rho)=\rho^{n}\left(1-\rho^{2}\right)^{\nu} P_{j}^{(n, \nu)}\left(1-2 \rho^{2}\right)
$$

where $P_{j}^{(n, \nu)}$ is a Jacobi polynomial. The parameter ν controls the behaviour near the edge of the ellipse, $\rho=1$. Thus, when $\nu=0, G_{j}^{(n, 0)}(\rho)$ is a polynomial; this covers the case discussed in [1]. Setting $\nu=-\frac{1}{2}$ gives appropriate expansion functions when the goal is to solve (1) for σ. We note that Boyd $[6, \S 18.5 .1]$ has advocated using the polynomials $G_{j}^{(n, 0)}(r)$ as radial basis functions in spectral methods for problems posed on a disc, $0 \leq r<1$.

The functions $G_{j}^{(n, \nu)}$ are orthogonal. To see this, note that Jacobi polynomials satisfy

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{i}^{(\alpha, \beta)}(x) P_{j}^{(\alpha, \beta)}(x) \mathrm{d} x=h_{i}(\alpha, \beta) \delta_{i j},
$$

where h_{i} is known and $\delta_{i j}$ is the Kronecker delta; see [7, $\left.\S 18.3\right]$. Hence, the substitution $x=1-2 \rho^{2}$ gives

$$
\begin{equation*}
\int_{0}^{1} G_{i}^{(n, \nu)}(\rho) G_{j}^{(n, \nu)}(\rho) \frac{\rho \mathrm{d} \rho}{\left(1-\rho^{2}\right)^{\nu}}=2^{-n-\nu-2} h_{i}(n, \nu) \delta_{i j} \tag{14}
\end{equation*}
$$

Next, we use Tranter's integral $[8,9]$ to evaluate $\mathcal{S}_{n}\left[G_{j}^{(n, \nu)} ; \lambda\right]$:

$$
\int_{0}^{1} J_{n}(\lambda \rho) G_{j}^{(n, \nu)}(\rho) \rho \mathrm{d} \rho=\frac{2^{\nu}}{\lambda^{\nu+1} j!} \Gamma(\nu+j+1) J_{2 j+n+\nu+1}(\lambda) .
$$

Thus, if we write

$$
\begin{equation*}
\sigma_{n}(\rho)=\sum_{j=0} \frac{j!s_{j}^{n}}{2^{\nu} \Gamma(\nu+j+1)} G_{j}^{(n, \nu)}(\rho) \tag{15}
\end{equation*}
$$

where s_{j}^{n} are coefficients, we find that

$$
\begin{equation*}
\mathcal{S}_{n}\left[\sigma_{n} ; \lambda\right]=\sum_{j=0} \frac{s_{j}^{n}}{\lambda^{\nu+1}} J_{2 j+n+\nu+1}(\lambda) . \tag{16}
\end{equation*}
$$

We also expand $\tilde{\sigma}_{n}(\rho)$ as (15) but with coefficients \tilde{s}_{j}^{n}.
If we substitute (16) in (9), we encounter Weber-Schafheitlin integrals; these can be evaluated. We give a simple example later.

If we substitute (16) in (13), we encounter integrals of the type

$$
\begin{equation*}
\int_{0}^{\infty} \lambda^{-2 \mu} J_{p+\mu}(\lambda) J_{q+\mu}(\lambda) \mathrm{d} \lambda \tag{17}
\end{equation*}
$$

where $\mu=\nu+1$, and p and q are non-negative integers. The integral (17) is known as the critical case of the Weber-Schafheitlin integral; its value is [7, eqn 10.22.57]

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1}{2}[p+q+1]\right) \Gamma(2 \mu)}{2^{2 \mu} \Gamma\left(\frac{1}{2}[2 \mu+p-q+1]\right) \Gamma\left(\frac{1}{2}[2 \mu+q-p+1]\right) \Gamma\left(\frac{1}{2}[4 \mu+p+q+1]\right)} . \tag{18}
\end{equation*}
$$

5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter ν but, for simplicity, we ignore any dependence on the angle ϕ. In the second example, we compare with some results of Roy and Sabina [2] for $\nu=-\frac{1}{2}$. In the third example, we assume that $\sigma(x, y)$ is a general quadratic function of x and y (so that $\nu=0$); this extends the calculations in [1], where σ was taken as a linear function.

