Using Symmetries to Investigate the Complete Integrability of Nonlinear PDEs and Differential-Difference Equations

Willy Hereman

Department of Applied Mathematics and Statistics Colorado School of Mines, Golden, Colorado

Colorado Nonlinear Days 2023
University of Colorado-Colorado Springs
Sunday, April 30, 2023, 11:50a.m.

Outline

Nonlinear PDEs

- Scaling symmetry of KdV equation
- Lie point symmetries of KdV equation
- Scaling invariant quantities
- Bilinear forms
- Conservation laws
- Generalized symmetries
- Recursion operator
- Lax pair
- Discrete symmetries
- Making equations scaling invariant
- Using the scaling symmetry (KdV equation)

Nonlinear DDEs

- Scaling symmetry of Kac-van Moerbeke lattice
- Analogy between PDEs and DDEs
- Scaling invariant quantities of Kac-van Moerbeke lattice
- Scaling invariant quantities of the Toda lattice
- Using the scaling symmetry (Toda lattice)

Conclusions

Acknowledgements

- Ünal Göktaș (Ph.D student)

Douglas Baldwin (MS student)

Research was supported in part by NSF

This presentation is made in TeXpower

Scaling symmetry of the KdV equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

has scaling (dilation) symmetry

$$
(x, t, u) \rightarrow\left(\frac{x}{\kappa}, \frac{t}{\kappa^{3}}, \kappa^{2} u\right)=(\tilde{x}, \tilde{t}, \tilde{u})
$$

where κ is an arbitrary parameter.
Replacing (x, t, u) in terms of ($\tilde{x}, \tilde{t}, \tilde{u}$) yields

$$
\frac{1}{\kappa^{5}}\left(\tilde{u}_{\tilde{t}}+6 \tilde{u} \tilde{u}_{\tilde{x}}+\tilde{u}_{\tilde{x} \tilde{x} \tilde{x}}\right)=0
$$

Weights: $W(x)=-1, W(t)=-3$, and $W(u)=2$. Equivalently, $W\left(\mathrm{D}_{x}\right)=1$ and $W\left(\mathrm{D}_{t}\right)=3$.

Rank is the weight of a monomial, e.g., $\operatorname{rank}\left(6 u u_{x}\right)=5$.
The KdV equation is uniform in rank!

Solitary wave and periodic solutions

$$
\begin{aligned}
& u(x, t)=2 k^{2} \operatorname{sech}^{2}\left(k x-4 k^{3} t+\delta\right) \text { and } \\
& u(x, t)=\frac{4}{3} k^{2}(1-m)+2 k^{2} m \operatorname{cn}^{2}\left(k x-4 k^{3} t+\delta ; m\right)
\end{aligned}
$$

Since $W(x)=-1, W(t)=-3$, and $W(u)=2$ we have $W(k)=1$. Obviously, $W(\delta)=W(m)=0$.

Solitary and cnoidal waves for $k=2, m=\frac{9}{10}, \delta=0$.

Solitons using Hirota's method

Substitution of $u(x, t)=2(\ln f)_{x x}$, which is uniform in rank, into

$$
\partial_{t}\left(\int^{x} u d x\right)+3 u^{2}+u_{2 x}=0
$$

yields $f\left(f_{x t}+f_{4 x}\right)-f_{x} f_{t}+3 f_{x x}^{2}-4 f_{x} f_{3 x}=0$
which is homogenous of degree and uniform in rank!
Introducing Hirota's bilinear operators

$$
x^{\prime}=x, t^{\prime}=t
$$

one gets $\left(D_{x} D_{t}+D_{x}^{4}\right)(f \cdot f)=0$
The bilinear equation is uniform in rank!

