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Abstract

Trilateration positioning systems can be used in applications where the use of other po-
sitioning systems is impractical. Trilateration calculations use distance measurements to
determine the three dimensional coordinates of unknown positions. These calculations fa-
cilitate the implementation of fully automated real time positioning systems by eliminating
the need to measure angles. The distance measurements available for use in fully automated
systems are frequently only approximations. Fairly accurate positions can be calculated with
these approximate distances by using various iterative least squares solution procedures.
This paper discusses and illustrates the mathematical solution of an ill-conditioned posi-
tioning problem that was developed for Thunder Basin Coal Company (TBCC) in Wright,
Wyoming.




1 Introduction

Thunder Basin Coal Company (TBCC) is developing a fully automated system to elec-
tronically determine the position of equipment in an open pit mine on a real time basis.
They need an automated system because their current manual surveying techniques are
too labor intensive and too slow. TBCC determined that the Global Positioning System
cannot currently provide elevations that are accurate enough for their applications in a cost
effective manner. One of the alternative positioning systems they proposed uses a system
of radio beacons to measure the approximate distances between the equipment in the mine,
and the known fixed positions of the beacons on the rim of the mine. The electronics firm
that TBCC contracted to develop the radio beacons argued that a mathematical solution to
this three dimensional positioning problem could not be developed. Instead, the electronics
firm proposed that TBCC contract with them to develop an additional piece of equipment
that uses an oscillating, rotating laser that could be used along with the radio beacons to
determine the elevation of the equipment in the mine. TBCC contacted the Department of
Mathematical and Computer Sciences at the Colorado School of Mines in December 1990, to
determine if a mathematical solution to this three dimensional positioning problem exists;
and if so, whether or not a programmable fast algorithm could be designed to implement
the solution. This paper is a presentation of the mathematical solution procedures that
were developed to solve this positioning problem.

TBCC’s proposed automated positioning system does not measure angles. The lack
of measured angles precludes the use of conventional surveying procedures to calculate the
coordinates of the equipment in the mine. The only information that is measured in TBCC’s
positioning problem are the approximate slope distances between the equipment in the mine
and several distance-measuring radio beacons. These beacons are at known fixed coordinates
on the rim of the mine. The class of problems that i1s used to describe calculations which
involve only distance measurements in position determination is trilateration. Since TBCC’s
measured distances are not exact, the most successful solution techniques use iterative
trilateration procedures to calculate the best approximation to the exact coordinates.

The solution of trilateration problems with approximate distances is necessitated by the
lack of fully automated accurate omni-directional distance measuring equipment. Although
exact distance measurements are available through the use of man operated laser ranging
equipment, the goal of implementing a fully automated system that could be utilized with
any number of vehicles on a real time basis precludes the use of these directional lasers.
Instead, TBCC has to settle for less accurate distance measuring equipment which uses an
omni-directional signal to measure distances without human intervention. The usefulness
of these iterative trilateration procedures should not diminish as technological advances
increase the accuracy of fully automated distance measuring equipment. These iterative
procedures are capable of calculating the exact position when used with exact data, and
are more robust than non-iterative solution techniques which potentially could be used with

exact data.




The magnitude of the distances that are involved in this trilateration positioning system
are small enough to permit the use of a local orthographic coordinate system. This elim-
inates ellipsoidal distance and angular reductions from the problem because calculations
that are completed entirely in a three dimensional orthographic coordinate system do not
require any ellipsoidal distance or angle reductions [Laurila 1983].

The usefulness of the iterative mathematical solution algorithms for the three dimen-
sional trilateration positioning problem is not restricted to mining applications that use
radio signals to measure distances. These calculations can be utilized in any system that in-
volves distance measurements. The distance measurements used in these calculations could
also be obtained from any practical method to include radar, lasers, or manual measurement
procedures. These solution procedures could be used to improve the accuracy of existing tri-
lateration applications, or they could be implemented in new applications where alternative
methods of determining positions in a timely, accurate, and cost effective manner are not
currently available. A few of the possible applications include dredging operations, precision
farming, underwater positioning, construction related surveying inside large building shells,
robotics applications, and navigational systems.