5.1. Example: dependence on ν^{1}

For a very simple example, suppose that $\sigma(\boldsymbol{x})=\left(1-\rho^{2}\right)^{\nu}$ for some $\nu>-1$. Thus, as $P_{0}^{(n, \nu)}=1$, (15) gives $s_{0}^{0}=2^{\nu} \Gamma(\nu+1)$. All other coefficients s_{j}^{n} and \tilde{s}_{j}^{n} are zero. Then, from (16), $\mathcal{S}_{0}\left[\sigma_{0} ; \lambda\right]=s_{0}^{0} \lambda^{-\nu-1} J_{\nu+1}(\lambda)$. Hence

$$
\begin{equation*}
f(\boldsymbol{x})=f_{0}(\rho)=\frac{b s_{0}^{0}}{2 \pi} I_{00}^{c}(k) \int_{0}^{\infty} \lambda^{-\nu-1} J_{0}(\lambda \rho) J_{\nu+1}(\lambda) \mathrm{d} \lambda, \quad 0 \leq \rho<1 \tag{19}
\end{equation*}
$$

From (11), we obtain

$$
\begin{equation*}
I_{00}^{c}=2 \int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\Delta}=2 K(k) \tag{20}
\end{equation*}
$$

where $\Delta=\left(1-k^{2} \sin ^{2} x\right)^{1 / 2}$. From [7, eqn 10.22.56], the integral in (19) evaluates to

$$
\frac{\sqrt{\pi}}{2^{\nu+1} \Gamma\left(\nu+\frac{3}{2}\right)} F\left(\frac{1}{2},-\nu-\frac{1}{2} ; 1 ; \rho^{2}\right),
$$

where F is the Gauss hypergeometric function. Hence

$$
f(\boldsymbol{x})=\frac{b}{2 \pi} K(k) \frac{\sqrt{\pi} \Gamma(\nu+1)}{\Gamma\left(\nu+\frac{3}{2}\right)} F\left(\frac{1}{2},-\nu-\frac{1}{2} ; 1 ; \rho^{2}\right), \quad 0 \leq \rho<1 .
$$

When $\nu=-\frac{1}{2}, F\left(\frac{1}{2}, 0 ; 1 ; \rho^{2}\right)=1$ and $f(\boldsymbol{x})=\frac{1}{2} b K(k)$, a constant, in accord with Galin's theorem.
When $\nu=0$, we obtain $f(\boldsymbol{x})=\left(2 b / \pi^{2}\right) K(k) E(\rho)$ for $0 \leq \rho<1$, using [7, eqn 19.5.2]. Thus, for this particular f, the solution of the integral equation (1) is $\sigma=1$. Although this solution is bounded, we see that adding a small constant to f adds a constant multiple of $\left(1-\rho^{2}\right)^{-1 / 2}$ to σ. In other words, the integral equation (1) has bounded solutions for some f, but these solutions are not typical: singular behaviour around the edge of Ω should be expected.

