Using Symmetries to Investigate the
Complete Integrability of Nonlinear PDEs
and Differential-Difference Equations

Willy Hereman

Department of Applied Mathematics and Statistics
Colorado School of Mines, Golden, Colorado

Colorado Nonlinear Days 2023
University of Colorado—Colorado Springs
Sunday, April 30, 2023, 11:50a.m.



Outline
Nonlinear PDEs

Scaling symmetry of KdV equation
Lie point symmetries of KdV equation

Scaling invariant quantities
» Bilinear forms
» Conservation laws
» Generalized symmetries
» Recursion operator
> Lax pair

Discrete symmetries
Making equations scaling invariant

Using the scaling symmetry (KdV equation)



Nonlinear DDEs
Scaling symmetry of Kac-van Moerbeke lattice
Analogy between PDEs and DDEs

Scaling invariant quantities of Kac-van Moerbeke
lattice

Scaling invariant quantities of the Toda lattice
Using the scaling symmetry (Toda lattice)

Conclusions



Acknowledgements

Unal Goktas (Ph.D student)

Douglas Baldwin (MS student)

Research was supported in part by NSF

his presentation is made in TeXpower



Scaling symmetry of the KdV equation

has scaling (dilation) symmetry

t -
(m,t,u)—)(%,g,ﬁﬁu) — (2,1, 1)

where x IS an arbitrary parameter.

Replacing (z,t,u) in terms of (z,t, 1) yields

L/ o
— (u;g + 6uuz + 'Uf:cac:c) =0

P

Weights: W(x) = -1, W(t) = =3, and W (u) = 2.
Equivalently, W (D,;) =1 and W (D) = 3.

Rank is the weight of a monomial, e.g., rank(6uu,)=>.

The KAV equation is uniform in rankl!



Solitary wave and periodic solutions
w(z,t) = 2k*sech?(kx —4k’t+6) and
u(x,t) = %kQ(l —m) + 2k*mcn®(kx — 4k°t 4+ 6;m)

Since W(xz) = —1, W(t) = —3, and W(u) = 2 we have
Wi(k) = 1. Obviously, W(§) = W(m) = 0.

Solitary and cnoidal waves for £ =2, m =

u(x,0)

9 —
9 6=0.




Solitons using Hirota's method

Substitution of u(xz,t) = 2(In f).., which is uniform in

rank, into .
3,5(/ udac) +3u? 4+ usp =0

vields  f(fut + faz) — foft + Sfa:Qx —4frf3. =0

which is homogenous of degree and uniform in rankl!

Introducing Hirota's bilinear operators

D?’D?’(fg) — (aﬂ?_aﬂl?/)m(at_at’)nf(xa t)g(ZU/, t/)

x'=x,t'=t

one gets (Da;.Dt + D;‘;) (f-f) =0

T he bilinear equation is uniform in rankl



ExplicCitly, D:th(fg) = fot9 — Jt9z — J29¢t + fgz+ @nd

Di(f‘Q) = fazg — 4f329: + 6 f22G920 — 4f2932 + [Gas.

LLeibniz rule for derivatives of products with every other
sign flipped.

Two-soliton solution of the KAV equation

Using f =1+ e’ + % + a12e" 7%, with 6; = k;z — k3t + 6
2
and ajp = (Z;FZ;) ;

2 [k%eel—l— k% el24 92 (kl—kg)Qeeﬁe? +ai9 (k%eel—I— k%eeQ )6917%}
u(x,t)=

(1+e% + e + aro 661+92)2



Bird's eye view of a 2-soliton collision for the KdV
equation; k; = 2, ko = %, 01 = 09 = 0.




Lie point symmetries of the KdV equation

Making new solutions

If w= f(z,t) is a solution of the KdV equation, so are

u=f(x —e,t) space translation
u=f(x,t —¢e) time translation
u=f(x —et,t) +¢ Galilean boost
U= % (E, ig) scaling (dilation)
K°' K K



Integrability of the KdV equation

Defining equation of conservation law:|D;p+ D,J =0

Dy (u) + D, (3u2 — um) =0
Dt( )—I—D ( u’ — Uy —|—2uum) =0

3 1 2 .
Dt(u—§u)—|—D( —6uux—|—...—u$um$):()
Dt(u — 2uu’ + 2 = m) + Dy (24 > — 18uu? + 4u gy

Conservation laws are uniform in rank!

rank(p) 4+ rank(D;) = rank(J) + rank(D,)



Single evolution equation u; = F' or system u; = F.

Defining equation of a generalized symmetry:

DG = F'(u)][G]

where F(u)'[G] is the Fréchet derivative of F(u) in the
direction of G:

F'(u)[G] = %F(u + €G)]e=0 = Z (D:G) 8(11:
k X

In practice, introduce uw, = G. Compatibility with
uy = F' yields D, F =D;G .

Eliminate all -, wry, ... and uz, Ui, . . ..