Explicitly, $D_{x} D_{t}(f \cdot g)=f_{x t} g-f_{t} g_{x}-f_{x} g_{t}+f g_{x t}$ and

$$
D_{x}^{4}(f \cdot g)=f_{4 x} g-4 f_{3 x} g_{x}+6 f_{x x} g_{x x}-4 f_{x} g_{3 x}+f g_{4 x} .
$$

Leibniz rule for derivatives of products with every other sign flipped.

Two-soliton solution of the KdV equation

Using $f=1+\mathrm{e}^{\theta_{1}}+\mathrm{e}^{\theta_{2}}+a_{12} \mathrm{e}^{\theta_{1}+\theta_{2}}$, with $\theta_{i}=k_{i} x-k_{i}^{3} t+\delta_{i}$ and $a_{12}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2}$,
$u(x, t)=\frac{2\left[k_{1}^{2} \mathrm{e}^{\theta_{1}}+k_{2}^{2} \mathrm{e}^{\theta_{2}}+2\left(k_{1}-k_{2}\right)^{2} \mathrm{e}^{\theta_{1}+\theta_{2}}+a_{12}\left(k_{2}^{2} \mathrm{e}^{\theta_{1}}+k_{1}^{2} \mathrm{e}^{\theta_{2}}\right) \mathrm{e}^{\theta_{1}+\theta_{2}}\right]}{\left(1+\mathrm{e}^{\theta_{1}}+\mathrm{e}^{\theta_{2}}+a_{12} \mathrm{e}^{\theta_{1}+\theta_{2}}\right)^{2}}$

Bird's eye view of a 2-soliton collision for the KdV equation; $k_{1}=2, k_{2}=\frac{3}{2}, \delta_{1}=\delta_{2}=0$.

Lie point symmetries of the KdV equation

Making new solutions

If $u=f(x, t)$ is a solution of the KdV equation, so are

$$
\begin{array}{ll}
u=f(x-\varepsilon, t) & \text { space translation } \\
u=f(x, t-\varepsilon) & \text { time translation }
\end{array}
$$

$$
u=f(x-\varepsilon t, t)+\varepsilon
$$

Galilean boost

$$
u=\frac{1}{\kappa^{2}} f\left(\frac{x}{\kappa}, \frac{t}{\kappa^{3}}\right)
$$

scaling (dilation)

Integrability of the KdV equation

Defining equation of conservation law: $\mathrm{D}_{t} \rho+\mathrm{D}_{x} J \doteq 0$

$$
\begin{aligned}
& \mathrm{D}_{t}(u)+\mathrm{D}_{x}\left(3 u^{2}+u_{x x}\right) \doteq 0 \\
& \mathrm{D}_{t}\left(u^{2}\right)+\mathrm{D}_{x}\left(4 u^{3}-u_{x}^{2}+2 u u_{x x}\right) \doteq 0 \\
& \mathrm{D}_{t}\left(u^{3}-\frac{1}{2} u_{x}^{2}\right)+\mathrm{D}_{x}\left(\frac{9}{2} u^{4}-6 u u_{x}^{2}+\ldots-u_{x} u_{x x x}\right) \doteq 0 \\
& \mathrm{D}_{t}\left(u^{4}-2 u u_{x}^{2}+\frac{1}{5} u_{x x}^{2}\right)+\mathrm{D}_{x}\left(\frac{24}{5} u^{5}-18 u u_{x}^{2}+4 u^{3} u_{x x}\right. \\
& \left.+2 u_{x}^{2} u_{x x}+\frac{16}{5} u u_{x x}^{2}-4 u u_{x} u_{x x x}-\frac{1}{5} u_{x x x}^{2}+\frac{2}{5} u_{x x} u_{4 x}\right) \doteq 0
\end{aligned}
$$

Conservation laws are uniform in rank!

$$
\operatorname{rank}(\rho)+\operatorname{rank}\left(\mathrm{D}_{t}\right)=\operatorname{rank}(J)+\operatorname{rank}\left(\mathrm{D}_{x}\right)
$$

Single evolution equation $u_{t}=F$ or system $\mathbf{u}_{t}=\mathbf{F}$.