[^1]
5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider $\sigma(\boldsymbol{x})=\left(1-\rho^{2}\right)^{-1 / 2} g(x, y)$ when $g(x, y)$ is a quadratic in x and y. As a particular example, let us take $g(x, y)=4 \pi x=4 \pi a \rho \cos \phi$. Thus, $n=1, \nu=-\frac{1}{2}$ and $j=0$ in (15), giving $s_{0}^{1}=4 \pi a \sqrt{\pi / 2}$; all other coefficients s_{j}^{n} are zero. Then, from (16), $\mathcal{S}_{1}\left[\sigma_{1} ; \lambda\right]=s_{0}^{1} \lambda^{-1 / 2} J_{3 / 2}(\lambda)$. Hence

$$
\begin{equation*}
f(\boldsymbol{x})=2 f_{1}(\rho) \cos \phi=\frac{b s_{0}^{1}}{\pi} I_{11}^{c}(k) \cos \phi \int_{0}^{\infty} J_{1}(\lambda \rho) J_{3 / 2}(\lambda) \frac{\mathrm{d} \lambda}{\sqrt{\lambda}}, \quad 0 \leq \rho<1 \tag{21}
\end{equation*}
$$

It is shown in section 5.3 that $I_{11}^{c}(k)=2(K-E) / k^{2}$. From [7, eqn 10.22.56], the integral in (21) evaluates to $\frac{1}{2} \rho \sqrt{\pi / 2}$. Hence $f(\boldsymbol{x})=\pi b x I_{11}^{c}$, in agreement with [2, eqn (14b)].

5.3. Example: quadratic σ

Suppose that

$$
\begin{aligned}
\sigma(\boldsymbol{x}) & =\alpha_{0}+\alpha_{1}(x / a)+\alpha_{2}(y / b)+2 \alpha_{3}(x / a)^{2}+2 \alpha_{4}(x y) /(a b)+2 \alpha_{5}(y / b)^{2} \\
& =\left\{\alpha_{0}+\rho^{2}\left(\alpha_{3}+\alpha_{5}\right)\right\}+\alpha_{1} \rho \cos \phi+\alpha_{2} \rho \sin \phi+\left(\alpha_{3}-\alpha_{5}\right) \rho^{2} \cos 2 \phi+\alpha_{4} \rho^{2} \sin 2 \phi
\end{aligned}
$$

with constants α_{j}; Laurens and Tordeux [1] have $\alpha_{3}=\alpha_{4}=\alpha_{5}=0$. Then (7) gives

$$
\begin{equation*}
\sigma_{0}(\rho)=\alpha_{0}+\left(\alpha_{3}+\alpha_{5}\right) \rho^{2} \tag{22}
\end{equation*}
$$

$\sigma_{1}=\alpha_{1} \rho, \tilde{\sigma}_{1}=\alpha_{2} \rho, \sigma_{2}=\left(\alpha_{3}-\alpha_{5}\right) \rho^{2}$ and $\tilde{\sigma}_{2}=\alpha_{4} \rho^{2}$. All other terms in (7) are absent.
Next, we use $P_{0}^{(n, \nu)}=1$ and $\nu=0$. These give $s_{0}^{1}=\alpha_{1}, \tilde{s}_{0}^{1}=\alpha_{2}, s_{0}^{2}=\alpha_{3}-\alpha_{5}$ and $\tilde{s}_{0}^{2}=\alpha_{4}$. For s_{j}^{0}, we use $P_{1}^{(0,0)}(x)=P_{1}(x)=x$, giving

$$
\sigma_{0}(\rho)=s_{0}^{0} G_{0}^{(0,0)}+s_{1}^{0} G_{1}^{(0,0)}=s_{0}^{0}+s_{1}^{0}\left(1-2 \rho^{2}\right)
$$

Comparison with (22) gives $\alpha_{0}=s_{0}^{0}+s_{1}^{0}$ and $\alpha_{3}+\alpha_{5}=-2 s_{1}^{0}$; these determine s_{0}^{0} and s_{1}^{0}. Apart from the six mentioned, all other coefficients s_{j}^{n} and \tilde{s}_{j}^{n} are zero.