Generalized symmetries of the KdV equation:

) — U

G? = 6uuy + Ugga

GB) = 30w Uy + 20Uptpr + 10UUErr - Usy

GW = 14003, + 70“2 + 280Ut Ugpy + TOUUpgry
+ 70Uz Uzze + 42Uguay + 1duusy + urg

Generalized symmetries are uniform in rank!



Recursion operator connects generalized symmetries:

GUTD =RrGV | (j=1,2,...)

Recursion operator for the KdV equation:

R = D? + 2ul 4+ 2D uD_ ' = DZ + 4ul 4 2u,D_’

Recursion operator is uniform in rankl
Sequential symmetries of the KAV equation:
Ru, = (Di + 2ul + 2Dqu51)uJ; = 0UUL + Upry

R(6uus + User) = (D2 + 2ul 4+ 2D uD 1) (6uus + vrsz)
:3Ou2ux + 20U Uy + 10UULr + Usy



Defining equation for the recursion operator:

DR+ [R, F'(uv)] = 0

Explicitly,

T A RIF] 4 Ro F(w) ~ F(u)oR = 0

where [, | is the commutator, o is composition, and

R'|F'| is the Fréchet derivative of R in the direction of
F.

Explicitly, OF
F/ — Dk
(=3 50"
OR
R[F] = DFF
£l =3 (OLF) 5



Lax pair: Replace the PDE with a compatible linear
system: Ly = A\, Dpyp = M)

L and M are differential operators; 1 is eigenfunction;
A is constant eigenvalue (\; = 0) (isospectral).

Defining equation of a Lax pair: | L+ [L, M] = O

with commutator [£L, M| = LM — ML.

Lax pair for the KAV equation:

L=D?+ul

M= — (4D§ + 6uD, +3u$1)

Lax pair is uniform in rank!



Scaling symmetry of the mKdV equation

2

Ut + au Uy + Uggy = 0

IS invariant under the transformation

t
(z,t,u) — (f7 —, K u)
K K
Thus, W(u) =W(D;) =1 and W(D;) = 3.
LLax pair of the mKdV equation:
L = Di—l—Qqu—F (uQ—I—ux)I
M = (3Ozu3 + um) I

The Lax pair is uniform in rankl!



General Lax pair for the mKdV equation:

L= Di + 2euD, + % ((662 + a) u? + (66 T —604) uw> I

M=—-4D? — 12euD?

— ((1262 + a) u? + (126 -

= \/—76a) u;r;) D,

—((463 — %ea)ug — (1262 -

—I—(3€ + %\/—7604)’&333;) I

where € Is arbitrary parameter
Soc. Jpn., 1972-1973).

- eV —6ba + oz)uu;,;

(M. Wadati, J. Phys.

The Lax pair is uniform in rankl



Making PDEs scaling invariant

T he Boussinesqg equation
Utt — Ugy + 3“2 + uuyy + augy = 0
IS not scaling invariant.
Introduce an auxiliary parameter 8 (with weight)
Ut — BUgz + 3ul + 3utzy + Qg = 0.

Then (z,t,u,8) = (7, %,KJQ u, k* ). Thus,
W(Dyz) =1, W(D¢) =2, W(u) =2, and W(B) = 2.

After the computations are done set 3 equal to one.



The short pulse equation

gt = U + (ug)m = u + 6uu3j + 3u Uy
IS not scaling invariant. But
Ut = Bu + (ug)m = fu+ 6uui + 3u Uy

IS uniform in rank with weights
W(Dg) =1, W(Dy) =3, W(u) =1, and W(B) = 4.

The (non-polynomial) conservation law

D; (¢5 T 6ug) —D, (3u2\/6 n Gug) — 0

IS uniform in rank!

After the computations are done set 5 equal to one.



Discrete symmetries

The KAV equation

is invariant under (x,t,u) — (—x, —t, u).

The mKdV equation

2

Ut + oau Uz + Uggye = 0

is invariant under (z,t,u) — (z,t,—u) and
(z,t,u) = (—x, —t,u).



Using the scaling symmetry
Compute recursion operator for KdV equation
R = D2 + 4ul + 2u, D!
Structure of the recursion operator: R =Ryg+ R1.
e Rank: R =rank(R) = rank(G?) — rank(GW).
e Differential operator Ry is scaling invariant.
e Integral operator R is scaling invariant.

e Ri=>>,GUD @ Ly(p*) where ® is outer
product and Ly is Euler operator Ly =Y ,(—1)"D} ;-

e Indices 3 and k are taken such that
rank(GY) + rank(p®)) — 2 = R.



Compute the first few conserved densities:

pM) =wu, p? =2 . ...

Compute the first few generalized symmetries:
G = (T G2 = 6uu, + Ugzss - - -

Compute R = rank(G?) — rank(GW) = 2.
Build Ry = C1D3j + coul.
Build R = Cgungl.

Substitute R = Ry + R1 into the determining
equation and find the ¢;.

Use GUTD = R GU) to verify R.

