INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 37, 1027-1038 (1994)

STIFFNESS MATRIX OF THE FOUR-NODE
QUADRILATERAL ELEMENT IN CLOSED FORM

D. V. GRIFFITHS

Department of Engineering, Colorado School of Mines, Golden, Colorado 80401, U.S.A.

SUMMARY

The stiffness matrix of a plane four-node quadrilateral finite element is given in closed form. When expressed
as a FORTRAN subroutine and compared with the classical method of forming the stiffness matrix using
Gaussian integration, the approach gives a CPU time speed-up of the order of 2-3 on a vector machine and
of the order of 4-5 on a scalar machine. The technique used to generate the terms of the stiffness matrix made
use of a computer algebra system which could clearly be extended to generate the matrices for other elements
types.

1. INTRODUCTION

Consider the plane four-node quadrilateral element shown in Figure 1. The stiffness of the
element is fully defined by the nodal co-ordinates (x,, y;), (X2, ¥2), (x3, ¥3), (X4, v4) and the elastic
properties E and v. The 8 x 8 stiffness matrix of the element is customarily obtained using
Gauss-Legendre quadrature with two integrating points in each of the two local co-ordinate
directions (see e.g. Reference 1). It is well known that this represents the minimum number
required to integrate the stiffness terms of this particular element exactly.

Analytical expressions for the fully integrated stiffness matrix of a rectangular four-node
element have been published by Hacker and Schreyer? and analytical integration formulae for
linear isoparametric elements by Babu and Pinder® and Rathod.* This paper describes how the
stiffness matrix of a general quadrilateral element can be expressed in closed form by expanding
and simplifying the four terms in the numerical integration summation. The computer algebra
system Maple® was used to help generate the expressions.

Computer Algebra Systems (CAS) have considerable potential in the area of finite element
software generation. In particular, Bettess and Bettess® and Barbier et al.” showed how the
computer algebra system REDUCE? could be used to generate shape functions automatically for
any finite element. The systems usually have the additional facility of being able to generate
output in the FORTRAN programming language; thus, complex algebraic expressions can be
coded without the usual risk of typographical errors.

The ability of CAS to simplify and factorize complex algebraic terms has limitations, however,
so some of the expressions produced by the CAS had to be further simplified by hand in order to
arrive at a form suitable for publication.

2. FORMULATION

For the present development, we assume that the stress conditions are those of two-dimensional
plane elasticity; hence, the stress/strain relationship is given by
¢ = De (1)

CCC 0029-5981/94/061027-12$9.00 Received 18 May 1992
© 1994 by John Wiley & Sons, Ltd. Revised 17 September 1993

1028 D. V. GRIFFITHS

Y
U‘ 11(-:‘53 Y3)
T (x: -Yz)
Elastic
X Properties
E,v
Uz
T WUa
(xl B A) —_— U:"
(x4ys)
Figure 1. General four-node quadrilateral element
where
6 = [0x 0, 151")
€= [Ex Ey ny]T (3)
For an isotropic material, the stress/strain D matrix is
E, E, 0
D = E2 E] O (4)
0 0 G

where the shear modulus is given by G = E/(2(1 + v)), with E and v denoting Young’s modulus
and Poisson’s ratio, respectively.
For plane stress,

E

E, = P E;=VvE, (5)
whereas for plane strain,
E(1—v) vE,
Ej=—— " E,=

AT ea—2) ¢ =9 ©)

The element stiffness relationship is given by
ku=1 (7

where the stiffness matrix k can be written as (see e.g. Reference 9)
k= j BTDBd(vol) (8)
-

and the strain/displacement matrix B is given by

[ON, N, aN; aN,
paden ¥ it S T i bbbl
0x 0 ox 0x 0 0x 0
B= O — 0 —/ 0 — 0 —/
ay oy ay oy ©)
5N1 aNl (3N2 ﬁNz % 6N3 6N4 6N4
L dy dx dy dx dy ox dy x|