2 Problem Statement and Mathematical Notation

TBCC specified that the calculated positions be accurate within a tolerance of five feet,
provided that the calculations are performed with distance measurements that each have a
maximum allowable error of plus or minus six inches. Actual data from TBCC’s mine in
Wyoming is used to evaluate the suitability of the various solution procedures. This data
includes eight fixed position radio beacons that are installed with the aid of conventional
surveying techniques to determine their three dimensional coordinates. These fixed position
beacons use radio signal timing data to measure the approximate distances between them-
selves and a mobile radio beacon that is permanently mounted on the equipment in the
mine. The coordinates of the fixed position beacons and the approximate distance measure-
ments are the only variables in the calculations which are used to determine the coordinates
of the unknown location.

The limited number of fixed position radio beacons combine with the physical dimen-
sions of the mine to produce a positioning problem that is ill-conditioned. In this three
dimensional problem the magnitude of the z and y components of the distance measure-
ments are so much larger in magnitude than the z components that some of the matrices
used in the solution procedures are very close to being singular. A noticeable effect of this
ill-conditioning is that the elevation component of the calculated position is very sensitive
to the errors in the distance measurements.

The positioning algorithms used to solve this problem were written in both the syntax of
MACSYMA [Symbolics 1988], a symbolic manipulation program, and in the C programming
language. Comparison of the results from the two independent programs helped identify
programming and roundoff errors. Additionally, symbolic MACSYMA calculations were
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used to gain insight into the effects of the distance measurement errors on the position of
the unknown point.

The mathematical notation and symbols used for the variables in this paper are given
in Figure 1. The fixed-position beacons are labeled B; where : refers to the ith beacon.
The three dimensional coordinates of the beacons, (z;, yi, and z;), stand for the actual
easting, northing, and elevation values of the beacons. For notational convenience we write
Bi(z;,y:,2;). The approximate measured distance between the ith fixed position beacon
and the mobile radio beacon that is permanently mounted on the equipment in the mine
1s denoted as r;. For the exact distances we use 7; instead of r;. The individual three
dimensional coordinates of the equipment in the mine, which are the unknowns that are
solved for in this paper, are denoted by z, y, and z. The position of the equipment in the
mine is then simply represented as P(z,y, z).

3 Test Data

The coordinates of the fixed position beacons that TBCC provided for use in evaluating
and testing the various solution procedures are found in Table 1. These beacon coordinates
represent actual locations where beacons can be placed around the rim of the mine. The
origin of this coordinate system is a point in western Wyoming that was arbitrarily selected

by TBCC.

Table 1: Coordinates of Fixed Position Radio Beacons

Bi(zi,yi,z:) | Yi %
B; 475060 | 1096300 | 4670
B, 481500 | 1094900 | 4694
Bs 482230 | 1088430 | 4831
B, 478050 | 1087810 | 4775
Bs 471430 | 1088580 | 4752
Bsg 468720 | 1091240 | 4803
B~ 467400 | 1093980 | 4705
Bsg 468730 | 1097340 | 4747

TBCC also provided approximate distance measurements from these fixed position bea-
cons to several equipment positions in the mine. They produced these approximate distance
measurements by using the following procedure. First, they arbitrarily selected the coordi-
nates of a piece of equipment in the mine. They then calculated the exact distances or radii,
Ti, by using the coordinates of the beacons in Table 1, the coordinates of the equipment in



Figure 1: Illustration of Mathematical Notation and Symbols



the mine, and the distance formula

= —s P+ —wl+(—=n)?  (=1,2..0) (1)

where ¢ denotes the beacon number, and n is the total number of beacons. The approximate
distances, r;, are obtained by adding errors A; to the exact distances, 7;.

TBCC used a heuristic method to evaluate the effectiveness of the proposed solution
algorithms by requiring us to calculate unknown positions with TBCC’s approximate dis-
tance measurements. TBCC then compared the calculated positions with the true positions
to determine the effectiveness of the algorithms. After TBCC made this comparison, they
provided us with the coordinates of the exact positions and directed us to proceed with the
development and refinement procedures.