Result: R = D2 + 4ul + 2u, D!



Nonlinear Differential-Difference Equations

Scaling symmetry of Kac-van Moerbeke lattice

Up, = Un(un—i—l — un—l)

IS invariant under the scaling symmetry

(£, 1) — (é,mn).

Thus, W(Dy) =1 and W(u,) = 1.



Analogy between PDEs and DDEs

PDEs DDEs
System uw:=F(u,ug,...) u,=F(..,u,,...)
Cons. Law | Diyp+ D,J =0 o+ AJ=0
Symmetry | D:G =F'(u)[G] D:G =F'(u,)|G]
Rec. oper. | DiR+ [R,F/'(u)]=0 | D/R + [R,F'(u,)] =0




Typical Examples

PDES DDEs

Equation | KdV equation KvM lattice

Ut = 6UUz + Ugzx | Un = Up (un—i—l — un—l)

Densities | p=u 0 = Up
p = U,z P = un(%un+un+1)
p=1u’— juj p=gup+

UnUn+1(Un+Unt1+Unt2)

The KvM lattice has a conserved density p = In(u,) of
rank zero with flux J = —(uy, + up—1) Of rank 1.



Typical Examples — continued

Equation KdV equation KvM lattice
Ut = 6uuy + Uzry Up, = Up (un—l—l _un—l)
Symm. G = uy G=up(Unt+1—Un—1)
G =6uuy + Uzzs G=1up (un—l—l (un +

G = 30u2uaj‘|‘20uajumx Un+1 ‘|‘Un+2) —Un—-1

+10uurrr + U5 (Up—2+uUn—1 ‘|‘un))

Rec. oper. | R=D?+4u+2u,;D;! | R=u,(D+I)(u,D
—D~lu,)(D—-I)7 -1




Scaling symmetry of Toda lattice

Un = exp (Yn—1 — Yn) — exp (Yn — Yn+1)

yn IS displacement from equilibrium of nth particle with
unit mass under an exponentially decaying interaction
force between nearest neighbors.

Change of variables: u, = ¥n, v, = exp (Yn — Yn+1)

vields

Up — Un—1 — Un, Up = Un(un — un—l—l)

which is invariant under the scaling symmetry

t
(t, Un, vp) — (;, KUn, K Un).

Hence, W (D) =1, W(up) =1, w(v,) = 2.



Scaling invariant quantities for Toda lattice
e First three density-flux pairs:
p(O) = In(vy,) JO) = 4,

p(l) = Un J(l) — Un—1

p(2) — %u% _|_ Un, J(Q) = UnUn—1



e First three generalized symmetries:

T
0
G(z) _ Un — Un-—1
Un(un — Un—|—1)
G(S) _ vn(un T un—l—l) — Un—l(un—l + Un)

2 2
Un(un—l—l — Uy + Un4+1 — Un—l)



e Recursion operator:

_— —upl —D7! =T+ (-1 —v,)(D = T) 7111
—vnl —vnD ups1l + v (un — upg1)(D —I)7 111

For r-component systems, R =Ro+Riisanr X r
matrix.

Defining equation for R :
/ @R / / / .

where |, | is the commutator, o is composition, and
F'(u,) is the Fréchet derivative operator.



For a system with two components, u, and v,,

/ OF1 Mk OF1 Mk \
2k D* 2k b

8un+k avn—l—k
F'(u,) =
OF k OFy ™k
\ Dk aunikD Dk avnikD )
. G
Applied to G = :
Go
OF; OF;
F/(u,)[G] = D*G; + D*Gs
(@G =30 50 > ot

with i = 1,2.



Furthermore,

ZDkF IR

For lattice systems matrix /R is of the form

;‘ ;‘ GO)(D L& Lo (p0)

where ® is outer product, and L is the discrete Euler
operator.

Explicitly, for systems with u,, and vn
ZD 7,

Similar formula for £, (p*)).

aun—l—z



Recursion operator for Toda lattice

— ] —D7! =T+ (vn-1 — vp)(D = 1)~ 1-L1

n

R =
—vpl — v D upp1 I + vp(un — ups1)(D — I)_lviI

The recursion operator can be factored as R = HS
with Hamiltonian (symplectic) operator

1y D~ 1v,I —v,D —Upvnl + u, D 1o, 1
—v,DunI + upv,l —v,Dv,I + v, D 1,1

and co-symplectic operator

0 (D—-1)~ 111
S = Un
LD(MD —-1)~! 0



Conclusions

Conservation laws, generalized symmetries,
recursion operators, and Lax pairs inherit the
scaling symmetry (and other Lie symmetries).

Solutions of PDEs and DDEs have the scaling and
discrete symmetries of the equations.

Use the method of undetermined coefficients to
construct scaling invariant quantities.

Use tools of the calculus of variations and
differential geometry (Fréchet derivatives, Euler
and homotopy operators).

Implementation in Maple or Mathematica lead to
software the automate the computations.



T hank You



