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The method of mode coupling in third order is applied to generalized
Korteweg-de Vries equations. These equations contain terms which are each a
product of a function of the dependent variable  times one space derivative of u,
up to a derivative of the fifth order. The resulting amplitude and phase equations
are then specialized to three different classes of equations. For equations of the
first class the amplitudes do not change, although all modes are coupled for the
determination of the phases. For equations of the second class, all amplitude
equations are truly coupled and the phases are constant. Finally, for equations
of the third class, which includes the KdV equation, each mode behaves as if it
were the only one present, so that only self-modulation is possible.

§1. Introduction

When in a previous paper'’ the method of
interacting waves was applied to the Korteweg-
de Vries equation, it was discovered that the
KdV equation has the remarkable property
that the waves decouple also in third order.
Such a decoupling is characteristic, of course,
for linear media, but rather unusual for
nonlinear media. The slow time variation of
each wave is determined only by parameters of
that wave, as if it were the only wave present,
regardless of whatever other waves were present
or not. The purpose of this paper is to generalize
the classes of PDEs which can be handled in a
similar way and to find out whether other
equations besides the KdV equation exhibit the
phenomenon of wave decoupling in third order.
The PDEs considered contain one time deriva-
tive and are linear in each space derivative.
The coefficients are functions of the dependent
variable, so that the equation can be highly
nonlinear indeed. In order to find results which
would at least encompass the usual KdV
equation, up to the fifth space derivative is
included. Use is made of the method of mode
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coupling, which can be summarized as follows.
An ordinary expansion in some ordering param-
eter is carried out for the dependent variable,
together with the use of two time scales, one
fast, one slow.?”* The original PDE one
started with is thereby replaced by a set of
equations, of which the first is linear, and which
can be solved order by order to determine the
solution. For the firstorder part one then takes
a superposition of plane waves, which amounts
to a kind of Fourier treatment of the linear
first-order equation and is hence a less particu-
lar form than would seem at first sight. The
aim is to deduce the third-order equations
governing the slow time behavior of the ampli-
tudes and phases of the modes put into the
linear part. In general these equations will
be coupled, and some special cases are dis-
cussed. Some other equations besides the KdV
equation exhibit indeed the property of wave
decoupling in third order.

§2. Derivation of Amplitude and Phase
Equations

We consider as classes of KdV equations the
following nonlinear PDEs in one dependent
variable u:
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The KdV equation itself is included in (1) for the choice

Ao(u)=A,(u) = A4(u) = A5(u)=0,

AW =0+pu, A;w)=y, @
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where o, f and y are constants. In order to apply the method of nonresonant wave interactions,
as exposed before,!**’ we begin by looking for possible homogeneous equilibria, characterized by
a constant #,, such that

Ao(uo)uo=0. 3

If Ay(w)u is not identically zero, (3) is an algebraic equation in #,. Whenever 4,() is not included
in (1), u, is undetermined and any constant will serve as an additional parameter. This is the case
for the usual KdV equation. The next step is the introduction in (1) of a series expansion for u,

u=ug+eu, +e*u, +us+ - - -, 4)
together with a two-timescale method for the time derivative:
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This form is specifically chosen for the case of nonresonant interaction in third order. The special
case of resonant interaction in second order is dealt with in Appendix A. Collecting terms of the

same order in the smallness parameter ¢ yields a set of equations replacing (1):

Lu, =0,
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The dashes refer to the derivatives of the functions A, with respect to their arguments u, and the
linear operator L is defined as

0 2 0 ,
=~ a_to - 3;0 A(uo) I uoAo(uo)- @)
Introducing now for u, a superposition of N plane waves,
N

up= Y ajt,) cos (kjx—w;to+at,)),
ji=1
N

Z aj(tz) COos d)j(xa tO’ t2)’ (8)

j=1

into the first equation of (6) gives

N
-21 (;+ Aok ;— As(uo)k; + As(uo)k?)a; sin ¢;
=

N
+ _;1 (—Ao(uo) —uoAo(uo) + Az(uo)klz' - A4("0)k?)aj cos ¢;=0. ®

In view of the linear independence of cos ¢; and sin ¢; for different arguments ¢;, one gets the
dispersion law

wj+A1(u0)kj—A3(uo)k;‘ + As(up)k’ =0, (10)
together with
Ao(ug) +ugAo(uo) — Az(uo)ka' + A4(u0)k}* =0. (1

Equation (11) allows only two possibilities, either it is viewed as a biquadratic equation in k;
or it vanishes identically. In the former case only a two-wave interaction is possible (the sign of
k; is irrelevant, only its absolute value matters) and this is discussed in some detail in Appendix B.
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In the latter case one requires