Defining equation of a generalized symmetry:

$$
\mathrm{D}_{t} G \doteq F^{\prime}(u)[G]
$$

where $F(u)^{\prime}[G]$ is the Fréchet derivative of $F(u)$ in the direction of G :

$$
F^{\prime}(u)[G]=\left.\frac{\partial}{\partial \epsilon} F(u+\epsilon G)\right|_{\epsilon=0}=\sum_{k}\left(\mathrm{D}_{x}^{k} G\right) \frac{\partial F}{\partial u_{k x}}
$$

In practice, introduce $u_{\tau}=G$. Compatibility with $u_{t}=F$ yields $\mathrm{D}_{\tau} F \doteq \mathrm{D}_{t} G$.

Eliminate all $u_{\tau}, u_{\tau x}, \ldots$ and $u_{t}, u_{t x}, \ldots$

Generalized symmetries of the KdV equation:

$$
\begin{aligned}
G^{(1)}= & u_{x} \\
G^{(2)}= & 6 u u_{x}+u_{x x x} \\
G^{(3)}= & 30 u^{2} u_{x}+20 u_{x} u_{x x}+10 u u_{x x x}+u_{5 x} \\
G^{(4)}= & 140 u^{3} u_{x}+70 u_{x}^{3}+280 u u_{x} u_{x x}+70 u^{2} u_{x x x} \\
& +70 u_{x x} u_{x x x}+42 u_{x} u_{4 x}+14 u u_{5 x}+u_{7 x}
\end{aligned}
$$

Generalized symmetries are uniform in rank!

Recursion operator connects generalized symmetries:

$$
G^{(j+1)}=\mathcal{R} G^{(j)}(j=1,2, \ldots)
$$

Recursion operator for the KdV equation:

$$
\mathcal{R}=\mathrm{D}_{x}^{2}+2 u \mathrm{I}+2 \mathrm{D}_{x} u \mathrm{D}_{x}^{-1}=\mathrm{D}_{x}^{2}+4 u \mathrm{I}+2 u_{x} \mathrm{D}_{x}^{-1}
$$

Recursion operator is uniform in rank!
Sequential symmetries of the $K d V$ equation:

$$
\begin{aligned}
& \mathcal{R} u_{x}=\left(\mathrm{D}_{x}^{2}+2 u \mathrm{I}+2 \mathrm{D}_{x} u \mathrm{D}_{x}^{-1}\right) u_{x}=6 u u_{x}+u_{x x x} \\
& \mathcal{R}\left(6 u u_{x}+u_{x x x}\right)=\left(\mathrm{D}_{x}^{2}+2 u \mathrm{I}+2 \mathrm{D}_{x} u \mathrm{D}_{x}^{-1}\right)\left(6 u u_{x}+u_{x x x}\right) \\
& =30 u^{2} u_{x}+20 u_{x} u_{x x}+10 u u_{x x x}+u_{5 x}
\end{aligned}
$$

Defining equation for the recursion operator:

$$
\mathrm{D}_{t} \mathcal{R}+\left[\mathcal{R}, F^{\prime}(u)\right] \doteq 0
$$

Explicitly,

$$
\frac{\partial \mathcal{R}}{\partial t}+\mathcal{R}^{\prime}[F]+\mathcal{R} \circ F^{\prime}(u)-F^{\prime}(u) \circ \mathcal{R} \doteq 0
$$

where [,] is the commutator, o is composition, and $\mathcal{R}^{\prime}[F]$ is the Fréchet derivative of \mathcal{R} in the direction of F.