We developed a simulation program that incorporates the distance approximation proce-
dures from TBCC’s heuristic while at the same time providing a comprehensive and system-
atic procedure to evaluate and compare the different solution algorithms. The simulation
program is based on a three dimensional rectangular grid of 1000 equally spaced points that
is shown in Figure 2. The random error generator for the distance approximation procedure
was used in a manner that ensured the distance errors corresponding with each of the points
in the grid was the same for each simulation run regardless of which solution algorithm was
used. These errors along with their application to three characteristic test points are given
in Table 2. The distances for the test points in this table are given only to illustrate the
application of the standard errors to test positions, and are only accurate to three decimal
places. In practice, the exact distances used by the simulation program are precise to the
number of decimal places that are given by (3). Likewise, the approximate distances and
error terms have more than three decimal places of accuracy in practice.

The missing values to the right of the decimal places in Table 2 have very little impact
on the accuracy of the calculated positions. However, the distances in this table are not
accurate enough to be used to reproduce the values shown in (7) and the many of the other
equations in Section 7.

The simulation program calculates the coordinates for each of the 1000 points using both
exact and approximate distances. It then compares the calculated coordinates with the true
coordinates. The relative effectiveness of each of the solution algorithms is determined by
statistically analyzing the differences between the calculated positions and the true positions.
The results of this analysis also provide insight into the effects of the fixed beacon positioning
pattern on the accuracy of the calculated positions.

4 Solution Techniques

The obvious approach in solving this positioning problem is to treat the coordinates of
the equipment in the mine P(z,y,z) as the point of intersection of several spheres, whose
centers are the locations of the n beacons B;(z;,y;,2;) for 2 = 1,2, ...,n. The exact distances
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Figure 2: Illustration of Test Grid and Fixed Position Beacon Locations

8



Table 2: Distances and Standard Errors for Three Test Points (Accurate to Three Decimal

Places)
Descriptions and Coordinates of Three Test Points

Outside Perimeter of Inside Perimeter of Outside Perimeter of

Beacons Near the Beacons Near the Beacons Near the
Top of the Mine Bottom of the Mine Bottom of the Mine

P, (480000, 1093000,4668) | F»(480000,1093000,4525) | P5(480000,1095500,4525)

Distance Exact Modified Exact Modified Exact Modified
FErrors A; | Distances Distances Distances Distances Distances Distances
B; -0.458 5940.893 5940.381 5942.607 5942.149 5006.458 5006.000
B, 0.173 2420.883 2421.056 2426.635 2426.808 1624.635 1624.808
B; 0.317 5087.666 5087.983 5094.254 5094.571 7419.664 7419.981
B, -0.191 5545.271 5545.080 5549.874 5549.683 7937.320 7937.129
Bs 0.468 9643.044 9643.512 9645.353 9645.821 11047.380 11017.848
B 0.141 11417.270 11417.411 11419.870 11420.011 12060.820 12060.961
B, 0.329 12638.110 12638.439 12639.330 12639.659 12692.620 12692.949
Bsg -0.390 12077.030 12076.640 12078.820 12078.430 11421.370 11420.980

between the beacons and the equipment in the mine, r;, are the radii of the individual
spheres. The equation for any of these spheres is

(z—z) 4+ (@y—v) +(z—z) =r’ (2)

The point of intersection of the surfaces of n of these spheres is obtained by letting ¢ =
1,2,...,n, and solving the resulting n nonlinear equations simultaneously to eliminate two
coordinates. This solution technique is not feasible because it produces a nonlinear equation
of high degree. Furthermore, since the equations are quadratic, many cases for the signs
would have to be considered.

Linearizing the system of equations geometrically converts the problem into one of find-
ing the point of intersection of several planes. When the exact distances from four beacons
are available, the solution of the linear system of equations is completely determined. There
are three equations, three unknowns, and exactly one solution. Consequently, the theoreti-
cal minimum number of beacons is four. When approximate distances are used, the position
that is calculated by the direct solution of the linear equations is no longer acceptable. The
sophistication needed when working with approximate distances is dealt with in the linear
least squares, and nonlinear least squares solution techniques.



5 Linearized System of Equations

The solution of the linear system AZ = bis an improvement over solving for the inter-
section of spheres. However, it is unacceptable because it does not determine the locations
within a tolerance of five feet when used with approximate distances. The linear system
which is developed below (10) can be used with exact distances and four arbitrarily selected
beacons to accurately calculate an unknown location by determining the point of intersec-
tion of three planes. However, the straightforward solution of any three equations of the
linear system (10) will produce unacceptable results when approximate distances are used.