FOUR-NODE QUADRILATERAL ELEMENT 1029

It may be noted that this expression for B assumes that the x- and y-nodal displacements are
numbered alternately, thus, with reference to Figure 1, the nodal displacement and force vectors

are given by =
u=[u; uy Uz Uy Us Ug Uy Ug]

f= I:f}. fz fa f4 fs fs f'.' fs]T

The N’s are the shape functions in local co-ordinates, which for this four-node quadrilateral
element are given as
Ni=i(1-8(1-1n)

N,=3(1-801+n)
Ny=3(1+ 801 +n)
Ny=1(1+8&10—-n

As the element is isoparametric, the relationship between local and global co-ordinate systems is
given by

(10)

(11)

X = lel +N2X2 +N3X3+N4X4

(12)
Yy=N1y1+ Nyy2+ N3ys+ Nyya
The numerically integrated element stiffness matrix can be expressed as
N N

i=1 j=1
where the subscripts i and j index the integrating points.
For the two-point formula considered here, N = 2, the weighting coefficients w;; all equal unity,
and the integrating points are located at + 1 /\/5 in local co-ordinates (¢, 1).
The scalar (detJ) is the determinant of the Jacobian matrix, where

ox o
J= oc o (14)
ox oy
dn

and this, together with the matrix BTDB is evaluated at each ‘Gauss’ point in turn.

2.1. Properties of the stiffness matrix

Before evaluating the terms of the stiffness matrix, some observations can be made about its
structure, as this will lead to a reduction in computational effort. The matrix will be symmetrical,
so only those terms on and below the main diagonal will need to be evaluated. These terms are
given in equation (15):

ki
ki ki
ki ksz kas
k k k k
R 42 K43 Kaq (15)

kei kez kes kea kes kes
kiw kay kos kas kas ke kqg
ks1 ks2 kss ksa kss kse kys kss |

1030 D. V. GRIFFITHS

The terms can also split in six different groups as given in Table 1. Within each group, the bold
term can be considered to be the ‘parent’ member from which all the others can be obtained by
a simple rearrangement of the nodal co-ordinates.

The distribution of the different groups in a matrix layout is given as

(16)

DO MmN TS O o
No WO s
oo T O o

G I T - RN
CHEST-"I N

STR=IN

SN

2.2. Parent terms of the stiffness matrix

The parent member of each group from Table I is given in this section, followed by a descrip-
tion of the nodal co-ordinate transformations necessary to retrieve all the other members of that
group.

All stiffness terms are of the form

L[Aa(Es: + Gso) + /i (E*sy + Gsg) | As(E*ty + Gta) + o(E*t3 + Gta)] (o
2 343 - f7 343 - 13)

where E* equals either E; or E, as indicated in the following sections:

k"j=

Ay = (x4 —x32) V3 — Y1) — (X3 —x1) (Vs — ¥2)

. (18)
= twice the area of the element

Table I. Types of stiffness terms in the four-node element

Group Description Terms
A Diagonals ki kysksskqy
ka2kaakeskss
B Orthogonal freedoms at kyikaskesksy
the same node
C Parallel freedoms at kyyksykqskq,
adjacent nodes kgokeakaaksg,
D Orthogonal freedoms at kyikeikgsksy
adjacent nodes 32Ksaksckgy
E Parallel freedoms at ks koykgakes
opposite nodes
F Orthogonal freedoms at kg kgsks ko

opposite nodes

FOUR-NODE QUADRILATERAL ELEMENT 1031

and

(19)
(20)

J1=(x1 + x3)(¥a — ¥2) — (¥1 + ya)(xa — X2) — 2(x2y4 — X4¥2)
So=(y2 4+ ya)x3 — X1} = (X2 + x4)(y3 — y1) — 2(x3y1 — x1¥3)

The functions $;, S5, 53, Sa, £1, t2, t3 and t4 depend on the nodal co-ordinates, and are given for
each of the parent terms in the next six sections.
Having obtained the parent member of each group, the other members of each group from
Table I can be obtained using one of the three nodal co-ordinate transformations listed below.
The notation used here is that the symbol <= means ‘is overwritten by’.