Explicitly,

$$
\begin{gathered}
F^{\prime}(u)=\sum_{k} \frac{\partial F}{\partial u_{n k}} \mathrm{D}_{x}^{k} \\
\mathcal{R}^{\prime}[F]=\sum_{k}\left(\mathrm{D}_{x}^{k} F\right) \frac{\partial \mathcal{R}}{\partial u_{n k}}
\end{gathered}
$$

Lax pair: Replace the PDE with a compatible linear system: $\mathcal{L} \psi=\lambda \psi, \quad \mathrm{D}_{t} \psi=\mathcal{M} \psi$
\mathcal{L} and \mathcal{M} are differential operators; ψ is eigenfunction;
λ is constant eigenvalue ($\lambda_{t}=0$) (isospectral).
Defining equation of a Lax pair: $\mathcal{L}_{t}+[\mathcal{L}, \mathcal{M}] \doteq \mathcal{O}$
with commutator $[\mathcal{L}, \mathcal{M}]=\mathcal{L} \mathcal{M}-\mathcal{M} \mathcal{L}$.
Lax pair for the $K d V$ equation:

$$
\begin{gathered}
\mathcal{L}=\mathrm{D}_{x}^{2}+u \mathrm{I} \\
\mathcal{M}=-\left(4 \mathrm{D}_{x}^{3}+6 u \mathrm{D}_{x}+3 u_{x} \mathrm{I}\right) \\
\text { Lax pair is uniform in rank! }
\end{gathered}
$$

Scaling symmetry of the mKdV equation

$$
u_{t}+\alpha u^{2} u_{x}+u_{x x x}=0
$$

is invariant under the transformation

$$
(x, t, u) \rightarrow\left(\frac{x}{\kappa}, \frac{t}{\kappa^{3}}, \kappa u\right)
$$

Thus, $W(u)=W\left(\mathrm{D}_{x}\right)=1$ and $W\left(\mathrm{D}_{t}\right)=3$.
Lax pair of the mKdV equation:

$$
\begin{aligned}
& \mathcal{L}=\mathrm{D}_{x}^{2}+2 u \mathrm{D}_{x}+\left(u^{2}+u_{x}\right) \mathrm{I} \\
& \mathcal{M}=\left(3 \alpha u^{3}+u_{x x}\right) \mathrm{I}
\end{aligned}
$$

The Lax pair is uniform in rank!

General Lax pair for the mKdV equation:

$$
\begin{aligned}
\mathcal{L}=\mathrm{D}_{x}^{2} & +2 \epsilon u \mathrm{D}_{x}+\frac{1}{6}\left(\left(6 \epsilon^{2}+\alpha\right) u^{2}+(6 \epsilon \pm \sqrt{-6 \alpha}) u_{x}\right) \mathrm{I} \\
\mathcal{M}= & -4 \mathrm{D}_{x}^{3}-12 \epsilon u \mathrm{D}_{x}^{2} \\
& -\left(\left(12 \epsilon^{2}+\alpha\right) u^{2}+(12 \epsilon \pm \sqrt{-6 \alpha}) u_{x}\right) \mathrm{D}_{x} \\
& -\left(\left(4 \epsilon^{3}+\frac{2}{3} \epsilon \alpha\right) u^{3}+\left(12 \epsilon^{2} \pm \epsilon \sqrt{-6 \alpha}+\alpha\right) u u_{x}\right. \\
& \left.+\left(3 \epsilon \pm \frac{1}{2} \sqrt{-6 \alpha}\right) u_{x x}\right) \mathrm{I}
\end{aligned}
$$

where ϵ is arbitrary parameter (M. Wadati, J. Phys. Soc. Jpn., 1972-1973).

The Lax pair is uniform in rank!

Making PDEs scaling invariant

The Boussinesq equation

$$
u_{t t}-u_{x x}+3 u_{x}^{2}+3 u u_{x x}+\alpha u_{4 x}=0
$$

is not scaling invariant.
Introduce an auxiliary parameter β (with weight)

$$
u_{t t}-\beta u_{x x}+3 u_{x}^{2}+3 u u_{x x}+\alpha u_{4 x}=0 .
$$

Then $(x, t, u, \beta) \rightarrow\left(\frac{x}{\kappa}, \frac{t}{\kappa^{2}}, \kappa^{2} u, \kappa^{2} \beta\right)$. Thus, $W\left(\mathrm{D}_{x}\right)=1, W\left(\mathrm{D}_{t}\right)=2, W(u)=2$, and $W(\beta)=2$.