The constraints are the equations of the spheres with radii r;,

-zl + -9 +(Ez—-2z)Y=r (1 = 1,2, wry 1) (3)

The j* constraint is used as a linearizing tool. Adding and subtracting z;, y; and z; in

(3) gives
(z—zi+a;—z) +(y—yityi—w) +(z-z+z-z)=r (4)
with (6=1,2 .05 =1, +1,...,n).
Expanding and regrouping the terms, leads to
(= z5)(z: — 25) + (y —y;) (i — ;) + (2 — 2) (2 — 2))
= %[(z — g} & fy— )l + {2~ ) —rd 4 [~ (go— ) + o —~ 2]
= %[7‘1'2 —ri? + d] = by, (5)

where

dij = \f(z: — ;) + (i — 4;)* + (2 — 2;)? (6)

is the distance between beacons B; and Bj.

Since it does not matter which constraint is used as a linearizing tool, arbitrarily select
the first constraint (; = 1). This is analogous to selecting the first beacon. Since i =
2,3,...,n, this leads to a linear system of (n — 1) equations in 3 unknowns:

(g—zm)(z2—z)+ (=) — )+ (z—2)(za —2) = %[le —r? +dy) =ba (7)

|

(c—z)(@s—a)+ -y —n)+(z—a)(m—2) = [r? —rs® +d5y] = b (8)

(z—az)(zn —2) + (W= v) (¥ —91) + (2 = 21) (20 — 21) = %[7"12 —7a’ 4 day] = ba1- (9)
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This linear system is easily written in matrix form

AZ = b, (10)
with
Ty =21 Y2— Y1 22— 2= bz
T3 —T1 Ys— Y1 23— 21 N T—% - bs1
A= . : , T=ly-wn|, b= T |. (11)
Z— 21 .
Tn — I yn - yl Zn — 21 bnl

The linear system (10) has (n — 1) equations in three unknowns. Therefore, theoreti-
cally only four beacons (n = 4) are needed to determine the unique position of a piece of
equipment in the mine; provided no more than two beacons are co-linear.

6 Linear Least Squares

The coordinates of positions obtained by applying the linear least squares method to the
linear system of equations (10) are generally more accurate than the coordinates obtained
by solving four equations from the linearized system of equations (10) directly. However, the
accuracy of the coordinates calculated with linear least squares method are unacceptable
because they are not within a tolerance of five feet when used with approximate distances.

Since the distances r; are only approximate, the problem requires the determination of
# such that A% ~ b. Minimizing the sum of the squares of the residuals,

S=7Tr=(5— AZ) (5— AD), (12)
leads to the normal equation [Noble and Daniel 1988]
ATAZ = ATb. (13)

There are several methods to solve (13) for #. The condition number of ATA determines
which method is best.
If ATA is non-singular and well-conditioned then

Z=(ATA)'ATE. (14)

If ATA is singular or poorly conditioned then the normalized QR-decomposition of
A is generally used [Noble and Daniel 1988]. In this method A = QR, where Q is an
orthonormal matrix and R is upper-triangular matrix. The solution for Z in the normalized
QR-decomposition is then found from

RZ=QTb (15)
by back substitution when A is full rank.
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It may happen that the matrix AT A is close to singular even when the original matrix
A was not close to singular. For situations like that, QR decomposition may overcome the
problem. If not, singular value decomposition (SVD) can be used to solve the least squares
problem fairly accurately.

We compute the position of point P,(480000,1093000,4525) using (14). These results
are in Table 3.

7 Singular Value Decomposition (SVD)

In terms of the pseudo-inverse, the optimal solution Zy to the problem of mimnimizing
||AZ — b||, is given by &, = A*+b. The pseudo-inverse [Noble and Daniel 1988] At = VE+UH
involves the unitary matrices U,V occurring in the SVD of A, this is A = UXV¥H . The
matrix X% is obtained from the “diagonal” matrix ¥ as follows: The p x ¢ matrix ¥ has
entries < X >;;=0if 1 #jand < L >;;=0; >0for 1 <:<kand k+1 <: < min{p, ¢}.
The numbers o; are called the singular values. The matrix £+ is then the ¢ x p matrix
whose nonzero entries are < X7 >;;= ;17, for1 <:<k.