Then, from (16), we obtain

$$
\begin{aligned}
& \lambda \mathcal{S}_{0}\left[\sigma_{0} ; \lambda\right]=s_{0}^{0} J_{1}(\lambda)+s_{1}^{0} J_{3}(\lambda), \\
& \lambda \mathcal{S}_{1}\left[\sigma_{1} ; \lambda\right]=s_{0}^{1} J_{2}(\lambda), \quad \lambda \mathcal{S}_{1}\left[\tilde{\sigma}_{1} ; \lambda\right]=\tilde{s}_{0}^{1} J_{2}(\lambda), \\
& \lambda \mathcal{S}_{2}\left[\sigma_{2} ; \lambda\right]=s_{0}^{2} J_{3}(\lambda), \quad \lambda \mathcal{S}_{2}\left[\tilde{\sigma}_{2} ; \lambda\right]=\tilde{o}_{0}^{2} J_{3}(\lambda) .
\end{aligned}
$$

We use these to compute the energy, I, given by (13). We will need the integrals (see (18))

$$
\begin{align*}
\mathcal{J}_{p q} & =\int_{0}^{\infty} \frac{1}{\lambda^{2}} J_{p+1}(\lambda) J_{q+1}(\lambda) \mathrm{d} \lambda \\
& =\frac{\Gamma\left(\frac{1}{2}[p+q+1]\right)}{4 \Gamma\left(\frac{1}{2}[3+p-q]\right) \Gamma\left(\frac{1}{2}[3+q-p]\right) \Gamma\left(\frac{1}{2}[5+p+q]\right)} \tag{23}
\end{align*}
$$

Thus

$$
\begin{align*}
\frac{I}{a b^{2}}= & I_{00}^{c} \int_{0}^{\infty}\left|\mathcal{S}_{0}\left[\sigma_{0} ; \lambda\right]\right|^{2} \mathrm{~d} \lambda+I_{11}^{c} \int_{0}^{\infty}\left|\mathcal{S}_{1}\left[\sigma_{1} ; \lambda\right]\right|^{2} \mathrm{~d} \lambda \\
& +I_{22}^{c} \int_{0}^{\infty}\left|\mathcal{S}_{2}\left[\sigma_{2} ; \lambda\right]\right|^{2} \mathrm{~d} \lambda+2 I_{02}^{c} \operatorname{Re} \int_{0}^{\infty} \mathcal{S}_{0}\left[\sigma_{0} ; \lambda\right] \overline{\mathcal{S}_{2}\left[\sigma_{2} ; \lambda\right]} \mathrm{d} \lambda \\
& +I_{11}^{s} \int_{0}^{\infty}\left|\mathcal{S}_{1}\left[\tilde{\sigma}_{1} ; \lambda\right]\right|^{2} \mathrm{~d} \lambda+I_{22}^{s} \int_{0}^{\infty}\left|\mathcal{S}_{2}\left[\tilde{\sigma}_{2} ; \lambda\right]\right|^{2} \mathrm{~d} \lambda \\
= & I_{00}^{c}\left\{\left|s_{0}^{0}\right|^{2} \mathcal{J}_{00}+2 \operatorname{Re}\left(s_{0}^{0} \overline{s_{1}^{0}}\right) \mathcal{J}_{02}+\left|s_{1}^{0}\right|^{2} \mathcal{J}_{22}\right\}+I_{11}^{c}\left|s_{0}^{1}\right|^{2} \mathcal{J}_{11} \\
& +I_{22}^{c}\left|s_{0}^{2}\right|^{2} \mathcal{J}_{22}+2 I_{02}^{c} \operatorname{Re}\left(s_{0}^{0} \overline{s_{0}^{2}} \mathcal{J}_{02}+s_{1}^{0} \overline{s_{0}^{2}} \mathcal{J}_{22}\right) \\
& +I_{11}^{s}\left|\tilde{s}_{0}^{1}\right|^{2} \mathcal{J}_{11}+I_{22}^{s}\left|\tilde{s}_{0}^{2}\right|^{2} \mathcal{J}_{22} . \tag{24}
\end{align*}
$$