Type 1

Transformation

Terms affected

(x1,¥1) = (x2,¥2)

(%2, y2) = (X3, ¥3)

(X3, ¥3) <= (x4, Y4)

(X2, y4) <= (X1, y1)

fI’fZ

81,82, 83,84

Ly,13, 13,4

Type 2
Transformation Terms affected
(x1, 1) = (3. x3) i, /2
(x2,¥2) <= (2, x2) 81,82, 83,84
(x3,y3) = (1, x1) fib2s bas L
(x4s ya) <= (Va, Xa)
Type 3
Transformation Terms affected

(x1, ¥1) = (y1, x1)

(X2, ¥2) <= (V2, X2)

(X3, y3] = (y3= X3)

(x4, ¥a) <= (4, xa)

81,82, 53,54
[1,12,13,14

It should be noted that the transformations always apply to the ‘s and ‘t” functions, however,
transformation types 1 and 2 also apply to the f” functions. None of the transformations should
be applied to A,, which relates to the constant area of the element.

D. V. GRIFFITHS

2.2.1. Group A—ky,

E* = E1
5;=2(ys — ,Vz)z

$3 = 2(x4 — Xz)z

S3= —5§/2
Sq4 = _52/2
tr=(y2—y3)* + (¥3 — a)* + (ya — y2)?

ty = (xz — x3)7 + (%3 — X&)* + (x4 — x3)?

ta = (x4 — x3)° —

+ (
ty = (ya— y3)* — (y3 — y2)?
(

X3 — x2)2

2.2.2. Group B—k,,

To compute From | Use transformation type
kss ki 1
kss kis 1
k17 kss 1
kgg k4 2
kas kgg 1
ks kaa 1
kes kaa 1
E*=E,

51 = 2(xz — x4)(ya — ¥2)

5; =15

S3= — $;1/2

S4 = S3

ty = X2(ya — 2y2 + y3) + x3(¥2 — 2¥3 + ya) + Xa(y2 — 2y4 + y3)
Ez — tl

t3 = X3(y2 — y3) + Xa(Va — ¥2) + Xa(y3 — ya)

l‘.4=t3

FOUR-NODE QUADRILATERAL ELEMENT

To compute From | Use transformation type
kas kay 1
kes kas 1
kgq kes 1
2.2.3. Group C—k,
E¥=E;

51 =(ya— y2)2y1 — ¥3 — ya)

52 = (x4 — X3)(2x; — X3 — X4q)

53 =(ya — ¥2) (Ya — y1)
Sa = (X4 — X3)(x4 — X1)
ty=(y3 — y1)2y2 — y3 — ¥a)

t, = (X3 - xl)(2X2 = == X4)

t3=(y3—yi)(ys — y2)

ty = (x3 — Xxq){x3 — X;)

To compute From | Use transformation type
kss k3, 1
ks ks3 1
ki kos 1
kse ki 2
kg, kg 1
kas kg 1
ke kaz 1
2.2.4. Group D—k4,
E*=E,

s = (x3 — x)(ya — ¥2) + (xa — x1) (¥4 — y2)

1033

(48)
(49)

1034

D. V. GRIFFITHS

$2=(¥3 — ¥1)(Xa — X2) + (ya — y1)(xa — x3)
53 =(xXq — X1)(y2 — a)

Sq = (¥4 — y1)x2 — x4)

ty = (x3 — X1 }(ya — y2) + (x3 — x)(y3 — ¥2)
tr =(y3 — y1)(*s — X2) + (y3 — y1)(x3 — x3)
ts = (x3 — x1)(y2 — y3)
(

ty = (¥3 — y1)(x2 — X3)

2.2.5. Group E—ks,

To compute From | Use transformation type
kes ka1 1
kgs kes 1
ko, kgs 1
k3, kay 3
k54 k?,z 1
k46 ksy 1
kg, ke 1