To detect degeneracy of the matrix A one computes the ratio o,/c,, where o is the
largest singular value and o, is the smallest singular value when A 1is full rank. The ratio
01/0, may be regarded as a condition number of the matrix A.

The smallest singular value, o,, 1s the distance in the 2-norm from A to the nearest
singular matrix. The fact that o,/0, is small may be considered as a condition of near-
singularity of A [Kahaner, Moler, and Nash 1989] [Lawson, and Hanson 1974].

Let us now apply the above ideas to the matrix

Ty—Ty Yo— Y1 22— 2 6440 —1400 24
T3 — 2T Ys— Y1 23— 21 7170 —7870 161
Ty— Ty Ya— Y1 25— 241 2990 —8490 105
A=lzs—x ys—y1 25—z | =] —3630 —=7720 82 |, (16)
Te— Ty Ye— Y1 %6 — 241 —6340 —-5060 133
Tr—2Ty Yr— Y1 21— 2 —7660 —2320 35
Tg— T3 Ys— Y1 28— 21 —6330 1040 77

which corresponds to the beacon positions given in Table 1.

To analyze the inaccuracy that is introduced by the differences in magnitude of the
coordinates, we perform a singular value decomposition on matrix A in (16) using MATLAB
[Moler, Little, Bangert, and Kleiman 1989].

Matrix A has singular values oy = 16259, 0, = 14741, 03 = 118. Hence,

o1 /o3 = 16259/118 = 137.788, (17)

which confirms that the entries in the third column of A are about 100 times smaller than
the entries in the first column of A.
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Furthermore,
A =UxVH (18)

with

0.3901 —0.1216 0.1425  0.4442  0.4634  0.5609  0.2933
0.6169 0.2425  0.4632 —0.0262 —0.4278 0.0860 —0.3937
0.4079 04129 —-0.1722 -0.5263 0.1164 —0.1285 0.5713
U= 0.0263 0.5780 —0.3926 0.6619 —0.1840 —0.1913 0.0495 |, (19)
—0.1977 0.5053  0.3365 —0.0662 0.6641 —0.1501 —0.3528
—0.3487 0.3833 —0.1568 —0.2424 —-0.2092 0.7731 —0.0822
—0.3736  0.1398  0.6660  0.1537 —0.2647 —0.0681 0.5467

0.8825 —0.4703 0.0023
V= ( —0.4702 —0.8824 0.0156) , (20)
0.0053 0.0148  0.9999
16259 0 0
0 14741 O
0 0 118
s=| o o 0 |. (21)
0 0 0
0 0 0
0 0 0
Let us continue with point P,(480000,1093000,4525) and
36426980
61363150
. 42770710
b= 7524660 |, (22)
—14645310
—30196370
34711440 /

where these components are computed via (7) through (9), with approximate distances
that are determined by using the procedure discussed in Section 3.

Since neither of the singular values is very close to zero, we compute the true pseudo-
inverse of A, namely

At =vy+tyuH (23)
with
0.00006150 0 0 0000
>t = 0 0.00006784 0 0 0 0 0. (24)
0 0 0.0085 0 0 0 0
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We obtain

1

+ —_—
100000

—0.400 —-3.236 —3.652 —3.536 —2.453 —1.286 0.244
0.001 0.045  0.055 0.059  0.044  0.027  0.002

(2.505 2574  0.896 —1.701 —2.685 —3.115 —2.474)
(25)

The optimal solution is then given by

. 4940.2
To=Atb=| —3299.1 |, (26)
—131.8
hence, the actual position is given by
. 4940.2 475060 480000.2
Zo+ By = | —3299.1 | + | 1096300 | = | 1093000.9 | . (27)
—131.8 4670 4538.2

This result is not better than what could be obtained via 7 = (ATA)~*ATb.
Replacing 1/03 by 0 in £* does not improve matters much.

From the SVD of A we learn that ¥, and 3, are of order 107°, whereas 3 is of order
10~3 Although all of the ¥’s are sufficiently large to be in machine precision, their difference
in magnitude of order 100 causes the s coordinate of the unknown position to be inaccuraate.
A more precise iterative algorithm to compute the unknown position is given in Section 9.