From (23), we obtain

$$
\mathcal{J}_{00}=\frac{4}{3 \pi}, \quad \mathcal{J}_{11}=\frac{4}{15 \pi}, \quad \mathcal{J}_{22}=\frac{4}{35 \pi}, \quad \mathcal{J}_{02}=\frac{4}{45 \pi} .
$$

For $I_{m n}^{c}$ and $I_{m n}^{s}$, we have $I_{00}^{c}=2 K(k)\left(\right.$ see (20)), $I_{m m}^{c}+I_{m m}^{s}=I_{00}^{c}$,

$$
\begin{aligned}
& I_{11}^{s}-I_{11}^{c}=I_{02}^{c}=2 \int_{0}^{\pi / 2} \frac{\cos 2 x}{\Delta} \mathrm{~d} x=\frac{2}{k^{2}}\left(k^{2}-2\right) K(k)+\frac{4}{k^{2}} E(k), \\
& I_{22}^{c}-I_{22}^{s}=2 \int_{0}^{\pi / 2} \frac{\cos 4 x}{\Delta} \mathrm{~d} x=\frac{32{k^{\prime}}^{2}}{3 k^{4}} K+2 K+\frac{16}{3 k^{4}}\left(k^{2}-2\right) E,
\end{aligned}
$$

where ${k^{\prime}}^{2}=1-k^{2}=(b / a)^{2}$. Thus

$$
\begin{aligned}
& I_{11}^{c}=2(K-E) / k^{2}, \quad I_{11}^{s}=2\left(E-{k^{\prime}}^{2} K\right) / k^{2} \\
& I_{22}^{c}=2\left\{\left(3 k^{4}+8{k^{\prime}}^{2}\right) K+4\left(k^{2}-2\right) E\right\} /\left(3 k^{4}\right) \\
& I_{22}^{s}=8\left\{\left(2-k^{2}\right) E-2{k^{2}}^{\prime 2} K\right\} /\left(3 k^{4}\right)
\end{aligned}
$$

One can check that these all have the correct limiting values as $k \rightarrow 0$.
This completes the computation of all the quantities required in (24). In the special case considered by Laurens and Tordeux [1], we have $s_{0}^{0}=\alpha_{0}, s_{0}^{1}=\alpha_{1}, \tilde{s}_{0}^{1}=\alpha_{2}$ and $s_{1}^{0}=s_{0}^{2}=\tilde{s}_{0}^{2}=0$, whence

$$
\begin{aligned}
I /\left(a b^{2}\right) & =\left|\alpha_{0}\right|^{2} I_{00}^{c} \mathcal{J}_{00}+\left|\alpha_{1}\right|^{2} I_{11}^{c} \mathcal{J}_{11}+\left|\alpha_{2}\right|^{2} I_{11}^{s} \mathcal{J}_{11} \\
& =\frac{8}{15 \pi}\left\{5\left|\alpha_{0}\right|^{2} K+\left|\alpha_{1}\right|^{2} \frac{K-E}{k^{2}}+\left|\alpha_{2}\right|^{2} \frac{E-k^{\prime 2} K}{k^{2}},\right\}
\end{aligned}
$$

in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) arises when Laplace's equation holds in the three-dimensional region exterior to a thin flat plate Ω with Dirichlet boundary conditions on both sides of Ω. There are analogous (hypersingular) integral equations when a Neumann boundary condition is imposed. Explicit formulas for σ in terms of f are known when Ω is circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have a long history. The author's 1986 paper [5] gives references for Neumann problems, in the context of crack problems. For Dirichlet problems, see [2, 3, 4]. Similar expansion methods have been used recently for the problem of internal wave generation in a continuously stratified fluid by an oscillating elliptical plate [11].