E*=E,
S;= —(ya— Jh)z
53 = — (x4 — xz)z
33 = 0
5,=0

ti=(ys+ y)(Ya + ¥2) — 2(va — ¥y2)* — 2(¥1y3 + y2Va)

ty = (X3 + X1) (x4 + X2) — 2(X4 — x2* — 2(x1 X3 + X3X4)

ts3=(ya— y2)(y1 — Y2 + ¥3 — ¥a)
)

te = (Xa — Xz) (X1 — Xz + X3 — X4)

FOUR-NODE QUADRILATERAL ELEMENT

To compute From | Use transformation type

ks ksy 1

kga ko3 2

key kga 1

2.2.6. Group F—kg,
E* = Ez

5y = (x4 — x2)(¥a — y2)
S, = 85
53 = 0
84 = 0
tr = (X4 — X2)(Ya — ¥2) + (x2 — x1)(y2 — y3) + (x4 — x1)(ys — y3)
tr = (ya — y2)(xa — X2) + (y2 — y1)(x2 — x3) + (ya — p1)(xs — x3)
t3= (%2 — X1)(y3 — ¥2) + (Xa — X1) (Vs — ¥3)
ta = (y2 — y)(x3 — x2) + (¥4 — y1) (x4 — Xx3)

To compute From | Use transformation type
kB3 k61 1
ks, keq 3
kag ks, 1

2.3. Subroutine timings

1035

The expressions described in the previous section were entered into a FORTRAN subroutine.
This enabled an efficiency comparison to be made with more conventional methods of forming
the stiffness matrix which use the Gaussian quadrature formulation given in equation (13).
Comparisons were performed on two machines; the scalar Amdahl 5890-300 and the Amdahl
Vector Processor VP1100, both installed at the University of Manchester Computing Centre

(MCC).

1036 D. V. GRIFFITHS

The first test involved calculation of the element stiffness matrix of a general quadrilateral
element. Tables IT and IIT show the CPU time used by the scalar and vector machines,
respectively. The explicit approach refers to the formulation given in this paper, and the numerical
approach to the more conventional numerical integration technique. The speed-up ratio is also
given in all cases. As a further check on the timings, the matrix was evaluated repeatedly up to
10000 times to avoid any misleading result based on the inclusion of CPU time occupied by other
parts of the code.

It is clear from Tables II and III that the explicit approach for forming the element stiffness
matrix tends to give a speed-up factor of 49 and 3-0 on the scalar and vector machines,
respectively.

The second test involved calculation of the global stiffness matrix of a mesh of quadrilateral
element. Tables IV and V show the CPU time required by the scalar and vector machines,
respectively. In each case, three levels of mesh refinement were considered over the rectangular
block shown in Figure 2. As the mesh was refined, the speed-up factors tended to 4-0 and 2-2 for
the scalar and vector machines, respectively. Although still significant, the speed-up factors in this

Table II. Element stiffness matrix formulation (scalar machine)

Number of CPU time (s)

evaluations Explicit Numerical Ratio
1 0-5160x 1073 01922 x 1072 37
10 0-4020 x 102 0-1873x 107! 46
100 0-3868 x 10! 0-1867 x 10° 4-8
1000 03800 x 10° 0-1852 x 10* 49
10000 03799 x 10! 0-1854 x 102 49

Table III. Element stiffness matrix formulation (vector machine)

Number of CPU time (s)

evaluations Explicit Numerical Ratio
1 02596 x 102 0:5049x 1073 19
10 01562 x 102 04452% 1072 29
100 01465 x 107! 04403 x 107t 30
1000 0-1451 % 10° 0-4378 x 10° 30
10000 01455 % 10! 0-4365 % 10? 30

Table IV. Global stiffness matrix formulation (scalar machine)

Number of Number of .

elements in elements in CPU Time (s)

x-direction y-direction Explicit Numerical Ratio
3 2 03012 x 1072 01186 x 107! 39
15 20 07476 x 107} 0:3006 x 10° 40

30 20 0-2980 x 10° 01203 x 10* 4-0

FOUR-NODE QUADRILATERAL ELEMENT 1037

Table V. Global stiffness matrix formulation (vector machine)

Number of Number of .
elements in elements in CPU Time (s)
x-direction y-direction Explicit Numerical Ratio

3 2 0-1084 x 1071 01250 x 101 12
15 20 0-4415x 101 0-8959 x 101 2:0
30 20 0-1502 x 10° 03293 x 10° 22

3H
H

Figure 2. Rectangular mesh of elements

case were less than those required to produce the element matrices alone due to the overheads
associated with the assembly process.