8 Symbolic Analysis of Error Propagation in the
Linear Least Squares Method

To analyze the effects of the errors on the distance measurements we perform a symbolic
calculation with MACSYMA [Symbolics 1988]. In this calculation we use the beacon loca-
tions in (1), and the point P,(480000,1093000,4525). Using these numerical values we solve
for z, y, and z in terms of Ay, A, Az, Ay, As, Ag, Az, and Ag; where A, represents the
symbolic error on the distance associated with the first beacon, etc.

Using this method we get the theoretical errors on the coordinates of P, :

sz = —0.00000596589(Ag)? — 0.144122(Ag) — 0.00001708401(A;)?
—0.431861(A7) — 0.00001019150(As)* — 0.232771(A¢)
—0.00001228196(As)* — 0.236928(As) + 0.00000282727(A4)*
+0.031382(A4) + 0.00001732629(A3)? + 0.176529(A3)
+0.00001389623(A2)* + 0.067442(A,) + 0.00001147358(Aq)?
+0.136366(A,; ), (28)
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sy = 0.00004504562(Ag)? + 1.088196(Ag) — 0.00001674421(A)?
—0.423271(A7) + 0.00000987568(Ag)? + 0.225558(Ag)
—0.00004351283(As)* — 0.839393(As) — 0.00002958805(A4)?
—0.328420(A4) + 0.00001429731(A3)? + 0.145668(A3)
+0.00000737499(A2)? + 0.035793(A;) + 0.00001325149( A4)?
+0.157496(A,), (29)

and

6z = 0.002815000(Ag)* + 68.00692(Ag) — 0.00066240( A7)?
—16.74474(A7) 4+ 0.001422000( A6 ) + 32.48654(Ag)
—0.00165900(As5)* — 32.00419(As) — 0.000727510(A4)?
—8.075191(A4) + 0.00195800(A3)* + 19.94801(A3)
+0.000602234(A4)? + 2.922807(A,) — 0.00374900( A, )?
—44.55374(A) + 0.984375. (30)

To get an overall estimate of how accurate the distances need to be for this specific test
point we perform the following calculation. Assume that

Starting with the elevation, add the absolute values of the coefficients of the linear terms in
A, through Ag in (30). Similarly, add the absolute values of the coefficients of the quadratic
terms in A; through Ag. Requiring an accuracy of five feet on the elevation of the equipment
in the mine, leads to

(224.741)A + (0.01359)A® < 5 feet. (32)

Solving for A gives A = 0.022 feet. This means that the error on the distances should be
less than 0.022 feet in order to calculate the elevation within a tolerance of five feet. Similar
calculations for the z and y coordinates requires that the error on the distances should be
less than 3.432 and 1.542 feet respectively.

If we use all of the decimal places of precision that are given by the random number
generator discussed in Section 3, we can evaluate (28), (29), and (30). Substituting the
errors for A; through Ag, gives the results in Table 3. This table also lists the results for
the same data using the linear least squares method directly. The errors generated by both
methods are equal, as expected.

9 Nonlinear Least Squares

The nonlinear least squares method gives the most accurate results of all methods devel-
oped and examined (until now) when approximate distances are involved in the calculations.
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Table 3: Comparison of the Locations Calculated Directly using Linear Least Squares, and
the Locations Calculated by Substituting Known Errors into the Symbolic Linear Least
Squares Solution

Symbolic Equations || Linear Least Squares

Test Calculated Calculated
Test Data Coordinates Position Errors Position Errors
Point Inside Mine 480000 || 480000.250 | 0.250 || 480000.250 | 0.250
Near the Bottom 1093000 || 1093001.875 | 0.875 || 1093000.875 | 0.875
Py(z,y, 2) 4525 4538.375 | 13.375 4538.375 | 13.375

It is acceptable for use by TBCC because the coordinates of the equipment are calculated
within the required tolerance of five feet for both exact and approximate distances. The use
of this method should be restricted to situations where the equipment in the mine is inside
the perimeter of the beacons, and below the more or less common plane of the beacons.
The elevation restriction is required because of a calculation which involves a square root
requiring us to choose between a positive or negative sign in developing the equations. The
positioning restriction is required because there is a significant loss of accuracy when the
unknown position is outside the perimeter of the beacons. This method will provide results
if these restrictions are violated. The accuracy of the solution decreases as the elevation of
the equipment increases, and as the equipment moves farther outside the perimeter of the
beacons.