References

[1] S. Laurens, S. Tordeux, Explicit computation of the electrostatic energy for an elliptical charged disc, Appl. Math. Lett. 26 (2013) 301-305.
[2] A. Roy, F.J. Sabina, Low-frequency acoustic diffraction by a soft elliptic disk, J. Acoust. Soc. Amer. 73 (1983) $1494-1498$.
[3] A.K. Gautesen, F.J. Sabina, On the problem of the electrified elliptic disk, Quart. J. Mech. Appl. Math. 43 (1990) 363-372.
[4] J. Boersma, E. Danicki, On the solution of an integral equation arising in potential problems for circular and elliptic disks, SIAM J. Appl. Math. 53 (1993) 931-941.
[5] P.A. Martin, Orthogonal polynomial solutions for pressurized elliptical cracks, Quart. J. Mech. Appl. Math. 39 (1986) 269-287.
[6] J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover, New York, 2001.
[7] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.5 of 2012-10-01.
[8] C.J. Tranter, Integral Transforms in Mathematical Physics, 3rd edition, Methuen, London, 1966.
[9] S. Krenk, Some integral relations of Hankel transform type and applications to elasticity theory, Integral Eqns and Operator Theory 5 (1982) 548-561.
[10] P.A. Martin, Exact solution of some integral equations over a circular disc, J. Integral Eqns and Applications 18 (2006) 39-58.
[11] P.A. Martin, S.G. Llewellyn Smith, Generation of internal gravity waves by an oscillating horizontal elliptical plate, SIAM J. Appl. Math. 72 (2012) 725-739.

Addendum: corrections to Example 5.1

The formula for $f_{0}(\rho),(19)$, is correct but other Fourier components of $f(\boldsymbol{x})$ are also non-zero, in general. Thus, it is easy to see that $f_{2 m+1}$ and \tilde{f}_{n} are all zero, leaving

$$
f(\boldsymbol{x})=f_{0}(\rho)+2 \sum_{m=1}^{\infty} f_{2 m}(\rho) \cos 2 m \phi
$$

with $f_{2 m}$ given by (9),

$$
\begin{equation*}
f_{2 m}(\rho)=\frac{b s_{0}^{0}}{2 \pi} I_{0,2 m}^{c}(k) \int_{0}^{\infty} \lambda^{-\nu-1} J_{2 m}(\lambda \rho) J_{\nu+1}(\lambda) \mathrm{d} \lambda, \quad 0 \leq \rho<1 \tag{25}
\end{equation*}
$$

From [7, eqn 10.22.56], the integral in (25) evaluates to

$$
\begin{equation*}
\frac{\rho^{2 m} \Gamma\left(m+\frac{1}{2}\right)}{2^{\nu+1}(2 m)!\Gamma\left(\nu-m+\frac{3}{2}\right)} F\left(m+\frac{1}{2}, m-\nu-\frac{1}{2} ; 2 m+1 ; \rho^{2}\right)=\mathcal{I}_{m}^{\nu}(\rho), \tag{26}
\end{equation*}
$$

say. This gives the stated result when $m=0$.
When $\nu=-\frac{1}{2}, \mathcal{I}_{m}^{-1 / 2}(\rho)=0$ for $m=1,2,3, \ldots$ (because of the Γ function in the denominator). Then, $f(\boldsymbol{x})=f_{0}(\rho)=\frac{1}{2} b K(k)$, a constant, in accord with Galin's theorem.

When $\nu=0, \mathcal{I}_{0}^{0}(\rho)=(2 / \pi) E(\rho)$ for $0 \leq \rho<1$, using [7, eqn 19.5.2]. For $m \geq 1, \mathcal{I}_{m}^{0}(\rho)$ is given by (26) but the hypergeometric function does not seem to simplify. However, we find that

$$
\lim _{\rho \rightarrow 1-} \mathcal{I}_{m}^{0}(\rho)=(2 / \pi)(-1)^{m} /\left(1-4 m^{2}\right)
$$

implying that $f(\boldsymbol{x})$ is bounded around the edge of Ω. Having constructed f is this way, the last three sentences of Example 5.1 remain valid.

29 May 2013

[^0]: Email address: pamartin@mines.edu (P. A. Martin)

[^1]: ${ }^{1}$ There are errors in the published version of this Example; see Addendum