The main reason for the improved performance is that the code based on the explicit approach
is comprised entirely of assignment statements which process very quickly whereas the more
conventional numerical approach uses a number of loops which carry more overhead. The vector
machine can take some advantage of the vector and matrix calculations in the numerical
formulation; however, the improvement observed in the explicit approach is still significant.

The numerical formulation is undoubtedly more elegant, and considerably shorter in terms of
the number of lines of code. In the context of a precompiled library of subroutines called by
a main program, however, the elegance of the code is arguably of secondary importance to the
processing speed.

2.4 Concluding remarks

The stiffness matrix of a plane four-node quadrilateral finite element has been expressed in
closed form. The algebraic expressions were obtained with the help of a computer algebra system,
and based on the summation of the numerical integration terms that would be required to
integrate the element stiffness exactly.

A comparison of the processing speed of the explicit and numerical approaches indicated
a speed-up of between two and four on the vector and scalar machines, respectively, in an example
of global stiffness matrix assembly.

It should be noted that no attempt was made in the present work to optimize either the explicit
or the numerical approaches under comparison. Undoubtedly, further improvements could be
made to both algorithms; however, it is believed that the explicit approach will always occupy less
CPU time due to the fact that it is comprised entirely of assignment statements.

1038 D. V. GRIFFITHS

Although the exactly integrated four-node element is not widely used, the techniques used to
generate the stiffness terms could easily be extrapolated to other types of element matrix (e.g.
mass), and higher-order elements. Work is presently under way to obtain expressions for matrices
of more ‘popular’ elements, such as the four-node element with selective reduced integration and
the eight-node element with uniform reduced integration.

Both the FORTRAN subroutine which produces the four-node element stiffness matrix and
the Maple source code used to generate the expressions are available from the author on request.

ACKNOWLEDGEMENTS
The work described in this paper was supported in part by an SERC grant (No. GR/G55921) on

‘Development of efficient algorithms for 3-D analysis of non-linear soils’.

REFERENCES

[

. I. M. Smith and D. V. Griffiths, Programming the Finite Element Method, 2nd edn, Wiley, Chichester, New York, 1988.
. W. L. Hacker and H. L. Schreyer, ‘Eigenvalue analysis of compatible and incompatible rectangular four-node
quadrilateral elements’, Int. j. numer. methods eng., 28, 687-703 (1989).

3. D. Babu and G. F. Pinder, *Analytical integration formulae for linear isoparametric finite elements’, Int. j. Numer.
methods eng., 20, 1153-1166 (1984).

4. H. D. Rathod. ‘Some analytical integration formulae for a four node isoparametric element’, Comput. Struct., 30,
1101-1109 (1988).

5. D. Harper, An Introduction to Maple, Computer Algebra Support Project, University of Liverpool, 1989; Maple is
available from WATCOM Publications Ltd., Waterloo, Ontario, Canada N2L 3X2.

6. P. Bettess and J. A. Bettess, ‘Automatic generation of shape function reutines’, in G. N. Pande and J. Middleton (eds.),
Proc. Int. Conf. Num. Methods in Eng.. Theory and Applications, Vol. 1, Martinus Nuhoff, 1987.

7. C. Barbier, P. . Clark, P. Bettess and J. A. Bettess, ‘Automatic generation of shape functions for finite element analysis
using REDUCE’, Eng. Comput. (Swansea, Wales), 7(4), 349-358 (1990).

8. G. Rayna, REDUCE—Seftware for Algebraic Computation, Springer, Berlin, 1987.

9. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 4th edn, Mc-Graw Hill, London, New York,

1989.

[¥*]