The sum of the squares of the errors on the distances is minimized in this least squares
method. Recall that r; denotes the approzimate distance between the equipment in the
mine, and the i** beacon; and that 7; stands for the ezact distance, i.e.

(z—z) + @y —w) + (2 — =) =72 (33)

To minimize the sum of the squares of the errors on the distances, one must minimize

the function ,

Flo,y,2) = Zn: (7; — Ti)2 = Zf,-(:p,y,z)z, (34)

=1 i=1
with

fil@,y,2) == = f(@ =2l + (y — )P + (2 — 2 — . (35)

Minimizing the sum of the square errors is a fairly common problem in applied math-
ematics for which various algorithms are available [McKeown 1975]. Numerous different
approaches can be taken, from simple to very complicated [Mikhail 1976]. The Newton
iteration was selected from among those available to find the ‘optimal’ solution P(z,y, z).
A ‘good’ initial guess for (Z, 7, Z) is obtained from the linear least squares method developed
in Section 6.
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The only case considered is the case for which Fi,;, > 0 and therefore n > 3. Differenti-
ating (34) with respect to z yields

oF . Of;
6—$—2§f18—x- (36)

The formulae for the partials with respect to y and z are similar. Introducmg the vectors
f g and the Jacobian matrix J, leads to

ITf, (37)
where
9 0 OH
Az dy dz
aF
o 0p o h o
oz dy dz _’ f2 5
In aF
Ofn  Ofn  Ofn %

Using the vector R
i
R= (y : (39)

Newton iteration gives
Repny = Roy — (T T ) 7 Iy oo, (40)

where R;k} denotes the kth approximate solution. The subscript {k} in J and f means that

these quantities are evaluated at Rzk}- Obviously R{l} = (&, § )7
Using the explicit form of the function f;(z,y,z) leads to

— =iy (z=z:)(zz)
(f;+7':)2 Z (fi+ri)2 Z (fx'*"";

=1

JTJ: Z!x x‘!‘y y.) Z(y y.) Z(y y.)(z zi) (41)

(_f|+1' (f‘+7'|)2 f:+7'|)2 ’

(z—zi)(z—2) (y—vi)(z—=zi) (= z,‘!2
; (fi+ri)? Z (fitr:)? ;(fﬁr.’)z
and

le zi)fi

f|+7':)

T—* Ifl
= 2%47 - (42)

Z!z z;) fi

fl+Tl) /
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In practice this type of iteration works fast, in particular when the matrix J7J is aug-
mented by a diagonal matrix which effectively biases the search direction towards that of
steepest decent. Levenberg and Marquardt [Lawson, and Hanson 1974] developed this im-
provement. As the solution is approached such modifications can be expected to have a
decreasing effect.

10 Results

The most effective approach is the nonlinear least squares method which calculates the
locations within the required five foot tolerance for both exact and approximate distances.
Table 4 summarizes the errors produced by the various calculation methods for the three
test points.

The data in this table shows that the linearized equations provide the least accurate
position calculations, while the nonlinear least squares solution algorithm provides the most
accurate positions.

Table 4: Comparison of Errors for Three Test Points Using Various Calculation Procedures

Solution Method
Linearized Equations | Linear Least Squares | Nonlinear Least Squares

Errors Errors Errors Errors Errors Errors
Using Using Using Using Using Using

Position and Exact Modified Exact Modified Exact Modified

Description Distances | Distances | Distances | Distances | Distances | Distances
P, Inside |z 0.000 -0.469 0.000 0.219 0.000 -0.062
Perimeter, |y 0.000 -0.125 0.000 0.875 0.000 0.125
Top z 0.562 -10.750 -0.313 13.437 0.014 -4.101
P,, Inside |z 0.000 -0.469 0.000 0.250 0.000 -0.063
Perimeter, |y 0.000 -0.125 0.000 0.875 0.000 0.125
Bottom z 0.562 -11.000 -1.000 13.375 -0.010 -1.514
P3, Outside | z 0.000 -0.375 0.000 0.219 0.000 -0.062
Perimeter, |y 0.000 -0.500 0.000 0.875 0.000 0.375
Bottom z 0.219 -35.813 -0.039 14.039 0.000 1.271