After the computations are done set β equal to one.

The short pulse equation

$$
u_{x t}=u+\left(u^{3}\right)_{x x}=u+6 u u_{x}^{2}+3 u^{2} u_{x x}
$$

is not scaling invariant. But

$$
u_{x t}=\beta u+\left(u^{3}\right)_{x x}=\beta u+6 u u_{x}^{2}+3 u^{2} u_{x x}
$$

is uniform in rank with weights
$W\left(\mathrm{D}_{x}\right)=1, W\left(\mathrm{D}_{t}\right)=3, W(u)=1$, and $W(\beta)=4$.
The (non-polynomial) conservation law

$$
\mathrm{D}_{t}\left(\sqrt{\beta+6 u_{x}^{2}}\right)-\mathrm{D}_{x}\left(3 u^{2} \sqrt{\beta+6 u_{x}^{2}}\right)=0
$$

is uniform in rank!
After the computations are done set β equal to one.

Discrete symmetries

The KdV equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

is invariant under $(x, t, u) \rightarrow(-x,-t, u)$.
The mKdV equation

$$
u_{t}+\alpha u^{2} u_{x}+u_{x x x}=0
$$

is invariant under $(x, t, u) \rightarrow(x, t,-u)$ and $(x, t, u) \rightarrow(-x,-t, u)$.

Using the scaling symmetry

Compute recursion operator for KdV equation

$$
\mathcal{R}=\mathrm{D}_{x}^{2}+4 u \mathrm{I}+2 u_{x} \mathrm{D}_{x}^{-1}
$$

Structure of the recursion operator: $\mathcal{R}=\mathcal{R}_{0}+\mathcal{R}_{1}$.

- Rank: $R \equiv \operatorname{rank}(\mathcal{R})=\operatorname{rank}\left(G^{(2)}\right)-\operatorname{rank}\left(G^{(1)}\right)$.
- Differential operator \mathcal{R}_{0} is scaling invariant.
- Integral operator \mathcal{R}_{1} is scaling invariant.
- $\mathcal{R}_{1}=\sum_{j} \sum_{k} \mathbf{G}^{(j)} D_{x}^{-1} \otimes \mathcal{L}_{\mathbf{u}}\left(\rho^{(k)}\right)$ where \otimes is outer product and $\mathcal{L}_{\mathbf{u}}$ is Euler operator $\mathcal{L}_{\mathbf{u}}=\sum_{i}(-1)^{i} D_{x}^{i} \frac{\partial}{\partial \mathbf{u}_{i x}}$.
- Indices j and k are taken such that $\operatorname{rank}\left(G^{(j)}\right)+\operatorname{rank}\left(\rho^{(k)}\right)-2=R$.

Compute the first few conserved densities:
$\rho^{(1)}=u, \quad \rho^{(2)}=u^{2}, \ldots$

- Compute the first few generalized symmetries: $G^{(1)}=u_{x}, \quad G^{(2)}=6 u u_{x}+u_{x x x}, \ldots$.
- Compute $R=\operatorname{rank}\left(G^{(2)}\right)-\operatorname{rank}\left(G^{(1)}\right)=2$.
- Build $\mathcal{R}_{0}=c_{1} \mathrm{D}_{x}^{2}+c_{2} u \mathrm{I}$.

Build $\mathcal{R}_{1}=c_{3} u_{x} \mathrm{D}_{x}^{-1}$.

- Substitute $\mathcal{R}=\mathcal{R}_{0}+\mathcal{R}_{1}$ into the determining equation and find the c_{i}.