Ao(ug) +ugAy(uo) = A, (o) = A4(ue) =0, (12)
and the linear operator L reduces to

N

0 0
L=am T AL, (13)

Oty s=T3,5

containing only odd derivatives. This form of L will be used in the further discussion of (6). Turning
now to the second equation in (6), the substitution of (8) gives

1 N |
Lu,= 3 21;; <A6(“o) +F iAg;(“o)uo — Ay (up)k? + Ait(uo)k?>ajal(cos (¢j+ ) +cos(¢;—¢))

[ N
+3 };Z} (— A (o) + A3 (uo)ki — As(uo)kie,aa (sin (¢ + ¢ —sin (¢;— 1)) (14)

In the summation with the cos-terms, the diagonal part, if allowed to remain present, would give
a secular contribution to u,. In order to avoid this, its coefficient must vanish, and hence

1
Ao(uo) + 5 Ao(uo)uo = A3 (o) = A(uo) =0, (15)

placing further restrictions upon the allowable functions for 4,, 4, and A4,. (14) is recast in the
form

| QL :
Luy=75 Y, (—A(uo) + A3(uo)k; — As(uo)k)k ;a7 sin 26;
j=1

2 =
Jl it Lt )
+§ ;;(ﬁﬁ(kj'*'kl) sin (¢p;+ ¢+ (k;—ky) sin (p;— ¢p))a;ay, (16)
'j<l
where
/f},' = — Al (uo) + (k] Fk ke, + k) Ay (uo) — (k}t $k7k, +k12-k,2 $kjk,3 + kDA (u,). (17)

From (16) the solution for u, follows as

Z 4/ ZIujj Cos 2(/) + 2_42,, 2k / (/"_’l COS (¢_]+¢1) I’L_[l COos (¢) ¢’l)) (18)
with 4 j l ‘
11 = Bii(—3A5(uo) + SAs(uo)(k + ke jhey + k7)) . 19)

Finally, when u, as given in (8) and u, as in (18) are substituted into the third equation of (6), one
gets

1 oo
Luy= Y, < COS¢’+a’8t sin qb,)
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Vimn= — A1 (ky =k Fhy) + A5k — (ke 1 K,)*) — A5 (k7 — (k2 5,)),
Pinn=— A1k +ky k) + A5 (k] + (k1 K,)°) — A5 (k] + (K, 1 K,)°). @h

Some terms on the right-hand side of (20) belong to the kernel of L and hence would lead to secular
terms in u, if left in. In order to avoid such secularities some balancing is to occur in (20). The

cos-terms yield a set of equations governing the slow time behavior of the amplitudes a;:

N
8aj=

1
—-a.
ot, 2 fm;
m# j

1 1
A0+ A — A5 + A

1 2
<A o(to) + 3 Ao (oo — A (uo)kq+ Ai(uodky)a,

On the other hand, the sine terms yield the variations in the phases o;:
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§3. Discussion

In this section some special cases of (22)
and (23) will be discussed, and hence also of (1).
In the whole of th: discussion, quartic and
higher-order terms are omitted, as such
nonlinearities do not influence a third-order
wave coupling process. At the present level
of expansion nothing can be learned anyway
about such terms, one would have to go to
higher orders. Also, in the examples given
below, u, is always taken zero for simplicity.
This is not really a restriction, as it amounts to
a shift in the dependent variable. Furthermore,
a rescaling of #, x and u has been carried out to
achieve the simplest possible form for the
types of equations considered. The first class
is nonlinear equations which leave the amplitudes
of the interacting waves constant. Together
with the restrictions (3), (12) and (15) found
already, requiring all a; to remain constant
leads to a further restriction

1
Ad(uo) + 3 A5 (o) = A3(uo) = A3uo) =0, (24)
making the right-hand side of (22) zero. The
corresponding types of equations are
U= A l(u)ux + A B(M)uxxx + A S(u)uxxxxx' (25)

Derivatives will be denoted from now on by
subscripts. Any nonlinear PDE containing
only one odd-order derivative in each term

Al I
>:‘1 a,f,+— Eaf), (22)
(mVms WV + AT WY Ky — A (o) T+ A5 (10 S
(23)

gives constant wave amplitudes. As soon as
the amplitudes are constant, the right-hand side
of (23) is constant as well, and all phases «; are
a slow linear function of time:

a;(ty)=yt, + o (0). (26)

In general all amplitudes are coupled together
in y; to determine each o, except for equations
of the third class, discussed below. In the
converse case, we find the second class equations
leading to constant phases for the interacting
waves. The vanishing of the right-hand side
of (23) leads to

Aug)=A(ug)=0 (s=1,3,5). (27

Keeping also (3), (12) and (15) in mind gives
equations of the type:

3 2
U= /?'()u "I"’{lux + }“Zu Z"xx‘ih /13uxxx

+Aguu, A+ Asu (28)

with 4l 1; constant. The structure of the right-
hand side of (28) is u* multiplied by a linear
combination, with constant coefficients, of
even-order derivatives (including u itself as
the zeroth derivative), plus a similar linear
combination of odd-order derivatives. To (28)
belongs the special case of the Hirota equation®
discussed in earlier papers.!"> It is clear
from (22) that all amplitude equations are
coupled. Finally, in the third class one could
look for equations such that the slow changes
in amplitude and phase would for each wave

XXXXX?
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depend only on the parameters of the wave
itself. For those equations the waves would
decouple also in third order. Inspecting (22)
leads again to (24), making the third class a
subclass of the first class, with constant wave
amplitudes. Furthermore, there follows from
(23) that

3A45(uo) A (uo) =44 (o) A3 (1o),
34;5(ug)A3(ug) =44 ,32 (o),

As(uo) = As5(uo) = A5(uo) =0. (29)

Together with (24) and earlier restrictions, one
is led to nonlinear equations of the following

types:
(1) U= (3 + 3u + zuz)(ux i uxxx)’
(i) u, =G+ 3u+2uu,,,,

(i) u,=u, +u, . (30)

The last type is nothing but the KdV equation,
for which the property of wave decoupling in
third order was discovered earlier.” It was in
fact this unexpected property of the KdV
equation which started the research for a
generalization. Writing (23) specifically for
(30) respectively gives

. Oa; da?
@) Et—izgki (1- 4k12- - 3kj-*),
J
. 6ocj__3 173
(i1) E”gajkj’
. 0oy a]
(iii) (—3;—2—— 2——_—4kj’ 31

leading again to phases which increase or
decrease slowly with time.

As a final remark, similar investigations have
shown that the Benjamin-Bona-Mahony
equation’"®

(32

and the Joseph-Egri or time regularized long
wave equation,® 10

U= (1 4 u)ux T U

(33)

also belong to the third class, but only in the
long-wavelength limit, where the dispersion
law tends to the KdV dispersion law.

U= (1 + u)ux + Uyt
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Appendix A : Resonant Second-Order Interaction

For resonant interaction in second order
the wavevectors and frequencies have to obey
the selection rules'?

ky=k,+ks, (A-1)

which really express the conservation of mo-
mentum and energy when the waves are
viewed as quanta. Furthermore, for each wave
w; and k; (j=1, 2, 3) are linked through the
dispersion law (10). Writing it as

w;=— Al(uo)kj-f— A3(uo)k; *AS(uO)k?’
(j=1,2,3) (A-2)

W =W, +W;3,

and using (A- 1) leads to ’
3A5(uo)=545(uo) (k3 +koks +Kk3).  (A-3)

Nontrivial solutions for k, and k; are only
possible whenever A;(u,) and As(u,) both
differ from zero. This is not the case for the
interesting equations (30) of the third class.
Also, when viewing (A-3) as a quadratic
equation in k;, given k,, a real solution for
k4 requires that

k% < 4A3(”0),

54 5(uo)

that is, one of the waves must be of a sufficiently
long wavelength. If all the above is satisfied,
the case of resonant three-wave interaction
can be given in the usual fashion, requiring

only a modification of the two-timescale
method (5) to

9,0 .9
3t " at, Ty

(A-4)

to=t, t;=et. (A-5)

These calculations, however, fall outside the
scope of the present paper.
Appendix B: Two-Wave Interaction
Returning to the condition (11),
A4(u0)kj-‘ i Az(“o)k? + Ao(ug) +ugAg(ug) =0,
(=12 (B-1)
when this is now viewed as a biquadratic
equation in k}, several cases are possible.

The most interesting one is where two different
waves can exist, requiring two real, different,



2012

positive solutions for k7, and this is possible if

A5(uo) > 4A (o) (Ao (o) + 1o Ao (o)),

A (uo)/A4(ug) >0,

(Ao(uo) + 1o A5(40))] A4(1tg) > 0. (B-2)
Otherwise, only one or no wave results. The
corresponding equations are then of the form

U= (Ao +Kouu+ A, (u)u,
+ (g + KoYl + A3 (W)
+ (g + K+ AW, (B-3)
with

22>400ha, Ayfha>0, AolAs>0. (B-4)

Substituting then the two values for k; into (10)
gives w, and w,. From then on the procedure
in the paper can be followed step by step,
except that the linear operator L is not reduced
as in (13), but keeps the form given in (7).

Frank VErRHEEST and Willy HEREMAN
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This has some repercussions upon the deter-
mination of u,. In all summations over wave
quantities N is equal to 2 here, but no essential
difficulties arise.
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