Table 5 summarizes the number of positions from the 1000 point grid that are not within

the five foot tolerance for the three solution algorithms. There is a significant reduction in
the number of points that are outside the five foot tolerance when the nonlinear least
squares method is used instead of the other two methods. Analysis of these tables and the
details of the individual points that are out of tolerance indicates that the accuracy of the
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calculated position is severely degraded when the elevation of the equipment is above or
near the elevation of the lowest beacon. The accuracy is also degraded when the equipment
is located outside the perimeter of the fixed position beacons.

Using the simulation program and the grid to analyze other beacon placement patterns
reveals that the accuracy of the calculated positions is also dependent upon the relative
positions of the beacons. Thus, in addition to being used to compare various solution
algorithms, the 1000 point grid simulation program can also be used as a calibration program
to ensure that the placement of the fixed position beacons does not adversely affect the
accuracy of the calculated positions.

Table 5: Summary of Locations Out of Tolerance Calculated with Various Solution Tech-
niques

Number of Calculated Locations Out or 1000
That Are Not Within a Tolerance of 5.0 Feet
Method Exact Distances ’ Approximate Distances
Linearized Equations * 0 919
Linear Least Squares 0 856
Nonlinear Least Squares 0 81

* This is a smaller test area than for the other cases.

81 points are not within the required tolerance for the nonlinear least squares method
because the z coordinates were off more than 5 feet. 41 of these points are at an elevation -
that 1s 2 feet below the lowest beacon, 23 are at an elevation that is 68.7 feet below the
lowest beacon, and 13 points are at an elevation that is 135.4 feet below the lowest beacon.
The remaining 4 points at lower elevations are all outside the perimeter of the beacons.
Approximately 50% of the 81 positions that are outside the 5 foot tolerance are outside the
perimeter of the beacons even though this area composes only about 20% of the test grid.

11 Implementation

TBCC validated the nonlinear least squares trilateration positioning algorithm and is
satisfied with the accuracy of the calculated positions. They began implementing a user
friendly automated system based on these calculations in 1991. This system included touch
screens computer terminals which were mounted on the equipment for use by operators who
require positioning information. When an operator pushes a video image on the touch screen
the positioning system is activated. The coordinates of the equipment are calculated by the
nonlinear least squares algorithm, and is transmitted back to the touch screen. TBCC is
innovative in making this information user friendly by programming the positioning system
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to look up information from a data base, perform calculations, and to provide feedback to
the equipment operators on their touch screens. An example of the type of information that
is provided to the equipment operators in the open pit mine is a comparison of the actual
coordinates with the design coordinates, and a message that is based on the corresponding
interpretation of the data that tells the operator how much deeper to dig. The touch screen
computer terminals and the positioning system communicate with each other via radio
modems.

Unfortunately, the electronics firm that TBCC contracted with to develop the electronic
distance measuring equipment failed to deliver on their contract. Consequently, TBCC was
forced to stop implementing the system until they can obtain fairly accurate fully automated
distance measuring equipment at a reasonable price.

The actual code for the nonlinear least squares algorithm is implemented in BorlandC++,
and is available from the authors.

12 Conclusion

Of the methods we proposed, the nonlinear least squares method gives the most accurate
position calculations for TBCC’s three-dimensional trilateration positioning problem that
is designed for use with approximate distances and a physical configuration which (unfortu-
nately) leads to a problem that is poorly conditioned. The nonlinear least squares solution
procedure calculates the exact position when exact distances are known, and reasonably
accurate answers when approximate distances are known. These results satisfy TBCC’s
needs. Although restricted to applications where the elevation of the unknown position is
below the elevation of the lowest beacon, this method will provide results if this restriction
is violated. The accuracy of the solution is degraded when the elevation of the unknown po-
sition is close to or above the elevation of the lowest known position, and when the unknown
position is outside the perimeter of the beacons.
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