Use $G^{(j+1)}=\mathcal{R} G^{(j)}$ to verify \mathcal{R}.

$$
\text { Result: } \mathcal{R}=\mathrm{D}_{x}^{2}+4 u \mathrm{I}+2 u_{x} \mathrm{D}_{x}^{-1}
$$

Nonlinear Differential-Difference Equations

Scaling symmetry of Kac-van Moerbeke lattice

$$
\dot{u}_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right)
$$

is invariant under the scaling symmetry

$$
\left(t, u_{n}\right) \rightarrow\left(\frac{t}{\kappa}, \kappa u_{n}\right) .
$$

Thus, $W\left(\mathrm{D}_{t}\right)=1$ and $W\left(u_{n}\right)=1$.

Analogy between PDEs and DDEs

	PDEs	DDEs
System	$\mathbf{u}_{t}=\mathbf{F}\left(\mathbf{u}, \mathbf{u}_{x}, \ldots\right)$	$\dot{\mathbf{u}}_{n}=\mathbf{F}\left(\ldots, \mathbf{u}_{n}, \ldots\right)$
Cons. Law	$\mathrm{D}_{t} \rho+\mathrm{D}_{x} J \doteq 0$	$\dot{\rho}+\Delta J \doteq 0$
Symmetry	$\mathrm{D}_{t} \mathbf{G} \doteq \mathbf{F}^{\prime}(\mathbf{u})[\mathbf{G}]$	$\mathrm{D}_{t} \mathbf{G} \doteq \mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)[\mathbf{G}]$
Rec. oper.	$\mathrm{D}_{t} \mathcal{R}+\left[\mathcal{R}, \mathbf{F}^{\prime}(u)\right] \doteq 0$	$\mathrm{D}_{t} \mathcal{R}+\left[\mathcal{R}, \mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)\right] \doteq 0$

Typical Examples

	PDEs	DDEs
Equation	KdV equation	KVM lattice
	$u_{t}=6 u u_{x}+u_{x x x}$	$\dot{u}_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right)$
Densities	$\rho=u$	$\rho=u_{n}$
	$\rho=u^{2}$	$\rho=u_{n}\left(\frac{1}{2} u_{n}+u_{n+1}\right)$
	$\rho=u^{3}-\frac{1}{2} u_{x}^{2}$	$\rho=\frac{1}{3} u_{n}^{3}+$
$u_{n} u_{n+1}\left(u_{n}+u_{n+1}+u_{n+2}\right)$		

The KvM Iattice has a conserved density $\rho=\ln \left(u_{n}\right)$ of rank zero with flux $J=-\left(u_{n}+u_{n-1}\right)$ of rank 1 .

Typical Examples - continued

Equation	KdV equation	KvM Iattice
	$u_{t}=6 u u_{x}+u_{x x x}$	$\dot{u}_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right)$
Symm.	$G=u_{x}$	$G=u_{n}\left(u_{n+1}-u_{n-1}\right)$
	$G=6 u u_{x}+u_{x x x}$	$G=u_{n}\left(u_{n+1}\left(u_{n}+\right.\right.$
	$G=30 u^{2} u_{x}+20 u_{x} u_{x x}$	$\left.u_{n+1}+u_{n+2}\right)-u_{n-1}$
$+10 u u_{x x x}+u_{5 x}$	$\left.\left(u_{n-2}+u_{n-1}+u_{n}\right)\right)$	
Rec. oper.	$\mathcal{R}=\mathrm{D}_{x}^{2}+4 u+2 u_{x} \mathrm{D}_{x}^{-1}$	$\mathcal{R}=u_{n}(\mathrm{D}+\mathrm{I})\left(u_{n} \mathrm{D}\right.$ $\left.-\mathrm{D}^{-1} u_{n}\right)(\mathrm{D}-\mathrm{I})^{-1} \frac{1}{u_{n}}$

Scaling symmetry of Toda lattice

$$
\ddot{y}_{n}=\exp \left(y_{n-1}-y_{n}\right)-\exp \left(y_{n}-y_{n+1}\right)
$$

y_{n} is displacement from equilibrium of nth particle with unit mass under an exponentially decaying interaction force between nearest neighbors.

Change of variables: $u_{n}=\dot{y}_{n}, \quad v_{n}=\exp \left(y_{n}-y_{n+1}\right)$ yields $\dot{u}_{n}=v_{n-1}-v_{n}, \quad \dot{v}_{n}=v_{n}\left(u_{n}-u_{n+1}\right)$
which is invariant under the scaling symmetry

$$
\left(t, u_{n}, v_{n}\right) \rightarrow\left(\frac{t}{\kappa}, \kappa u_{n}, \kappa^{2} v_{n}\right) .
$$

Hence, $W\left(\mathrm{D}_{t}\right)=1, W\left(u_{n}\right)=1, w\left(v_{n}\right)=2$.

Scaling invariant quantities for Toda lattice

- First three density-flux pairs:

$$
\begin{array}{ll}
\rho^{(0)}=\ln \left(v_{n}\right) & J^{(0)}=u_{n} \\
\rho^{(1)}=u_{n} & J^{(1)}=v_{n-1} \\
\rho^{(2)}=\frac{1}{2} u_{n}^{2}+v_{n} & J^{(2)}=u_{n} v_{n-1}
\end{array}
$$

- First three generalized symmetries:

$$
\begin{aligned}
\mathbf{G}^{(1)} & =\binom{1}{0} \\
\mathbf{G}^{(2)} & =\binom{v_{n}-v_{n-1}}{v_{n}\left(u_{n}-u_{n+1}\right)} \\
\mathbf{G}^{(3)} & =\binom{v_{n}\left(u_{n}+u_{n+1}\right)-v_{n-1}\left(u_{n-1}+u_{n}\right)}{v_{n}\left(u_{n+1}^{2}-u_{n}^{2}+v_{n+1}-v_{n-1}\right)}
\end{aligned}
$$

- Recursion operator:
$\mathcal{R}=\left(\begin{array}{cc}-u_{n} \mathrm{I} & -\mathrm{D}^{-1}-\mathrm{I}+\left(v_{n-1}-v_{n}\right)(\mathrm{D}-\mathrm{I})^{-1} \frac{1}{v_{n}} \mathrm{I} \\ -v_{n} \mathrm{I}-v_{n} \mathrm{D} & u_{n+1} \mathrm{I}+v_{n}\left(u_{n}-u_{n+1}\right)(\mathrm{D}-\mathrm{I})^{-1} \frac{1}{v_{n}} \mathrm{I}\end{array}\right)$
For r-component systems, $\mathcal{R}=\mathcal{R}_{0}+\mathcal{R}_{1}$ is an $r \times r$ matrix.

Defining equation for \mathcal{R} :
$\mathrm{D}_{t} \mathcal{R}+\left[\mathcal{R}, \mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)\right]=\frac{\partial \mathcal{R}}{\partial t}+\mathcal{R}^{\prime}[\mathbf{F}]+\mathcal{R} \circ \mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)-\mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right) \circ \mathcal{R} \doteq 0$
where [,] is the commutator, o is composition, and $\mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)$ is the Fréchet derivative operator.

For a system with two components, u_{n} and v_{n},

$$
\mathbf{F}^{\prime}\left(\mathbf{u}_{n}\right)=\left(\begin{array}{cc}
\sum_{k} \frac{\partial F_{1}}{\partial u_{n+k}} \mathrm{D}^{k} & \sum_{k} \frac{\partial F_{1}}{\partial v_{n+k}} \mathrm{D}^{k} \\
\sum_{k} \frac{\partial F_{2}}{\partial u_{n+k}} \mathrm{D}^{k} & \sum_{k} \frac{\partial F_{2}}{\partial v_{n+k}} \mathrm{D}^{k}
\end{array}\right) .
$$

Applied to $\mathbf{G}=\binom{G_{1}}{G_{2}}$,

$$
F_{i}^{\prime}\left(\mathbf{u}_{n}\right)[\mathbf{G}]=\sum_{k} \frac{\partial F_{i}}{\partial u_{n+k}} \mathrm{D}^{k} G_{1}+\sum_{k} \frac{\partial F_{i}}{\partial v_{n+k}} \mathrm{D}^{k} G_{2}
$$

with $i=1,2$.

Furthermore,

$$
\mathcal{R}^{\prime}[\mathbf{F}]=\sum_{k}\left(\mathrm{D}^{k} \mathbf{F}\right) \frac{\partial \mathcal{R}}{\partial \mathbf{u}_{n+k}}
$$

For lattice systems matrix \mathcal{R}_{1} is of the form

$$
\sum_{j} \sum_{k} \mathbf{G}^{(j)}(\mathrm{D}-\mathrm{I})^{-1} \otimes \mathcal{L}_{\mathbf{u}_{n}}\left(\rho^{(k)}\right)
$$

where \otimes is outer product, and \mathcal{L} is the discrete Euler operator.

Explicitly, for systems with u_{n} and v_{n}

$$
\mathcal{L}_{u_{n}}\left(\rho^{(k)}\right)=\sum_{i} D^{-i} \frac{\partial \rho^{(k)}}{\partial u_{n+i}}
$$

Similar formula for $\mathcal{L}_{v_{n}}\left(\rho^{(k)}\right)$.

Recursion operator for Toda Iattice
$\mathcal{R}=\left(\begin{array}{cc}-u_{n} \mathrm{I} & -\mathrm{D}^{-1}-\mathrm{I}+\left(v_{n-1}-v_{n}\right)(\mathrm{D}-\mathrm{I})^{-1} \frac{1}{v_{n}} \mathrm{I} \\ -v_{n} \mathrm{I}-v_{n} \mathrm{D} & u_{n+1} \mathrm{I}+v_{n}\left(u_{n}-u_{n+1}\right)(\mathrm{D}-\mathrm{I})^{-1} \frac{1}{v_{n}} \mathrm{I}\end{array}\right)$
The recursion operator can be factored as $\mathcal{R}=\mathcal{H S}$ with Hamiltonian (symplectic) operator

$$
\mathcal{H}=\left(\begin{array}{cc}
\mathrm{D}^{-1} v_{n} \mathrm{I}-v_{n} \mathrm{D} & -u_{n} v_{n} \mathrm{I}+u_{n} \mathrm{D}^{-1} v_{n} \mathrm{I} \\
-v_{n} \mathrm{D} u_{n} \mathrm{I}+u_{n} v_{n} \mathrm{I} & -v_{n} \mathrm{D} v_{n} \mathrm{I}+v_{n} \mathrm{D}^{-1} v_{n} \mathrm{I}
\end{array}\right)
$$

and co-symplectic operator

$$
\mathcal{S}=\left(\begin{array}{cc}
0 & (\mathrm{D}-\mathrm{I})^{-1} \frac{1}{v_{n}} \mathrm{I} \\
\frac{1}{v_{n}} \mathrm{D}(\mathrm{D}-\mathrm{I})^{-1} & 0
\end{array}\right)
$$

Conclusions

Conservation laws, generalized symmetries, recursion operators, and Lax pairs inherit the scaling symmetry (and other Lie symmetries).

- Solutions of PDEs and DDEs have the scaling and discrete symmetries of the equations.

Use the method of undetermined coefficients to construct scaling invariant quantities.

Use tools of the calculus of variations and differential geometry (Fréchet derivatives, Euler and homotopy operators).

- Implementation in Maple or Mathematica lead to software the automate the computations.

Thank You

